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Abstract. Digital signatures are one of the most important crypto-
graphic primitives. In this work we construct an information-theoretically
secure signature scheme which, unlike prior schemes, enjoys a number of
advantageous properties such as short signature length and high genera-
tion efficiency, to name two. In particular, we extend symmetric-key mes-
sage authentication codes (MACs) based on universal hashing to make
them transferable, a property absent from traditional MAC schemes. Our
main results are summarised as follows.

– We construct an unconditionally secure signature scheme which,
unlike prior schemes, does not rely on a trusted third party or anony-
mous channels.

– We prove information-theoretic security of our scheme against forg-
ing, repudiation, and non-transferability.

– We compare our scheme with existing both “classical” (not employ-
ing quantum mechanics) and quantum unconditionally secure signa-
ture schemes. The comparison shows that our new scheme, despite
requiring fewer resources, is much more efficient than all previous
schemes.

– Finally, although our scheme does not rely on trusted third parties,
we discuss this, showing that having a trusted third party makes our
scheme even more attractive.

Keywords: Digital signatures · Information-theoretic security
Transferable MAC · Universal hashing

1 Introduction

Digital signatures are one of the most widely used cryptographic primitives and
are indispensable for information and communications security. Secure digital
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signature schemes offer authenticity and integrity, non-repudiation, and transfer-
ability of digital content. However, the public-key digital signature schemes that
are currently in use, such as RSA [1], ElGamal DSA [2] and ECDSA [3], provide
only computational security, and rely on unproven hardness assumptions in num-
ber theory. This implies that algorithmic breakthrough and/or the advancement
in computing technologies may one day render such digital signature schemes
totally insecure. Another emerging threat to the security of these schemes is
from quantum computers, which can use Shor’s algorithm [4] to efficiently solve
the underlying “hard” problems and break all pre-quantum public-key cryp-
tosystems. In response to this threat, the field of post-quantum cryptography is
being developed. One can argue and ask whether quantum computers will ever
be built. Large companies such as Google, Microsoft and IBM certainly seem
to think it’s possible, and are allocating significant resources to research in this
area. Furthermore, the National Security Agency (NSA) in the USA is also tak-
ing the threat from quantum computers very seriously, and in August 2015, the
NSA recommended a transition to post-quantum secure algorithms [5].

In post-quantum cryptography, there exist “quantum-safe” public-key cryp-
tosystems which are not yet known to be vulnerable to quantum attacks. Such
schemes range from the historical McEliece cryptosystem [6], which is based
on error-correcting codes, to more recent ones based on hash functions, lat-
tices and multivariate polynomials. The security of these “quantum-safe” alter-
natives is based upon (again unproven) hard problems, some of which have
not yet stood the test of time1. We stress again that even if the underlying
problems were proven to be hard to solve, the security of such schemes is still
only computational, and relies on the adversary having bounded computational
resources. If we want signature schemes with “everlasting” security or are unsure
of the resources available to our adversary, computational security may not be
sufficient.

An alternative to “quantum-safe” public key signature schemes are uncon-
ditionally secure signature (USS) schemes, where security does not rely on any
unproven assumptions, nor on bounds placed on the adversary’s computational
resources. Instead, these schemes provide information-theoretic security. Such a
high level of security, however, comes at a cost. So far, all USS schemes have
been significantly less efficient than their quantum-safe competitors in terms
of signature length, re-usability and key sizes. A more restrictive disadvantage
however, is that all USS schemes use secret keys, rather than public keys.

USS schemes require a setup phase in which secret keys are distributed among
participants before messages can be signed or verified. Therefore, they do not
have the universal verifiability property inherent to standard public-key digital
signature schemes. Due to this restriction, it is clear that USS schemes are not
a suitable replacement for many core applications where digital signatures are
used. Nevertheless, there may still be applications where USS schemes are useful
for particularly important communications, for example in high-value banking

1 In lattice-based cryptography [7] for example, it is not quite clear anymore whether
all such protocols are truly quantum resistant [8,9].



Efficient Unconditionally Secure Signatures Using Universal Hashing 145

transactions, when signing important legal documents, or securing sensitive gov-
ernment communications. Due to the requirement of distributing secret shared
keys between participants, USS schemes should not be viewed as a standalone
product. Instead, it should be viewed as a complement to existing QKD systems
in fixed networks environments.

In this work, we propose a new USS scheme based on universal hashing.
Compared to the previous USS schemes in the literature, our scheme enjoys a
number of favourable properties such as short secret key lengths, short signature
length, and high efficiency. Before we proceed, we first briefly survey the USS
schemes which are already proposed in the literature. For a detailed overview,
we refer the interested reader to [10] and the references therein.

1.1 Related Works

There are two lines of work on USS schemes: one on “classical” schemes (not
employing quantum mechanics), and the other taking advantage of quantum-
mechanical features. Although our scheme is entirely classical, it is similar to
the quantum USS scheme proposed in Ref. [11].

