
Answers Partitioning and Lazy Joins
for Efficient Query Relaxation

and Application to Similarity Search

Sébastien Ferré(B)

Univ Rennes, CNRS, IRISA, Campus de Beaulieu, 35042 Rennes, France
ferre@irisa.fr

Abstract. Query relaxation has been studied as a way to find approx-
imate answers when user queries are too specific or do not align well
with the data schema. We are here interested in the application of query
relaxation to similarity search of RDF nodes based on their description.
However, this is challenging because existing approaches have a complex-
ity that grows in a combinatorial way with the size of the query and the
number of relaxation steps. We introduce two algorithms, answers parti-
tioning and lazy join, that together significantly improve the efficiency of
query relaxation. Our experiments show that our approach scales much
better with the size of queries and the number of relaxation steps, to
the point where it becomes possible to relax large node descriptions in
order to find similar nodes. Moreover, the relaxed descriptions provide
explanations for their semantic similarity.

1 Introduction

Query relaxation has been proposed as a way to find approximate answers to user
queries [10]. It consists in applying transformations to the user query in order to
relax constraints, and make it more general so that it produces more answers.
In previous work on SPARQL queries over RDF(S) graphs [5,6,9,14,15], typical
relaxation steps consist in removing a query element or replacing a class by a
superclass or a node by a variable. The major limitation of query relaxation
is that the number of relaxed queries grows in a combinatorial way with the
number of relaxation steps and the size of the query.

A potential application of query relaxation is similarity search, i.e. the search
for the nodes most similar to a given query node in an RDF graph. We propose to
start with the query node description as an overly specific query, and to relax it
progressively in order to find similar nodes as approximate answers. The relaxed
queries can then be used as explanations of the similarity with each node, and
for ranking similar nodes. However, existing algorithms for query relaxation are
not efficient enough for that purpose because node descriptions make up for

This research is supported by ANR project PEGASE (ANR-16-CE23-0011-08).

c© Springer International Publishing AG, part of Springer Nature 2018
A. Gangemi et al. (Eds.): ESWC 2018, LNCS 10843, pp. 209–224, 2018.
https://doi.org/10.1007/978-3-319-93417-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93417-4_14&domain=pdf
http://orcid.org/0000-0002-6302-2333

210 S. Ferré

large queries, and many relaxation steps are necessary in order to find approxi-
mate answers. Various definitions of semantic distance/similarity have been pro-
posed, especially between concepts in ontologies [17] but also between structural
symbolic descriptions [7,13]. However, those distances/similarities are numerical
measures, and the explanation of the similarity provided by the relaxed queries
is lost. In this paper, we only consider symbolic forms of semantic similarity, i.e.
similarities that can be represented with graph patterns [3,8]. A major drawback
of those approaches is that the query node has to be compared to every other
node in the RDF graph, and that each comparison is costly because it consists
in finding the largest overlap between two rooted graphs.

In this paper, we introduce two algorithms, answers partitioning and lazy
join, that together improve the efficiency of query relaxation to the point where
it can be applied effectively to semantic similarity search. Despite the higher
efficiency, our approach does not trade quality for efficiency as it produces the
same results as query relaxation and symbolic semantic similarity. The contri-
bution is that our partitioning algorithm is driven by both relaxed queries and
similar nodes so as to prune the space of relaxed queries while avoiding individ-
ual comparison to each node. The set of nodes is partitioned into more and more
fine-grained clusters, such that at the end of the process each cluster is a set of
approximate answers produced by the same relaxed query. That relaxed query
is the common subsumer between the query and each approximate answer. Lazy
join is an essential optimization of our approach to address similarity search
because multi-valued properties (e.g., hasActor) combined with high numbers
of relaxation steps imply an explosion of the size of joins.

Section 2 discusses related work. Section 3 gives preliminary definitions.
Section 4 defines query relaxation, and introduces its application to similarity
search. Section 5 details our answers partitioning algorithm, and Sect. 6 details
its optimization with lazy joins. Section 7 report experimental studies of effi-
ciency and effectiveness. Finally, Sect. 8 concludes and draws perspectives.

2 Related Work

The existing approaches for query relaxation consist in enumerating relaxed
queries up to some edit distance, and to evaluate each relaxed query, from the
more specific to the more general, in order to get new approximate answers [9,
14,15]. The main problem is that the number of relaxed queries grows in a
combinatorial way with the edit distance, and the size of the query. Moreover,
many relaxed queries do not yield any new answer because they have the same
answers as more specific relaxed queries. Huang et al. [14] use a similarity score
in order to have a better ranking for the evaluation of relaxed queries. They
also use a selectivity estimate to save the evaluation of some relaxed queries
that are subsumed by a more general relaxed query. Hurtado et al. [15] optimize
the evaluation of relaxed queries by directly computing their proper answer but
the optimization only works for the relaxations that replace a triple pattern by
a single other triple pattern. They also introduce new SPARQL clauses, RELAX

Answers Partitioning and Lazy Joins for Efficient Query Relaxation 211

and APPROX [9], to restrict relaxation to a small subset of the query. However,
this requires from the user to anticipate where relaxation can be useful. The
above approaches [14,15] put some limitations on the relaxation steps that can
be applied. Triple patterns can be generalized by relaxation according to RDFS
inference but generally can not be removed from the query. URI and literal
nodes cannot always be replaced by variables, which may work in some querying
use cases but is a dead-end for similarity search. Other approaches [5,6] present
powerful relaxation frameworks but they do not evaluate their efficiency or only
generate a few relaxed queries.

Among the numerous similarity/distance measures that have been pro-
posed [4], only a few work on complex relational representations, and can be
applied directly to RDF graphs. RIBL (Relational Instance-Based Learning) [13]
defines a distance based on the exploration of a graph, starting from a given node
and up to a given depth. Ferilli et al. [7] define a similarity between Horn clauses,
which are analogous to SPARQL queries. However, although the input of those
measures are symbolic, their output is numeric. The drawbacks are that they do
not provide intelligible explanations for the measured similarity, and also that
when two nodes are at the same distance/similarity to a query node, it is not pos-
sible to say whether this is by chance or because they share the same explanation.
Proposals for a symbolic similarity between graph nodes include Least Common
Subsumers (LCS) [3], and intersections of Projected Graph Patterns [8].

3 Preliminary Definitions

For ease of comparison with previous work, we largely reuse the notations in [15].
The only addition is the inclusion of filters in conjunctive queries. We here con-
sider RDF graphs under RDFS inference, although our work can work with no
schema at all, and can be extended to other kinds of knowledge graphs, like Con-
ceptual Graphs [1] or Graph-FCA [8]. An RDF triple is a triple of RDF nodes
(s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L), where I is the set of IRIs, B is the set of
blank nodes, and L is the set of literals. An RDF graph G is a set of RDF triples.
Its set of nodes is noted nodes(G). Given an RDF(S) graph G, we note cl(G)
the closure of the graph with all triples that can be infered. A triple pattern is a
triple (t1, t2, t3) ∈ (I ∪ V) × (I ∪ V) × (I ∪ V ∪ L), where V is an infinite set of
variables. A filter is a Boolean expression on variables and RDF nodes. We here
only consider equalities between a variable and a node: x = n. A graph pattern P
is a set of triple patterns and filters, collectively called query elements. We note
var(P) the set of variables occuring in P . A conjunctive query Q is an expres-
sion X ← P , where P is a graph pattern, and X = (x1, . . . , xn) is a tuple of
variables. X is called the head, and P the body. We define var(Q) = X ∪ var(P)
the set of variables occuring in query Q. A query is said connected if its body is a
connected graph pattern, and contains at least one head variable. A matching of
pattern P on graph G is a mapping μ ∈ var(P) → nodes(G) from pattern vari-
ables to graph nodes such that μ(t) ∈ cl(G) for every triple pattern t ∈ P , and
μ(f) evaluates to true for every filter f ∈ P , where μ(t) and μ(f) are obtained

212 S. Ferré

from t and f by replacing every variable x by μ(x). The match-set M(P,G) of
pattern P on graph G is the set of all matchings of P on G. A match-set M can
be seen as a relational table with dom(M) as set of columns Relational oper-
ations such as natural join (��), selection (σ), and projection (π) can then be
applied to match-sets [2]. The answer set of query Q = X ← P on graph G is the
match-set of the body projected on head variables: ans(Q,G) = πXM(P,G).

4 From Query Relaxation to Similarity Search

Query Relaxation. We propose a definition of query relaxation in the line of
Hurtado et al. [15] but in a slightly more general form to allow for addi-
tional kinds of relaxations. We start from a partial ordering ≤e on query ele-
ments that is consistent with logical inference: e.g., (x,rdf:type,:SciFiFilm) ≤e

(x,rdf:type,:Film). From there, we define the relaxation of query elements.

Definition 1 (element relaxation). The set of relaxed elements of a query
element e is the set of immediate ≤e-successors of e: relax(e) = {e′ | e ≺e e′}.

If there is no ontological definition, we have relax(e) = ∅ but queries can still
be relaxed by removing query elements. In fact, element relaxation is handled
as an optional refinement of element removal.

Definition 2 (query relaxation). Let Q = X ← P be a (conjunctive) query.
Query relaxation defines a partial ordering ≤Q on queries. A relaxation step,
noted Q ≺Q Q′, transforms Q into a relaxed query Q′ by replacing any ele-
ment e ∈ P by relax(e): Q′ = X ← (P \ {e} ∪ relax(e)). Partial ordering ≤Q is
defined as the reflexive and transitive closure of ≺Q. The set of relaxed queries
is defined as RQ(Q) = {Q′ | Q <Q Q′}. The relaxation distance of relaxed
query Q′ ∈ RQ(Q) is the minimal number of relaxation steps to reach it.

A novelty compared to previous work is that an element is not replaced
by one of its immediate succesors but by its set of immediate successors.
When that set is empty, it allows for the removal of a query element. When
that set has several elements, it allows for a more fine-grained relaxation. For
example, if class :FullProfessor is a subclass of :Researcher and :Teacher,
then triple pattern (x,rdf:type,FullProfessor:) will first be relaxed into pat-
tern {(x,rdf:type,:Researcher), (x,rdf:type,:Teacher)}, which can be further
relaxed into either {(x,rdf:type,:Researcher)} or {(x,rdf:type,:Teacher)}.