Classical USS Schemes. The first attempt to construct an USS scheme was
suggested by Chaum and Roijakkers [12], using authenticated broadcast chan-
nels, secret authenticated channels and also using untraceable sending protocols.
Their scheme, however, only allows users to sign single-bit messages, and is there-
fore impractical. Moreover, the Chaum-Roijakkers scheme does not offer ade-
quate transferability, which is crucial for a signature scheme, because the secu-
rity is weakened as the message-signature pair is transferred among recipients.
Pfitzmann and Waidner [13] also considered USS schemes (which they called
pseudo-signatures) and constructed a scheme, somewhat related to ours, which
could be used to generate information-theoretically secure Byzantine agreement.
Their scheme built upon the protocol by Chaum and Roijakkers, but allowed
longer messages to be signed and verified, though the scheme still required
authenticated broadcast channels and untraceable sending protocols for imple-
mentation. Our scheme removes the requirement of authenticated broadcast
channels by employing a method similar to secret sharing techniques [14].

Later, Hanaoka et al. [15] proposed an USS scheme relying on a trusted
authority for key distribution, the existence of which allowed improvements both
in efficiency and security over the scheme by Chaum and Roijakkers, at the cost
of introducing this additional trust assumption. This scheme further improved
all existing USS protocols by making the signature scheme re-usable. Neverthe-
less, the lengths of both the signature and the secret keys needed to generate
signing/verification algorithms were still rather long, severely limiting its use in
practice. A later variation of this scheme was proposed by Hanaoka et al. in
[16]. This scheme sacrificed the re-usability of the previous scheme to achieve a
reduction in the size of the secret keys needed to generate signing/verification
algorithms by approximately a factor of 10.
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Security notions of classical USS schemes are proposed and analysed in
Shikata et al. [17] as well as Swanson and Stinson [18].

Quantum USS Schemes. There are also quantum USS schemes, first pro-
posed by Gottesman and Chuang [19], in which security is derived from the
laws of quantum physics. Lu and Feng [20] proposed a quantum USS scheme
using quantum one-way functions, though it required a trusted authority (which
they called an arbiter) to resolve disputes. Quantum USS schemes were first
experimentally demonstrated by Clarke et al. [21]. While these early quantum
schemes require long-term quantum memories (which are highly impractical to
realise, effectively rendering these schemes unusable), the more recently proposed
schemes do not [11,22,23]. Quantum USS schemes without quantum memories
have also been experimentally demonstrated [24,25]. Furthermore, these recent
schemes and their experimental demonstrations use the already ripe technologies
required for quantum key distribution [26].

1.2 Contributions

In this work, we propose an USS scheme which naturally extends uncondition-
ally secure message authentication schemes. The main difference between an
unconditionally secure message authentication code and an USS scheme is that
signature schemes ensure the transferability of signed content, while authen-
tication codes do not. We propose a simple method, similar to secret sharing
[14], allowing unconditionally secure authentication codes to be transformed into
USS schemes. Our method requires only minimal trust assumptions and fewer
resources than previous USS schemes. We do not assume a trusted authority, nor
the existence anonymous channels or authenticated broadcast channels. Instead,
we only require participants to share short secret keys pairwise, and that the
majority of participants are honest. Our contributions can be summarised as
follows.

1. We construct an USS scheme that, unlike prior schemes, does not rely on a
trusted authority, anonymous channels or broadcast channels (Sect. 3).

2. We prove information-theoretic security of our scheme against forging, repu-
diation, and non-transferability (Sect. 4).

3. We compare our scheme with existing both classical and quantum USS
schemes. The comparison shows that our new scheme has a number of unpar-
alleled advantages over the previous schemes (Sect. 5).

The distribution stage of our scheme derives from the Generalised P2 proto-
col described in Ref. [27]. However, instead of participants distributing bits, in
our scheme a sender shares with each of the remaining protocol participants
(or recipients) a set of keys (hash functions) from a family of universal hash
functions. This conceptual difference leads to vast efficiency improvements (see
Sect. 5) as it allows the distribution stage to be performed only once for all pos-
sible future messages, as opposed to Generalised P2 in which the distribution
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stage is performed independently for each future message. This is because, in
our scheme, a signature for a message is a vector of tags generated by applying
the hash functions to the message. Our scheme can be viewed as an extension
of MAC schemes, and therefore its practical implementation is straightforward
and efficient.

2 Preliminaries

We begin by formally defining an USS scheme.

Definition 1 ([27]). An USS scheme Q is an ordered set {P,M, Σ, L, Gen,
Sign, Ver} where

– The set P = {P0, P1, . . . , PN}, is the set containing the signer, P0, and the
N potential receivers.

– M is the set of possible messages.
– Σ is the set of possible signatures.
– Gen is the generation algorithm that gives rise to the functions Sign and Ver,

used respectively to generate a signature and verify its validity. More pre-
cisely, the generation algorithm specifies the instructions for the communica-
tion that takes place in the distribution stage of the protocol. Based on the data
obtained during the distribution stage, the generation algorithm instructs how
to construct the functions Sign and Ver. The generation algorithm includes
the option of outputting an instruction to abort the protocol.

– Sign: M → Σ is a deterministic function that takes a message m ∈ M and
outputs a signature σ ∈ Σ.

– L = {−1, 0, 1, . . . , lmax} is the set of possible verification levels of a signed
message. A verification level l corresponds to the minimum number of times
that a signed message can be transferred sequentially to other recipients. For
a given protocol, the maximum number of sequential transfers that can be
guaranteed is denoted by lmax ≤ N .