Another relaxation that is often missing is the replacement of a graph node
(URI or literal) by a variable. The difficulty is that a graph node may occur
in several query elements, and its relaxation into a variable is therefore not
captured by element-wise relaxation. A solution is to normalize the original
query in the following way. For each RDF node n occuring as subject/object in
the graph pattern, replace its occurences by a fresh variable xn, and add the filter
xn = n to the query body. We note Norm(P) the result of this normalization
on pattern P . The node-to-variable relaxation then amounts to the removal of

Answers Partitioning and Lazy Joins for Efficient Query Relaxation 213

one query element, filter xn = n. For the sake of simplicity, we do not include
here the relaxation of property paths [9]. Another kind of relaxation that we let
to future work is the gradual relaxation of equality filters.

We define the proper answer of a relaxed query with the same meaning as
the “new answers” in [15], and extend this notion to proper relaxed queries.

Definition 3 (proper relaxed queries). Let Q be a query, and Q′ ∈ RQ(Q)
be a relaxed query, and G be a graph. The proper answers of Q′ is the subset of
answers of Q′ that are not answers of more specific relaxed queries.

properAns(Q′, G) := ans(Q′, G) \
⋃

{ans(Q′′, G) | Q′′ ∈ RQ(Q), Q′′ < Q′}

A proper relaxed query Q′ is a relaxed query whose proper answer is not
empty. We note PRQ(Q,G) the set of proper relaxed queries of Q in G:

PRQ(Q,G) := {Q′ ∈ RQ(Q) | properAns(Q′, G) 	= ∅}.
The objective of query relaxation is to compute as efficiently as possible the

proper relaxed queries, their proper answers, and their partial ordering.

Similarity Search. As a contribution to previous work, we lay a bridge from query
relaxation to similarity search. Whereas Huang et al. [14] use a similarity measure
to rank the relaxed queries, we propose to use proper relaxed queries to define
a semantic similarity that is symbolic rather than numeric. Query relaxation
is usually presented as a way to go from a query Q to approximate answers.
However, it can in principle be applied to go from an RDF node n to semantically
similar nodes. Simply build the original query Q(n) = x ← Norm(P), where x
abstracts over node n, and P is the description of node n, up to some depth in
the graph, where n is replaced by x. For every Q′ ∈ PRQ(Q(n)), properAns(Q′)
is a set of similar nodes, and Q′ describes the semantic similarity as a relaxed
description. Compared to similarity (or distance) measures, similarity by query
relaxation provides articulate and intelligible descriptions of the similarity. It
also provides a more subtle ranking with a partial ordering instead of a total
ordering, and the definition of clusters of nodes (proper answers) that share
the same relaxed description. Furthermore, several numerical measures can be
derived from proper relaxed queries, if desired:

– extensional distance: the number of answers in ans(Q′, G), i.e. the number of
nodes that match what n has in common with nodes in properAns(Q′, G);

– intensional similarity: the proportion of elements in cl(Q) that are in cl(Q′);
– relaxation distance: the number of relaxation steps from Q to Q′.

The latter two may be parameterized with weights on query elements [14]
and relaxation steps [6], respectively. Note that those derived measures are
total orderings that are compatible with partial ordering ≤Q on relaxed queries.
Indeed, a relaxation step can only increase the relaxation distance, and produce
a more general query: hence Q1 ≤Q Q2 ⇒ cl(Q1) ⊇ cl(Q2) ∧ ans(Q1, G) ⊆
ans(Q2, G).

214 S. Ferré

Applying query relaxation to semantic similarity is very challenging to com-
pute. The number of relaxed queries grows exponentially with the size of the
original query. The description of nodes in real RDF graphs can easily reach 100
triples at depth 1, and grows exponentially with depth. Previous work on query
relaxation has so far restricted its application in order to manage the complex-
ity: (a) queries with a few triple patterns only, (b) a RELAX clause to limit
relaxations to one or two chosen triple patterns, and (c) a maximum relaxation
distance. Our objective is to lift those restrictions and limits to the point where
query relaxation can be applied effectively on large queries like node descriptions.
The expected benefits are to allow for parameter-free query relaxation, and for
similarity search with explanations. We propose a solution that we demonstrate
to be significantly more efficient, and that can behave as an anytime algorithm
in the hard cases or when responsiveness is important.

5 Anytime Partitioning of Approximate Answers

We propose a novel approach of query relaxation and symbolic similarity that
is based on the iterative partitioning of the set of possible approximate answers.
The general idea is that, at any stage of the algorithm, the set of possible answers
is partitioned in a set of clusters, where each cluster C is defined by a relaxed
query Q′, and the subset of ans(Q′) that are not answers of other clusters. Ini-
tially, there is a single cluster defined by the fully relaxed query – the query with
an empty body – and the set of all possible answers. Each cluster may be split
in two parts by using a query element as discriminating criteria. The algorithm
stops when no cluster can be partitioned further. The resulting partition is the
set of PRQs along with their (non-empty) proper answer.

Definition 4. A cluster is a structure C = (X,P ′, d, E,M,A), where:

– X is the head, and P ′ the body, of the relaxed query Q′
C = X ← P ′;

– d is the relaxation distance of Q′
C ;

– E is the set of elements that can be used to split the cluster;
– M is the match-set of P ′ over graph G;
– A is a subset of ans(Q′

C , G) = πXM .

A cluster represents a collection of relaxed queries, namely the subset of
RQ(X ← P ′ ∪ E) whose body contains P ′. Relaxed query Q′

C = X ← P ′ is the
most general in the collection, and d is its relaxation distance.