– Ver: M × Σ × P × L → {True,False} is a deterministic function that takes a
message m, a signature σ, a participant Pi and a level l, and gives a boolean
value depending on whether participant Pi accepts the signature as valid at
the verification level l.

Definition 2. For a fixed participant, Pi, at a fixed verification level, l, we
denote the verification function as Veri,l(m,σ) := Ver(m,σ, i, l).

Definition 3. A signature σ on a message m is i-acceptable if Veri,0(m,σ) =
True.

The meaning of this definition is that participant Pi will accept (m,σ) as a valid
message-signature pair at the lowest verification level, l = 0.

Definition 4. An USS protocol Q is correct if Veri,l(m,Sign(m)) = True for
all m ∈ M, i ∈ {1, . . . , N}, and l ∈ L.
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The signature protocol presented in this paper uses almost strongly universal
hash function families.

Definition 5 ([28]). Let F = {f : M → T } be a set of functions such that

1. For any m ∈ M, t ∈ T , |{f ∈ F : f(m) = t}| = |F|/|T |.
2. For any m1,m2 ∈ M, t1, t2 ∈ T , such that m1 �= m2, |{f ∈ F : f(m1) =

t1 and f(m2) = t2}| ≤ ε |F|
|T | .

Then we say F is ε-ASU2. The domain of each function in F is the message
set, M, and the range is the set of tags, T .

The efficiency of our protocol relies on the ability to find an ε-ASU2 set which
is “small”.

Proposition 1 ([29]). Let a := log |M| and b := log |T |, be the size (in bits) of
the message and tag respectively2. Let F be an ε-ASU2 set with ε = 2/|T |. It is
possible to specify an element of F using y bits of data, where y = 3b + 2s and
s is such that a = (b + s)(1 + 2s).

3 The Protocol

The protocol contains N + 1 participants: a sender P0 and N receivers,
P1, . . . , PN . Before the protocol, all participants agree on an ε-ASU2 family of
functions, F , where ε = 2/|T |. The basic idea is for the sender to give each
recipient a number of keys (hash functions) which will be used in future to
authenticate a message by appending tags (hash values) to the message being
sent. To check the signature, participants will apply their hash functions to the
message, and check that the outcome matches the tags appended to the message
by the sender. They will count the number of mismatches between their hash
values and the appended tags, and only accept the message if they find less than
a threshold amount of mismatches. However, if the sender were to know which
hash functions are held by which participant, she could choose to append appro-
priate tags such that one recipient accepts the message while another does not,
thereby breaking transferability of the scheme. To ensure transferability then,
each recipient will group the hash functions received from the sender into N
equally sized sets (of size k), and send one set (using secret channels) to each
other recipient, keeping one for himself. The recipients test each of the N sets
independently.

Transferability Levels. The situation is further complicated if the sender
is in collusion with some of the recipients. In that case, the sender can have
partial knowledge on who holds which keys, which forces us to define levels of
transferability. Levels of transferability are perhaps confusing, so here we will try
to highlight the need for such levels. Imagine that a sender is in collusion with
2 In this paper all logarithms are taken to base 2.
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a single recipient. In this case, the sender knows k of the keys held by honest
recipient H1, and k of the keys held by honest recipient H2 - namely he knows
the keys that were forwarded by his dishonest partner. For these known keys,
the sender can attach tags that are correct for H1, and are incorrect for H2.
Therefore, based on the number of colluding adversaries, the sender is able to
bias the number of mismatches and the number of incorrect sets found between
each honest party. To ensure transferability then, we require that the second
verifier accepts a message as authentic even if each set contains a higher number
of mismatches, and there are more invalid sets than found by the first verifier.
Of course, to ensure security against forging, we cannot allow message-signature
pairs containing too many errors to be accepted, and so there must be a cap
on the highest level of mismatches acceptable by anyone. This leads to levels
of verification, and a limit on the number of times a message is guaranteed
to be transferable in sequence. For clarity, suppose then there are three levels
of verification, l0, l1 and l2. Accepting a message at any of these levels means
the message is guaranteed to have originated with the claimed sender. If H1

accepts a message at level l2 (the highest verification level, i.e. the level with
the fewest errors in the signature), then he can forward it to H2, who will first
try to accept the message at level l2. If he finds too many mismatches for the
message to be accepted at level l2, he will instead try to verify at level l1. The
protocol ensures that if H1 found the message to be valid at level l2, then H2

will find the message to be valid at level l1 with high probability. Therefore, with
three verification levels, accepting the message at level l2 guarantees that the
message can be transferred at least twice more. In practice, the message may be
transferred many more times, since with honest participants it is highly likely
that H2 will also find the message valid at level l2 and they will not need to
move to the next verification level.

With this in mind, to begin the protocol we must first decide the maximum
number of dishonest participants we want our protocol to be able to tolerate
(which, as per the proceeding paragraph, will impact our verification levels). We
set this to be ω such that ω < (N + 1)/2, since the protocol cannot be made
secure using the majority vote dispute resolution process if more than half of
the participants are dishonest. We also define the notation dR := (ω − 1)/N ,
where dR is the maximum fraction of dishonest recipients possible when the
sender is part of the coalition. As in previous protocols, there are two stages –
the distribution stage and the messaging stage.

3.1 Distribution Stage

1. The sender independently and uniformly at random selects (with replace-
ment) N2k functions from the set F , where k is a security parameter. We
denote these by (f1, . . . , fN2k) and refer to them as the signature functions.

2. To each recipient, Pi, the sender uses secret classical channels to transmit
the functions (f(i−1)Nk+1, . . . , fiNk). This requires the sender to share Nky
secret bits with each recipient.
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3. Each recipient Pi randomly splits the set {(i − 1)Nk + 1, . . . , iNk} into N
disjoint subsets of size k, which we denote Ri→1, . . . , Ri→N . He then uses
the secret classical channels to send Ri→j and Fi→j := {fr : r ∈ Ri→j} to
recipient Pj . To securely transmit the signature functions and their positions
requires each pair of participants to share ky+k log(Nk) secret bits. Following
this symmetrisation, participant Pi holds the Nk functions given by Fi :=⋃N

j=1 Fj→i and their positions given by Ri :=
⋃N

j=1 Rj→i. We refer to these as
the key functions and function positions of participant Pi. The participants
will use these to check a future signature declaration.

3.2 Messaging Stage

1. To send message m ∈ M to Pi, the sender sends (m,Sigm), where

Sigm := (f1(m), f2(m), . . . , fN2k(m)) = (t1, . . . , tN2k).

Since the tags have size b, the signature is N2kb bits in size.
2. For message m and the signature elements tr such that r ∈ Rj→i, participant

Pi defines the following test

Tm
i,j,l =

{
1 if

∑
r∈Rj→i

g(tr, fr(m)) < slk

0 otherwise
(1)

where sl is a fraction defined by the protocol, such that 1/2 > s−1 > s0 >
. . . > slmax

, and g(., .) is a function of two inputs which returns 0 if the inputs
are equal, and 1 if the inputs are different. For each fixed l, if the outcome of
the test is 1, we say that that test is passed at level l. Essentially, this test
checks whether the signature matches what the recipient expects to receive,
but allows for a certain number, slk, of errors. For any verification level, the
recipient will perform N such tests, one for each j = 1, . . . , N . Note that
participant Pi knows all of the signature functions fi′ with i′ ∈ Ri and so can
perform all tests without interaction with any other participant.

3. Participant Pi will accept (m,Sigm) as valid at level l if

N∑

j=1

Tm
i,j,l > Nδl (2)

That is, participant Pi accepts the signature at level l if more than a fraction of
δl of the tests are passed, where δl is a threshold given by δl = 1/2+(l+1)dR.
Therefore, we see that each participant can accept/reject a message without
interacting with any other recipient in the messaging stage.

4. To forward a message, Pi simply forwards (m,Sigm) to the desired recipient.

Note that the number of dishonest participants the protocol is able to tolerate is
directly related to the number of allowed transferability levels, according to the
parameter δl = 1/2 + (l + 1)dR. Specifically, the maximum transferability level
for a given number of dishonest participants is set by (lmax + 1)dR < 1/2.
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4 Security

Informally, USS schemes must provide the following security guarantees [18]:

1. Unforgeability: Except with negligible probability, it should not be possible
for an adversary to create a valid signature.

2. Transferability: If a verifier accepts a signature, he should be confident that
any other verifier would also accept the signature.

3. Non-repudiation: Except with negligible probability, a signer should be unable
to repudiate a legitimate signature that he has created.

Formal security definitions covering both quantum and classical USS schemes
were first provided in Ref. [27]. For completeness, the definitions are reproduced
in AppendixA. Below we prove that the scheme presented in Sect. 3 is secure
against each type of dishonest behaviour. The security analysis for transferability
and non-repudiation is similar to the one provided in Ref. [27], and as such it is
presented in AppendixB.

Theorem 1. The protocol defined in Sect. 3 is secure against forging attempts.
Letting H2 denote the binary entropy, we find

P(Forge) ≤ (N − ω)2 2−k(1−H2(s0)). (3)

Proof. In order to forge, a coalition, C (which does not include the signer),
with access to a single message-signature pair (m,Sigm), must output a distinct
message-signature pair (m′,Sigm′) that will be accepted (at any level l ≥ 0) by
a participant Pi /∈ C. We consider forging to be successful if the coalition can
deceive any (i.e. at least one) honest participant.

It is easiest for the coalition to forge a message at the lowest verification level
l = 0, so we consider this case in what follows. We assume that the coalition
hold a valid message-signature pair (m,Sigm). We first restrict our attention to
the coalition trying to deceive a fixed participant, and we will prove that this
probability decays exponentially fast with the parameter k. We then use this to
bound the general case where the target is not a fixed participant. Therefore,
for now, we fix the recipient that the coalition wants to deceive to be Pi /∈ C.