Algorithm 1 details the partitioning algorithm, and Fig. 1 shows its first steps
on an example query about Science-Fiction films directed by Spielberg. Given a
graph and an original query, it normalizes the query body, and initializes the
partitioning with a single cluster Cinit (C0 in Fig. 1) that represents the set of
all relaxed queries, and covers all possible answers ({A1, A2, A3, A4} in Fig. 1).
Every iteration picks a cluster C and an available query element e ∈ E in order
to split C into Ce, and Ce. The picked element must be connected to the current
relaxed query X ← P ′ in order to avoid building disconnected queries (e.g. e3

Answers Partitioning and Lazy Joins for Efficient Query Relaxation 215

Algorithm 1. Partition(G,Q)
Require: A graph G, and an original query Q = X ← P
Ensure: A partition C of approximate answers of Q on G, clustered by PRQ
1: C ← {Cinit := (X, ∅, 0, Norm(P), Ainit, Ainit)} where Ainit = ans(X ← ∅, G)
2: while there are a cluster C = (X, P ′, d, E, M, A) ∈ C

and an element e ∈ E connected with X ← P ′ do

3: Me ← ext(M, e, G) :=

{
M �� ans(var(e) ← {e}, G) if e is a triple pattern
σeM if e is a filter

4: Ae = A ∩ πXMe

5: Ce = (X, P ′ ∪ {e}, d, E \ {e}, Me, Ae)
6: Ce = (X, P ′, d + 1, E \ {e} ∪ relax(e), M, A \ Ae)
7: C ← C \ {C} ∪ {Ce | Ae �= ∅} ∪ {Ce | (A \ Ae) �= ∅}
8: end while

C0=(f,{},0,{e1,e2,e3},_,{A1,A2,A3,A4})

(no answer) C5=(f,{e2,e3},2,{e2,e3},{A4})C4=(f,{e4},1,{e2,e3},_,{A3})C3=(f,{e1,e2},0,{e3},_,{A1,A2})

C1=(f,{e1},0,{e2,e3},_,{A1,A2}) C2=(f,{},1,{e4,e2,e3},_,{A3,A4})

(relax(e1)={e4})e1

e2 e2 e4 e4

e1

Fig. 1. First steps of the partitioning of query Q = f ← {e1,e2,e3} where
e1 = (f,rdf:type,:SciFiFilm), e2 = (f,:director,d), e3 = (d = :Spielberg), and
relax(e1) = {e4} where e4 = (f,rdf:type,:Film).

is not eligible at C0). Ce selects the subset of answers Ae ⊆ A where e holds.
Element e is moved from available elements to the body, thus restricting the
collection of relaxed queries to those containing e. Each matching μ ∈ M is
extended to the new element if possible, and removed otherwise: ext(M, e,G) is
defined as a join if e is a triple pattern, and as a selection if e is a filter. The set
of answers is restricted to those for which there is an extended matching. Ce is
called the complement of Ce because both the collection of relaxed queries and
the set of answers are the complement of the respective parts of Ce. The relaxed
query remains the same, and so does the match-set. The relaxation distance is
increased by 1, and element e is replaced by its immediate relaxations relax(e),
if any (e1 is replaced by e4 at C2 in Fig. 1), so that they are considered in further
partitioning. Clusters Ce and Ce replace their parent cluster C in the partition C,
unless their answer set is empty (e.g. the right child of C1 in Fig. 1). The number
of clusters can only grow, and therefore converges.

Impact of Ontology. Ontological definitions such as rdfs:subClassOf axioms
allow for more fine-grained relaxations, e.g. replacing query element e1 =
(f,rdf:type,:SciFiFilm) by e4 = (f,rdf:type,:Film), instead of simply remov-
ing e1. However, the main relaxation work is done by the replacement of URIs
and literals by variables, through the removal of filters. For instance, the removal
of e3 = (f = :Spielberg) allows to relax the query to films by any director. By
including the description of Spielberg in the query, and by relaxing that descrip-

216 S. Ferré

tion, the query can be relaxed to films by similar directors, e.g. directors born
in the same place and/or having directed similar films. Note that the efficiency
of our algorithms is essential to the effective relaxation of such descriptions. In
comparison to description relaxation, ontology-based relaxation has a welcome
but limited impact.

Complexity. The enumeration-based algorithm evaluates O(2n) relaxed queries,
given an original query containing n elements, considering element removal only.
This number can be lowered by setting a maximal relaxation distance dmax,
but it grows very quickly with increasing dmax. In contrast, assuming p is the
number of PRQs, the partitioning algorithm evaluates O(p) queries (binary tree
with p leaves). p is bounded by min(N, 2n), with N the number of nodes in the
graph. As our experiments show (Sect. 7), p is much smaller than N in practice
because many nodes match the same relaxed queries. Note that maximal relax-
ation distance can be applied in the partitioning algorithm by pruning clusters
based on their relaxation distance.

Discussion. The partitioning algorithm does not find PRQs in increasing relax-
ation distance but it offers a lot of flexibility. The clusters can be split in any
ordering, allowing for depth-first or breadth-first strategies or the use of heuris-
tics [14]. The choice of the splitting element e is also free, and is independent
from one cluster to another. Last but not least, the algorithm is anytime because
a partition is defined at all time. If the algorithm is stopped before completion,
the partition is simply coarser. Section 7.3 shows that the partitioning algorithm
has less latency than enumeration-based algorithms for similarity search.

6 Optimization with Lazy Joins

The explicit computation of the match-set M of a relaxed query can be
intractable, even in simple cases. For example, starting from the description of a
film, the relaxed query f ← (f ,rdf:type,:Film), (f ,:actor,p1), . . . , (f ,:actor,pn)
will have in O(Nnn) matchings, assuming there are N films, and each film is
related to n actors. For 1000 films related to 10 actors each, it amounts to 1013

matchings! It is possible to do better because the expected end result is the set
of answers A = πXM , whose size is bounded by the number of graph nodes in
similarity search. We propose to represent M by a structure – called match-tree
– containing several small local joins instead of one large global join.

Definition 5. A match-tree is a rooted n-ary tree T where each node n is labeled
by a tuple l(n) = (e,D,M,Δ) where:

– e is a query element, and var(e) is its set of variables;
– D ⊆ var(e) is the set of variables introduced by e;
– M is a match-set s.t. dom(M) ⊇ var(e);
– Δ ⊆ dom(M) is the sub-domain that is useful to the node ancestors.

Answers Partitioning and Lazy Joins for Efficient Query Relaxation 217

Algorithm 2. LazyJoin(T, n, n∗)

Require: a match-tree T , a current node n in T labeled with (e, D, M, Δ),
and a new node n∗ labeled with (e∗, D∗, M∗, Δ∗)

Ensure: two sets of variables Δ+, Δ−

1: Δ+ ← ∅; Δ− ← ∅
2: for all nc ∈ children(n), labeled with (ec, Dc, Mc, Δc) do
3: Δ+

c , Δ−
c ← LazyJoin(T, nc, n

∗) // recursive call on each child node
4: Δ+ ← Δ+ ∪ Δ+

c ; Δ− ← Δ− ∪ Δ−
c

5: M ← M �� πΔcMc, if Δc or Mc was modified // update of local join
6: end for
7: if D ∩ Δ∗ �= ∅ then // if this node defines a variable of the new element
8: if n∗ not yet inserted in T then // insert new node, unless already inserted
9: Δ− ← Δ− ∪ (Δ∗ \ D); M ← M �� πΔ∗M∗; parent(n∗) ← n

10: else
11: Δ+ ← Δ+ ∪ (Δ∗ ∩ D)
12: end if
13: end if
14: Δ+, Δ− ← Δ+ \ Δ−, Δ− \ Δ+

15: Δ ← Δ ∪ Δ+ ∪ Δ− // update Δ
16: return Δ+, Δ−

(f2,actor,p1):f2

(f1,actor,p2):p2

f1

T(f1):f1

(f1,type,Film) (f1,actor,p1):p1

(p1,type,male) (p2,type,female)

f1 f1 f1

p1
p1

p2

f1

f1 f1 p1

p1
f2 p1

p2

f1 p2

)(mod M

Δ
e:D

(f2,actor,p1):f2

(f1,actor,p2):p2

f1

T(f1):f1

(f1,type,Film) (f1,actor,p1):p1

(p1,type,male)

f1 f1 f2

p2

f1 f2

f1 f1 p1 f2

p1
f2 p1

p2 (f2,actor,p2)
f2 p2

f2 p2

f1 p2 f2

f2

(p2,type,female)f2 p1

f1 f2

p1

Fig. 2. Match-tree before and after lazy join with element e∗=(f2,:actor,p2).

We replace the match-set M of a cluster C = (X,P ′, d, E,M,A) by an equiv-
alent match-tree T . The match-tree has one node for each element e ∈ P ′. M
is equal to the join of the local match-set Mn of all nodes n in T . The initial
match-tree is used for the initial cluster Cinit, and is defined by match-tree Tinit

that has a single node labeled with (�(X),X, ans(X ← ∅, G),X), where �(X)
is a void query element. During the split of C with a query element e∗, the
match-set extension ext(M, e∗, G) is replaced by LazyJoin(T, root(T), n∗) (see
Algorithm 2), where T plays the role of M , and n∗ is a new node labeled with
(e∗, var(e∗) \ var(P ′), ans(var(e∗) ← {e∗}, G), var(e∗) ∩ var(P ′)). This “lazy”
join consists in inserting n∗ as a leaf node into T , and in updating local joins Mn

only as much as necessary to compute A correctly. Figure 2 illustrates lazy join
on a richer version of the above example on films. It starts with the match-tree of
query f1 ← (f1,rdf:type,:Film), (f1,:actor,p1), (p1,:sex,:male), (f2,:actor,p1),
(f1,:actor,p2), (p2,:sex,:female), and inserts element e∗ = (f2,:actor,p2) that

218 S. Ferré

forms a cycle through f1 and p1. Changes (shown in bold) are propagated from
the two nodes that define p2 and f2 (see D), and the new leaf is inserted under
one of the two nodes as a child (here, under the node defining p2). The insertions
of other elements, which led to the first tree in Fig. 2, change only one path in
the match-tree because they do not introduce a cycle. In Algorithm 2, the com-
putation of Δ+,Δ− is used to correctly handle cycles. They are sets of variables
of the new query element e∗ that are not in the match-set of its parent (f2 in
the example), and hence need to be joined with distant nodes in the match-tree.
Δ− propagates up the tree branch of the parent (node (f1, actor, p2) in Fig. 2),
and Δ+ propagates up the tree branch of distant nodes (node (f2, actor, p1)).
When they meet at their common ancestor (node �(f1)), the distant join can
be done, and their propagation stops.