To successfully forge, the coalition should output a message-signature pair,
(m′,Sigm′), that passes at least Nδ0 + 1 of the N tests that Pi performs in
step 2 of the messaging stage, where m′ �= m and δ0 = 1/2 + dR, meaning
Nδ0 + 1 = N/2 + ω. By the definition of the protocol, the number of members
in a coalition is at most ω. The coalition knows Fj→i and Rj→i for all Pj ∈ C,
so they can use this knowledge to trivially ensure that Pi passes ω of the N
tests performed at level l = 0. To pass the required Nδ0 + 1 tests, the coalition
must pass a further N/2 tests out of the N −ω remaining tests. The first step in
computing this probability is to calculate the probability of the coalition being
able to create a signature such that, for a single Pj /∈ C, Tm′

i,j,0 = 1, i.e. the
probability that the coalition can guess the tags forwarded from a single honest
recipient Pj to Pi.
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Let pt denote the probability that the coalition can force Tm′
i,j,0 = 1, when

they have no access to (Fj→i, Rj→i), i.e. pt is the probability that the coalition
can create a message-signature pair that will pass the test performed by Pi for
the functions received from Pj /∈ C. As per the protocol, Pj sent (Fj→i, Rj→i)
to Pi using secure channels and therefore Fj→i and Rj→i are unknown to the
coalition. However, we assume the coalition possess a valid message-signature
pair (m,Sigm), from which they can gain partial information on (Fj→i, Rj→i).
Let us denote the k unknown functions in Fj→i by u1, . . . , uk, and consider how
the coalition might try to guess the value of t′1 := u1(m′), given t1 := u1(m),
where m′ �= m.

Since F is ε-ASU2, using Definition 5 the coalition immediately knows u1 is
in a set F1 ⊂ F which has size |F|/|T |. Upon receiving message m′, Pi will be
expecting to find tag t′1 in the signature. The coalition does not know t′1 though,
so the best they can do is to pick a random function in F1, and hope that this
function also maps m′ to the unknown t′1. Again by Definition 5, the fraction of
functions in F1 that map m′ to t′1 is at most 2/|T |. Therefore, the probability
that the coalition chooses a function that gives the correct tag for message m′

is 2/|T |. This is independently true for each of the k unknown functions.
Let X be the random variable that counts how many incorrect tags the

coalition declares. Then X follows a binomial distribution and we have

pt = P(X < ks0) =
ks0−1∑

v=0

(
k

v

)(
2

|T |

)k−v (

1 − 2
|T |

)v

. (4)

This decays exponentially fast with the parameter k. For example, it may be
desirable to choose a small tag length in order to minimise the length of the
signature. For |T | = 4 the signature is 2N2k bits in size and we have

pt =
ks0−1∑

v=0

(
k

v

) (
1
2

)k

≈ 2−k(1−H2(s0)). (5)

Of course, choosing a larger tag size will increase security against forging. We
will now give an upper bound for the probability of forging against a fixed
participant. We start by computing the probability of passing at least one of the
unknown N − ω tests, which is given by

P (FixedForge) ≤ 1 − (1 − pt)N−ω ≈ (N − ω)pt, (6)

where we have used the fact that pt 	 1 in the approximation.
The total number of honest recipients is N − ω and for successful forging we

only require that any one of them is deceived. Using the probability of forging
against a fixed participant, we can bound the probability of deceiving any honest
participant as

P (Forge) = 1 − (1 − P (FixedForge))N−ω ≈ (N − ω)2pt, (7)

where we have used the fact that P (FixedForge) 	 1 in the approximation. We
again note that this probability decays exponentially fast with parameter k, and
thus the protocol is secure against forging attempts.
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Theorem 2. The protocol defined in Sect. 3 is secure against non-transferability
attempts. Defining Np := [(N(1 − dR)][N(1 − dR) − 1]/2, we find

P(Non-Transferability) ≤ Np(N(δl − dR) + 1) exp
(

− (sl−1 − sl)2

2
k

)

. (8)

Proof. See AppendixB.

Theorem 3. The protocol defined in Sect. 3 is secure against repudiation
attempts. We find

P(Rep) ≤ Np(N(δl − dR) + 1) exp
(

− (s−1 − s0)2

2
k

)

. (9)

Proof. See AppendixB.

We note here that Eqs. (3), (8) and (9) are independent of the message size,
meaning the signature size will be constant with respect to the size of the message
being sent.

5 Comparisons

5.1 Classical USS Schemes

In this section we compare the performance of our protocol to the one proposed
in [15] constructed using polynomials over a finite field. We will refer to this
protocol as the HSZI scheme. Since the HSZI scheme allows all participants to
send multiple messages, we extend our protocol to facilitate a comparison.

Consider the protocol described in Sect. 3, except that now each participant
performs the distribution stage ψ times in the role of the sender. Trivially, this
extended distribution stage allows all participants in the scheme to send up to
ψ messages securely in the role of sender. We call this the extended protocol and
all comparisons are made with reference to this scheme.

This extended scheme still enjoys a number of advantages when compared to
the HSZI scheme. Namely,

1. We require fewer trust assumptions – our scheme does not require any trusted
authority.

2. Security in our scheme can be tuned independently of message size, resulting
in shorter signature lengths.

3. Our scheme scales more efficiently (with respect to message size) in terms of
the number of secret shared bits required by participants.

We will look at the second and third advantages in more detail. According to
Theorem 3 of [15] (translated to our notation) the HSZI scheme has

|Σ| = q(ω+1), |S| = q(ω+1)(ψ+1), |V| = qω+(N+1)(ψ+1), (10)

where Σ is the set containing all possible signatures, S is the set containing
all possible signing algorithms, V is the set containing all possible verification
algorithms, q is the number of elements in the chosen finite field and ψ is the
number of times the keys can be reused.



154 R. Amiri et al.

Signature Length. Let us first consider the size of the signature. Since the
signature must be transmitted with the message, it is desirable to have as small
a signature as possible. In the HSZI scheme the message m is an element of the
finite field, meaning the size of the finite field must be at least as big as the size
of the message set, i.e. q ≥ |M|. Accordingly, in what follows we set q = |M|.
Equation (10) implies that (ω + 1) log(|M|) is the bit-length of the signature.
The authors also show that the HSZI scheme provides security proportional to
1/|M|.

Immediately we see that both the size of the signature and the security level
depend on the size of the message to be sent. On the other hand, in our scheme
the signature length is 2N2k bits, regardless of the message length. The security
level of our scheme depends on the parameter k, but is independent of the length
of the message being signed. This allows our scheme to bypass the optimality
results presented in Ref. [15]. Specifically, the authors show that the signature
generated by the HSZI scheme is optimally small for a given security level. By
decoupling the security level from the size of the message being sent, we are able
to generate smaller signatures while maintaining security.

Secret Key Requirements. We now consider the number of secret shared
bits required to securely distribute the signing/verification keys. In the HSZI
scheme, to secretly send the signing and verification keys to all participants, the
trusted authority must hold

[
(ω + 1)(ψ + 1) + ω + (N + 1)(ψ + 1)

]
log(|M|) = O(Nψ log |M|) (11)

secret shared bits with each participant (as implied by Eq. (10)).
For the hash scheme, each recipient must share Nky secret bits with the

sender (to receive the signature functions), and ky + k log(Nk) with every other
recipient (to forward on a selection of the key functions and their positions).
For the extended protocol, where the distribution stage is performed ψ times for
each participant acting as sender, each participant must share: (i) Nky secret
bits with each of the N recipients for the ψ rounds in which he is the sender; and
(ii) Nky bits with the sender and ky + k log(Nk)) secret bits with each of the
(N − 1) other recipients for each of the Nψ rounds when he is not the sender.
This is a total of

N2kψy + Nψ
[
Nky + k(N − 1)(y + log(Nk))

]

= Nkψ(3N − 1)y + N(N − 1)kψ log(Nk)
= Nkψ(3N − 1)(6 + 2s) + N(N − 1)kψ log(Nk)

= O
(
N2kψ(log log |M| + log Nk)

)

(12)

secret shared bits per recipient. The second equality follows using Proposition 1
with b = 2. The last equality follows using the Lambert W function to find a lead-
ing order approximation for s when s is large [30]. The results are summarised
in Table 1 below.
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The table shows that the signature length in our scheme is constant with
respect to the size of the message to be signed. On the other hand, the signature
length in the HSZI scheme increases linearly with the bit-length of the message
to be signed. Similarly, the secret shared key required by our scheme increases
logarithmically with the bit-length of the message, whereas the increase in the
HSZI scheme is linear in the bit-length of the message.

The fact that our scheme scales unfavourably with respect to the number of
participants is due to the lack of a trusted authority, meaning participants must
perform the pairwise exchange process. As discussed below, this N2 scaling can
be removed from the hash scheme by introducing a trusted authority.

Table 1. Comparison of the signature length and secret shared keys required for various
signature protocols. Our scheme scales favourably with respect to the message length,
a = log |M|, both in terms of signature length and required secret shared key. The
“Quantum” column refers to the two most efficient quantum USS schemes at present,
described in [23,27].

Hash scheme HSZI Quantum

Signature 2N2k (ω + 1)a O(N2a)

Secret key O
(
N2ψ(log a + log N)

)
O(Nψa) O

(
N2ψ(a + log N)

)

Disadvantages. Due to the inclusion of a trusted authority, the HSZI scheme
enjoys a number of advantages over our scheme. These are:

1. Pairwise secret shared keys between all participants are not required by the
HSZI scheme. Instead, each participant only needs a shared secret key with
the trusted authority. This means that the HSZI scheme scales favourably
with respect to the number of protocol participants.

2. Participants in the HSZI scheme are able to enter the protocol even after the
distribution stage. The new participant only needs to communicate with the
trusted authority to join.

3. The HSZI protocol has unlimited transferability, whereas our scheme can only
guarantee transferability a finite number of times.

While these advantages are significant, they are only possible due to the existence
of a trusted authority – an additional trust assumption not present in our scheme.
Our scheme could easily be modified to include a trusted authority, in which case
it would achieve the same three benefits above, as well as being significantly more
efficient.

A trusted authority could be included into our scheme as follows. In the
distribution stage, the signer would send Nk functions to the trusted authority,
where N is an arbitrarily large number chosen to be the maximum number
of participants able to verify the senders signature. When the sender wants
to send a signed message, the trusted authority randomly (and secretly) sends
k of the Nk functions to the recipient. Recipients could either obtain their k
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functions at the start of the protocol (i.e. have a distribution stage), or simply
request the functions from the trusted authority as and when needed. Security
against forging would follow as before from the properties of ε-ASU2 sets, while
security against repudiation would come from the fact that the trusted authority
distributes the functions out at random, so each honest participant would have
the same expected number of mismatches with any signature declaration.

5.2 Quantum USS Schemes

A central motivating factor in the study of quantum USS schemes was that they
seemed to require fewer resources than classical USS schemes. This benefit came
at a cost, and all quantum USS schemes proposed have been much less efficient
than classical USS schemes3.