Complexity. The dominant factor is the project-and-join operation in lines 5, 9
of Algorithm 2. In the worst case, there is such an operation for each node of the
match-tree, i.e. one for each element of the relaxed query (m). The cost of the
project-and-join depends heavily on the topology of the relaxed query and of the
RDF graph. Assuming a tree-shape graph pattern (no cycle) and R triples per
predicate, the match-set at each node is a table with at most 2 columns and at
most R rows. The space complexity of a match-tree is therefore in O(mR), and
the time complexity of each lazy join is in O(mRlogR). In the simpler example
on films, m = n + 1, R = Nn for property :actor, and R = N for class :Film.
The total size is therefore in O(Nn2) local matchings instead of O(Nnn). For
1000 films related to 10 actors each, it amounts to 105 instead of 1013!

7 Experiments

We have implemented Algorithms 1 and 2, and integrated them to SEWELIS1

as an improvement of previous work on the guided edition of RDF graphs [12].
We here report extensive experiments to evaluate their efficiency, in the absolute
and relative to other approaches, as well as their effectiveness.

7.1 Methodology

We ran all experiments on a Fedora 25 PC with i7-6600U CPU and 16 GB RAM.

Algorithms. We compare four algorithms: two baseline algorithms, and two
variants of our algorithm. RelaxEnum is the classical approach that enumer-
ates relaxed queries, and computes their answers. NodeEnum does the opposite
by enumerating nodes, and computing the associated PRQ as the least com-
mon subsumer between the query and the node description [3]. Partition and
PartitionLJ are our two variants, and differ in that only the latter uses lazy
joins.

1 Source code at https://bitbucket.org/sebferre/sewelis, branch dev, files cnn*.

https://bitbucket.org/sebferre/sewelis

Answers Partitioning and Lazy Joins for Efficient Query Relaxation 219

Fig. 3. Runtime (seconds, log scale) per algorithm and per query for Mondial (left)
and lubm10 (right).

Parameters. We consider three execution modes. In the NoLimit mode, all
PRQs are computed. It is the best way to compare algorithms with different
parameters. The MaxRelax mode sets a limit to relaxation distance (not appli-
cable to NodeEnum). The Timeout mode sets a limit to computation time.

Datasets. We use three different datasets, Mondial, lubm10, and lubm100.
Mondial is a simplification of the MONDIAL dataset [16] where numbers and
reified nodes have been removed because they are not yet well handled by query
relaxation. It contains a rich graph of real geographical entities (e.g., countries
containing mountains and rivers that flow into lakes), and no ontological defini-
tions. It contains 10k nodes and 12k triples. lubm10 and lubm100 are synthetic
datasets about universities, and are based on an ontology introducing class and
property hierarchies [11]. lubm10 contains 315k nodes and 1.3M triples, and
lubm100 is 10 times bigger (3M nodes, 13M triples). Both datasets are inter-
esting in our work because they are rich in multi-valued properties, and hence
are a challenge for query relaxation.

Queries. For each dataset, we have two sets of queries. The first set is made of
queries typically used in query relaxation, having less than 10 triple patterns and
having different shapes. The second set is made of object descriptions, having
up to hundreds of elements. More details are given below.

7.2 Efficiency of Query Relaxation

We here compare all algorithms with (small) queries2. On Mondial we defined
7 queries having different sizes and shapes. They have between 5 and 21 elements
after normalization. On lubm10/100 we reused the 7 queries of Huang et al. [14].
They have between 3 and 7 elements.

NoLimit Mode. Figure 3 compares the runtime (log scale) of all algorithms
on all queries of Mondial and lubm10 in NoLimit mode. A few runtimes are
missing on Q6 of Mondial because they are much higher than other runtimes.
RelaxEnum is sensitive to the query complexity, in particular to multi-valued

2 Visit http://www.irisa.fr/LIS/ferre/pub/eswc2018/queries.txt.

http://www.irisa.fr/LIS/ferre/pub/eswc2018/queries.txt

220 S. Ferré

Fig. 4. Runtime (seconds) per algorithm and per lubm10 query for increasing maxi-
mum relaxation distance (1 to 7). Full height bars represent runtimes over 20 s.

properties. NodeEnum looks unsensitive to the query complexity but does not
scale well with the number of nodes. Partition and PartitionLJ are always
more efficient – or equally efficient – and the use of lazy joins generally makes it
even more efficient. On lubm10, PartitionLJ is typically one order of magni-
tude more efficient than RelaxEnum. It can also be observed that PartitionLJ
scales well with data size because from Mondial to lubm10, a 100-fold increase
in number of triples, the median runtime also follows a 100-fold increase, from
0.01–0.1 s to 1–10 s. This linear scaling is verified on lubm100 (not shown) where
the runtimes are all 10 times higher. We want to emphasize that it is encouraging
that the full relaxation of a query over a 1.3M-triples dataset can be done in 4 s
on average.

MaxRelax Mode. In practice, one is generally interested in the most similar
approximate answers, and therefore in the relaxed queries with the smaller relax-
ation distances. It is therefore interesting to compare algorithms when the relax-
ation distance is bounded. Figure 4 compares RelaxEnum and PartitionLJ
on lubm10 queries for increasing values of maximal relaxation distance, here
from 1 to 7 relaxations. As expected, the runtime of RelaxEnum grows in a
combinatorial way, like the number of relaxed queries, with the relaxation dis-
tance. On the contrary, the runtime of PartitionLJ grows more quickly for
1–4 relaxations, and then almost flattens in most cases. The flattening can be
explained by several factors. The main factor is that the relaxed queries that
are not proper are pruned. Another factor is that query evaluation is partially
shared between different queries. That sharing is also the cause for the higher
cost with 1–4 relaxations. In summary, PartitionLJ scales very well with the
number of relaxations, while RelaxEnum does not. This is a crucial property
for similarity search where many relaxation steps are necessary.