Until now, this decrease in efficiency had been justified by the fact that
quantum protocols do not require broadcast channels, anonymous channels, or
a trusted authority. Instead, the only assumption is that a limited number of
the participants are dishonest, and that the participants all share a number of
secret bits, which could be expanded via QKD.

However, the classical scheme presented in this paper makes the same trust
assumptions as quantum USS schemes, and still achieves two key advantages.
Namely, our scheme generates much shorter signatures and requires significantly
fewer secret shared bits. One of the reasons for the increase in efficiency is that,
so far, all quantum USS schemes have been of the Lamport-type, in which the
distribution stage must be performed for every possible future message. On the
other hand, our scheme does not follow this blueprint, and instead requires users
to share hash functions in the distribution stage, which can be used to sign any
future message (up to some chosen size).

Efficiency. Here we consider the signature length and secret shared bit require-
ments of our scheme, and compare it to Generalised P2, the most efficient realis-
able quantum USS scheme. We assume that a group of N + 1 = 51 participants
are trying to sign a 1Mb message to a security level of 10−10. For comparing
to quantum USS schemes, rather than considering the extended protocol, we
assume the participants perform the regular distribution stage as specified in
Sect. 3, i.e. there is a designated sender and only one message to be sent. In
order to have lmax = 1, we assume that at most ω = 13 participants are dishon-
est meaning dR = 0.24. We also choose s−1 = 0.41, s0 = 0.21 and s1 = 0.01 so
as to have even gaps between the verification levels4.

3 Although it may appear from Table 1 that quantum USS schemes scale comparably
to the HSZI scheme, in fact the constant of proportionality for the quantum schemes
is very large, meaning that for all practical purposes the HSZI scheme is far more
efficient.

4 This choice is somewhat arbitrary, but is chosen to minimise the required signature
lengths.
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With these parameters, Eqs. (3), (8) and (9) show that k = 1700 is necessary
for the message to be secure to a level of 10−10. Given this value of k, the
signature length is 8.50 × 106 bits and each recipient must hold a total of 7.69 ×
106 secret shared bits (shared over the different participants).

When considering Generalised P2, we assume the sender signs the 1 Mb mes-
sage bit-by-bit, each to a level of 10−10. Overall this gives a lower security level
than signing the message as a whole, but makes the protocol significantly more
efficient5. Equations (24), (29) and (31) of Ref. [27] can be used to show that
the resulting signature length is 4.25 × 1012, and that each recipient must hold
a total of 5.96 × 1012 secret shared bits (shared over the different participants).

This example shows just how powerful our new scheme is when compared to
existing quantum schemes – even for a relatively small message, our scheme is
6 orders of magnitude more efficient both in terms of signature size and secret
shared bit requirements. Our results show that quantum USS schemes must
either be drastically improved, or find a new source of motivation if they are to
remain competitive.

A Security Definitions

In this section we formally define security in USS protocols. We begin by defining
the notion of a dispute resolution process.

In the messaging stage of the protocol all participants are able to check the
validity of a message-signature pair without communicating with any other par-
ticipant. Nevertheless, there may still be scenarios in which disagreements arise
regarding whether a message is valid or not. For example, the sender may deny
having ever sent a message, even though a recipient who (allegedly) followed the
correct procedure found the message to be valid. In these cases, the participants
need a method of deciding who is telling the truth. This is done via the dispute
resolution process.

Definition 6. When the validity of a message-signature pair (m,σ) is in dis-
pute, we invoke a majority vote dispute resolution method MV(m,σ), defined by
the following rule:

1. MV(m,σ) = Valid if Ver(i,−1)(m,σ) = True for more than half of the users.
2. MV(m,σ) = Invalid otherwise

where Ver(i,−1)(m,σ) is the verification function at level l = −1.

Essentially, all participants check the message-signature pair at level −1 and
the majority decision prevails. The l = −1 verification level is only used in dis-
pute resolution, and not in normal runs of the protocol. The dispute resolution
process is expensive, as it requires all participants to communicate to decide

5 Signing the message as a whole would require participants to share secret keys of

size O(2|M|) = O(2106), which is clearly impossible.
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whether the message is valid or not. It is expected that even dishonest partic-
ipants would not try to force dispute resolution, since losing would come with
consequences and the procedure ensures that honest participants prevail as long
as they are in the majority. Dispute resolution should be thought of as akin to
taking legal action; in the vast majority of cases it does not happen, but its
existence is necessary to prevent dishonesty.

Signature schemes must be secure against three types of security threat –
forging, repudiation and non-transferability.

Definition 7 (Forging). Let Q be an USS protocol and let C ⊂ P be a coalition
of malevolent parties, not including the signer P0. Suppose that the coalition holds
any valid message-signature pair (m,σ) and can use this to output a message-
signature pair (m′, σ′) with m′ �= m. We define Forging to be the function:

ForgC(Q,m′, σ′) =

{
1 if (m′, σ′) is i-acceptable for some Pi /∈ C

0 otherwise.
(13)

Definition 8 (Non-Transferability). Let Q be an USS protocol and C ⊂ P a
coalition of malevolent participants including the signer P0. Suppose that C out-
puts a message-signature pair (m,σ) and a verification level l. We define Non-
Transferability to be the function:

NonTransC(Q,m, σ, l) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if Ver(i,l)(m,σ) = True for some Pi /∈ C and
Ver(j,l′)(m,σ) = False for some 0 ≤ l′ < l

and some j �= i, Pj /∈ C

0 otherwise.
(14)

Definition 9 (Repudiation). Let Q be an USS protocol and C ⊂ P a coalition
of malevolent participants including the signer P0. Suppose that C outputs a
message-signature pair (m,σ) and a verification level l. We define Repudiation
to be the function:

RepC(Q,MV,m, σ) =

⎧
⎪⎨

⎪⎩

1 if (m,σ) is i-acceptable for some Pi /∈ C and
MV(m,σ) = Invalid

0 otherwise.
(15)

We say that the protocol is secure against forging/non-transferability/
repudiation if the probability of a dishonest coalition being successful decays
exponentially fast with respect to some security parameter.