Number of Relaxed Queries. The efficiency of Partition and PartitionLJ
is better understood when comparing the number of PRQs to the number of
relaxed queries (RQ). Over the 7 lubm10 queries, there are in total 59 PRQs
out of 2899 RQs, hence a 50-fold decrease.

Answers Partitioning and Lazy Joins for Efficient Query Relaxation 221

7.3 Efficiency of Similarity Search

We now consider the large queries that are formed by node descriptions at
depth 1 (including ingoing triples), and that include many multi-valued prop-
erties. On Mondial we used 10 nodes, one for each class: e.g., country Peru,
language Spanish. The obtained queries have 5 to 248 elements (average = 61).
On lubm10 we used 12 nodes, one for each class: e.g., university, publication.
The obtained queries have 5 to 1505 elements (average = 201). Main facts and
measures are summarized in Table 1.

NoLimit Mode. PartitionLJ is the only algorithm that terminates under
600 s in NoLimit mode, and it does terminate for all queries of both datasets3.
The full runtime has a high variance and a low median, between 0.03 s and
269 s (average = 30 s, median = 0.13 s) for Mondial, and between 0.13 s and 535 s
(average = 179 s, median = 110 s) for lubm10. The average number of PRQs is
32 (max = 117) for Mondial and 28 (max = 52) for lubm10. It is noteworthy
that both the runtime and the number of PRQs are relatively close for different
datasets with very different sizes. It is also noteworthy that the number of PRQs
is very small w.r.t. the size of queries and the number of nodes. It is therefore
possible to manually inspect all PRQs, i.e. semantic similarities with all other
nodes.

MaxRelax Mode. On lubm10, RelaxEnum does not scale beyond 3 relax-
ations on node descriptions, except for the 3 smallest descriptions. Moreover,
using PartitionLJ with a maximum of 10 relaxations, we have observed that
only 75 PRQs are produced out of 340 over the 12 queries (0 PRQs for 3 queries),
and computation takes 40 s on average. To limit the average runtime to 2 s, the
maximum relaxation distance has to be 1, and then only 3 PRQs are produced
out of 340. RelaxEnum and the MaxRelax mode are therefore not effective
for similarity search because of their high latency in generating the first PRQs.

TimeOut Mode. Although PartitionLJ can compute all PRQs in a reason-
able time, it may still be too long in practice. Our anytime algorithm allows to
control runtime by timeout. An important question is the latency of the genera-
tion of PRQs. Figure 5 shows that most PRQs are generated in a small fraction
of the total runtime. For example, 50% PRQs are generated in 30 s, and 20%
in 2 s. This superlinear production of PRQs is confirmed when looking at what
happens when moving from lubm10 to lubm100. At timeout = 64 s, the number
of computed PRQs is only divided by 2.6 although the data is 10 times bigger.

7.4 Effectiveness of Similarity Search

We assess the effectiveness of PRQs for similarity search with an empirical study
that evaluates their use for the inference of property values. The null hypothesis

3 The ranked list of PRQs and their proper answers is available for the 10 Mondial
nodes at http://www.irisa.fr/LIS/ferre/pub/eswc2018/mondial PRQs.txt.

http://www.irisa.fr/LIS/ferre/pub/eswc2018/mondial_PRQs.txt

222 S. Ferré

Table 1. Measures about the relax-
ation of node descriptions. The mea-
sure are given in the form min - max
(average): number of query elements,
number of PRQs, number of PRQs
within maximum 3 relaxation steps,
and runtime of PartitionLJ.

Dataset Mondial lubm10

nb. elts 5–248
(61)

5–1505
(201)

nb. PRQs 2–117
(32)

7–52 (28)

nb. PRQs
(1–3 steps)

0–9 (3.2) 0–7 (1.3)

Runtime 0.03–269
(30)

0.13–535
(179)

Fig. 5. Number of computed PRQs over
lubm10 queries (out of 340 PRQs) as a func-
tion of timeout(s).

is that using the most similar nodes makes no difference compared to using ran-
dom nodes. We do not claim here that this value inference method is better than
other methods in machine learning, only that PRQs effectively capture semantic
similarities. We do not compare our results to other query relaxation algorithms
because we have shown in the previous section that they are not efficient enough
for similarity search, and because, if given enough time, they would compute the
same PRQs. Our experiment consisted in performing value inference for each
property p (e.g., :continent) of each country c (e.g., Peru) of the Mondial
dataset. Note that a property may have several values (e.g., :language). For
each pair (c, p) we computed the PRQs starting with the description of c minus
triples (c, p, v) for any value v. Then, we selected the 3 most similar nodes S
(e.g., Bolivia, Colombia, and Argentina for Peru) as the proper answers of the
most similar PRQs according to intensional similarity (size of the relaxed query).
We used S to infer a set of values V for property p using a majority vote. V
is compared to the actual set of values to determine precision and recall mea-
sures. Table 2 shows the obtained measures for each property and for all proper-
ties together, averaged over the countries. The baseline F1-score is obtained by
using 3 random countries instead of the most similar nodes. It shows a signif-
icant improvement over the baseline, and good results for properties continent
and religion. The result is poor for government because values are noisy strings,
and for dependentOf because few countries have this property. Overall, 75% of
infered values are correct, and 48% of correct values are infered. We obtained
very close results when using extensional distance (number of answers) for rank-
ing PRQs.