B Security Proofs

In this section we prove Theorems 2 and 3 stated in Sect. 4.
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B.1 Proof of Theorem 2

In order to break the transferability of the protocol, a coalition C (which includes
the signer P0) must generate a signature that is accepted by recipient Pi /∈ C at
level l, while also being rejected by another recipient Pj /∈ C at a level l′ < l.

The task of the coalition is easiest if l′ = l − 1 and so we consider this case
in what follows. To provide an upper bound, we allow for the biggest coalition
C that includes NdR recipients and the sender, i.e. all the dishonest partici-
pants. For simplicity, again we will fix the participants whom the coalition is
trying to deceive to be the honest participants Pi and Pj , while all other hon-
est participants are labelled with the index h. In general, transferability fails if
the coalition forms a signature that is not transferable for at least one pair of
honest participants (Pi, Pj). Therefore, we should take into account all possible
pairs of honest participants. We begin by focusing on the case of a fixed pair of
participants, and at the end we give the more general expressions.

The first step is to compute pml,l−1 , which is the probability that: (i) test
Tm

i,h,l is passed (i.e. the tags sent from honest participant Ph to recipient Pi

are accepted at level l); and (ii), the test Tm
j,h,l−1 fails (i.e. the tags sent from

honest participant Ph to recipient Pj are rejected at level l−1). Since the sender
P0 is dishonest, it can be assumed that the coalition know all the signature
functions. However, they are unaware of the sets Rh→i and Rh→j . Therefore,
the coalition can control the number of mismatches the signature will make with
the signature functions originally sent to Ph, but they cannot separately bias the
number of mismatches the signature will make with the functions in Fh→i and
Fh→j . Therefore, when participants Pi and Pj test the functions sent to them
by an honest participant Ph, they will both have the same expected fraction of
mismatches; we call this fraction pe.

It is helpful to use the following bound

pml,l−1 = P(Pi passes test at level l AND Pj fails test at level l − 1)
≤ min{P(Pi passes test at level l),P(Pj fails test at level l − 1)}.

(16)

The probability of passing the test at level l when pe > sl can be bounded using
Hoeffding’s inequalities to be below exp(−2(pe−sl)2k). The probability of failing
the test at level l − 1 when pe < sl−1 can similarly be bounded to be smaller
than exp(−2(sl−1 −pe)2k). Note that sl−1 > sl and so the above two cases cover
all possible values for pe. Since we are taking the minimum over both cases, the
optimal choice for the coalition is to have these probabilities equal to each other.
This is achieved by choosing pe = (sl +sl−1)/2. In this case we obtain the bound
pml,l−1 ≤ exp

(
− (sl−1−sl)

2

2 k
)

, which decays exponentially with k.
For a test that involves a member of C it is trivial for the coalition to make

two recipients disagree in any way they wish, i.e. they can make Tm
i,c,l and Tm

j,c,l−1

take any values they wish. However, the number of those tests is at most NdR,
which is the maximum number of recipients in the coalition. For the participant
Pi to accept a message at level l, he needs strictly greater than Nδl of the
tests to pass at this level. On the other hand, for the participant Pj to reject
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the message at level l − 1, less than or equal to Nδl−1 of tests must pass at this
level. Therefore, since it holds that δl = δl−1+dR, in order for the coalition to be
successful, the honest participants Pi and Pj need to disagree on at least NdR+1
tests. As we saw, the coalition can easily make them disagree on the NdR tests
originating from coalition members, but they still have to disagree on at least
one more test originating from an honest recipient. There are N(δl − dR) + 1
such tests (tests originating from an honest recipient that were passed by Pi),
and the Pj need only reject one of them for the coalition to succeed. Therefore,
we have

P(Fixed Non-Transferability) ≤ 1 − (1 − pml,l−1)
N(δl−dR)+1

≈ (N(δl − dR) + 1)pml,l−1 .
(17)

Lastly, we consider the general case, where the participants Pi and Pj are not
fixed. We find

P(Non-Transferability) ≤ 1 − (1 − P(Fixed Non-Transferability))Np

≈ Np(N(δl − dR) + 1)pml,l−1 ,
(18)

where Np := [(N(1 − dR)][N(1 − dR) − 1]/2. Again, this decays exponentially
with k, and thus the protocol is secure against non-transferability.

B.2 Proof of Theorem 3

The proof is a special case of non-transferability, see Sect. 5 A of [27]. We find

P(Rep) ≤ Np(N(δ0 − dR) + 1)pm0,−1 . (19)

As for non-transferability, this goes to zero exponentially fast with k, and thus
the protocol is secure against repudiation.
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