Answers Partitioning and Lazy Joins for Efficient Query Relaxation 223

Table 2. Average precision/recall/F1-score over countries of value inference for each
property and for all properties together. The last line gives the baseline F1-score.

Continent Religion was

Dependent

Of

Language Neighbor Ethnic

Group

Government Dependent

Of

All

Precision 0.97 0.80 0.77 0.75 0.43 0.65 0.82 0.50 0.75

Recall 0.93 0.76 0.47 0.34 0.33 0.25 0.19 0.00 0.48

F1-score 0.93 0.74 0.47 0.36 0.30 0.28 0.19 0.00 0.56

Baseline

F1-score

0.12 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.05

8 Conclusion and Perspectives

We have proposed two algorithms that together significantly improve the effi-
ciency of query relaxation and symbolic semantic similarity. In fact, they are
efficient enough to tackle the challenging problem of applying many relaxation
steps to large queries with hundreds of elements. For a 1M-triples dataset like
lubm10 it is possible to explore the entire relaxation space of queries having
up to 1500 elements in a matter of minutes. The computation can be stopped
at any time while still having a fair approximation of the final result.

Many perspectives can be drawn from this work. The partitioning algorithm
offers opportunities for strategies and heuristics for choosing the cluster to split
and the splitting element. New kinds of element relaxation can be explored, e.g.
for the gradual relaxation of URIs and literals. There are potential applications
in classification, case-based reasoning, concept discovery, or recommendation.

References

1. Chein, M., Mugnier, M.L.: Graph-Based Knowledge Representation: Computa-
tional Foundations of Conceptual Graphs. Advanced Information and Knowledge
Processing. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-84800-
286-9

2. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

3. Colucci, S., Donini, F.M., Di Sciascio, E.: Common subsumbers in RDF. In: Bal-
doni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS (LNAI),
vol. 8249, pp. 348–359. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03524-6 30

4. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
IEEE Trans. Knowl. Data Eng. 21(11), 1532–1543 (2009)

5. Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF queries
based on user and domain preferences. J. Intell. Inf. Syst. 33(3), 239 (2009)

6. Elbassuoni, S., Ramanath, M., Weikum, G.: Query relaxation for entity-
relationship search. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plex-
ousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6644, pp.
62–76. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21064-8 5

https://doi.org/10.1007/978-1-84800-286-9
https://doi.org/10.1007/978-1-84800-286-9
https://doi.org/10.1007/978-3-319-03524-6_30
https://doi.org/10.1007/978-3-319-03524-6_30
https://doi.org/10.1007/978-3-642-21064-8_5

224 S. Ferré

7. Ferilli, S., Basile, T.M.A., Biba, M., Di Mauro, N., Esposito, F.: A general similarity
framework for horn clause logic. Fundamenta Informaticae 90(1–2), 43–66 (2009)

8. Ferré, S., Cellier, P.: Graph-FCA in practice. In: Haemmerlé, O., Stapleton, G.,
Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 107–121. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40985-6 9

9. Frosini, R., Cal̀ı, A., Poulovassilis, A., Wood, P.T.: Flexible query processing for
SPARQL. Semant. Web 8(4), 533–563 (2017)

10. Gaasterland, T.: Cooperative answering through controlled query relaxation. IEEE
Expert 12(5), 48–59 (1997)

11. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant.: Sci. Serv. Agents 3, 158–182 (2005)

12. Hermann, A., Ferré, S., Ducassé, M.: An interactive guidance process supporting
consistent updates of RDFS graphs. In: ten Teije, A., Völker, J., Handschuh, S.,
Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N.
(eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 185–199. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33876-2 18

13. Horváth, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with
lists and terms. Mach. Learn. 43(1–2), 53–80 (2001)

14. Huang, H., Liu, C., Zhou, X.: Approximating query answering on RDF databases.
World Wide Web 15(1), 89–114 (2012)

15. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. In: Spac-
capietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 31–61.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77688-8 2

16. May, W.: Information extraction and integration with Florid: the Mondial case
study. Technical report 131, Universität Freiburg, Institut für Informatik (1999).
http://dbis.informatik.uni-goettingen.de/Mondial

17. Rodŕıguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity
classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456
(2003)

https://doi.org/10.1007/978-3-319-40985-6_9
https://doi.org/10.1007/978-3-642-33876-2_18
https://doi.org/10.1007/978-3-540-77688-8_2
http://dbis.informatik.uni-goettingen.de/Mondial

	Answers Partitioning and Lazy Joins for Efficient Query Relaxation and Application to Similarity Search
	1 Introduction
	2 Related Work
	3 Preliminary Definitions
	4 From Query Relaxation to Similarity Search
	5 Anytime Partitioning of Approximate Answers
	6 Optimization with Lazy Joins
	7 Experiments
	7.1 Methodology
	7.2 Efficiency of Query Relaxation
	7.3 Efficiency of Similarity Search
	7.4 Effectiveness of Similarity Search

	8 Conclusion and Perspectives
	References

