
On the Ineffectiveness of Internal
Encodings - Revisiting the DCA Attack

on White-Box Cryptography

Estuardo Alpirez Bock1,2(B), Chris Brzuska1,2, Wil Michiels3,4,
and Alexander Treff1

1 Hamburg University of Technology, Hamburg, Germany
{estuardo.alpirezbock,brzuska,alexander.treff}@tuhh.de

2 Aalto University, Espoo, Finland
3 NXP Semiconductors, Eindhoven, The Netherlands

wil.michiels@nxp.com
4 Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Abstract. The goal of white-box cryptography is to implement crypto-
graphic algorithms securely in software in the presence of an adversary
that has complete access to the software’s program code and execution
environment. In particular, white-box cryptography needs to protect the
embedded secret key from being extracted. Bos et al. (CHES 2016) intro-
duced differential computational analysis (DCA), the first automated
attack on white-box cryptography. The DCA attack performs a statisti-
cal analysis on execution traces. These traces contain information such as
memory addresses or register values, that is collected via binary instru-
mentation tooling during the encryption process. The white-box imple-
mentations that were attacked by Bos et al., as well as white-box imple-
mentations that have been described in the literature, protect the embed-
ded key by using internal encodings techniques introduced by Chow et
al. (SAC 2002). Thereby, a combination of linear and non-liner nibble
encodings is used to protect the secret key. In this paper we analyse the
use of such internal encodings and prove rigorously that they are too
weak to protect against DCA. We prove that the use of non-linear nibble
encodings does not hide key dependent correlations, such that a DCA
attack succeeds with high probability.

Keywords: White-box cryptography
Differential computational analysis · Software execution traces
Mixing bijections

1 Introduction

When an application for mobile payment runs in software on Android or other
open platforms, it needs to protect itself as it cannot rely on platform security.
In particular, the cryptographic algorithms used within an application need to
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 103–120, 2018.
https://doi.org/10.1007/978-3-319-93387-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_6&domain=pdf

104 E. Alpirez Bock et al.

be secured against adversaries who have a high degree of control over the envi-
ronment. In 2002, Chow et al. [9,10] introduced white-box cryptography, which
aims at remaining secure even when the adversary has full control over the exe-
cution environment. As mobile payment became widely used and as its security
nowadays often relies on software security only, Visa and Mastercard made the
use of white-box cryptography for mobile payment applications mandatory [15].

A necessary requirement for secure white-box cryptography is that an adver-
sary cannot extract the embedded secret key from the implementation. However,
hiding the secret key is not always enough to achieve security in the white-box
attack scenario. For example, if a mobile payment application uses a secret key
for authentication by encrypting a challenge, then an adversary may simply try
to copy the white-box program performing the encryption and run it on another
device. The adversary could successfully use the functionality of the white-box
program without knowing the value of its embedded secret key.

While it seems clear that a white-box program needs to achieve more than
just security against key extraction, hiding the secret key remains a difficult task
to achieve for real-life applications. Chow et al. [9,10] suggest to implement a
symmetric cipher with a fixed key as a network of look-up tables (LUT). The key
is compiled into a table instead of being stored in plain in the implementation. To
achieve robustness against reverse-engineering, Chow et al. propose to obfuscate
the lookup tables and the intermediate results via a combination of linear and
non-linear encodings. The idea of implementing symmetric ciphers as such an
obfuscated network of LUTs has caught on in the white-box community since
then, see, e.g., [7,11]. While the LUT-based white-box designs only store the
keys obfuscated in lookup tables, all aforementioned LUT-based designs turn
out to be susceptible to key extraction attacks performed via differential and
algebraic cryptanalysis (see [4,14,16,17]). Specifically, these attacks invert the
obfuscation process by deriving the applied encoding functions after which the
key can easily be recovered.

In real-life applications, mounting cryptanalysis and reverse engineering
attacks requires abundant skills and time from an adversary. Thus, Bos et al. [6]
and Sanfelix et al. [20] introduced automated key extraction attacks that are
substantially simpler and faster to carry out. The authors call their method
differential computational analysis (DCA) and describe it as the software coun-
terpart of the differential power analysis (DPA), a method for attacking cryp-
tographic hardware implementations [13]. Bos et al. [6] monitor the memory
addresses accessed by a program during the encryption process and display them
in the form of software execution traces. These software execution traces can also
include other information that can be monitored using binary instrumentation,
such as stack reads or register values. These traces serve the following three
goals. (1) They can help to determine which cryptographic algorithms was imple-
mented. (2) The traces provide hints to determine where roughly the crypto-
graphic algorithm is located in the software implementation. (3) Finally and most
importantly, the traces can be statistically analyzed to extract the secret key.
The automated DCA attack turned out to be successful against a large number

On the Ineffectiveness of Internal Encodings 105

of publicly available white-box implementations. It has since then become a pop-
ular method for the evaluation of newly proposed white-box implementations [5]
and software countermeasures for white-box cryptography [2].

In this paper, we analyze why step (3) of the attack by Bos et al. [6] actually
works and show which types of encodings are susceptible to the DCA attack.
The work of Sasdrich et al. [21] takes a first step towards this understanding.
They use the Walsh transform to show that the encodings used by their white-
box AES design are not balanced correlation immune and thus are susceptible
to the DCA attack. In this paper, we aim at giving a structured exposition to
improve our understanding of the power of the DCA attack.

Our Contribution. In this paper we provide an annotated step-by-step graphical
presentation of the key-extraction step of the DCA attack, which relies on a
difference of means distinguisher, and explain how to interpret the results. Our
presentation follows the style that Kocher [12] and Messerges [18] used for the
(analogous) differential power analysis on hardware implementations.

Further, we analyse how the presence of internal encodings on white-box
implementations affects the effectiveness of the DCA attack. Here, we focus on
the encodings suggested by Chow et al. [9,10], which are a combination of linear
and non-linear transformations. We start by studying the effects of a single
linear transformation. We show that the DCA attack can successfully extract
the key from a look-up table when it only uses linear or affine encodings. Next,
we consider the effect of non-linear nibble encodings and prove that the use of
nibble encodings provides conditions so that the DCA attack succeeds. Namely,
when we attack a key-dependent look-up table encoded via non-linear nibble
encodings, we always obtain a difference of means curve with values equal to
either 0, 0.25, 0.5, 0.75 or 1 for the correct key guess. The results obtained from
these analyses help us determine why the DCA attack also works in the presence
of both linear and non-linear nibble encodings as we discuss shortly in the end of
the paper and in more detail in the extended version [1]. Throughout the paper,
we also present experimental results of the DCA attack when performed on single
key-dependent look-up tables and on complete white-box implementations. In
all cases, the experimental results align with the theoretical observations.

2 White-Box Cryptography Implementations

White-box cryptography can be seen as special-purpose obfuscation, but is usu-
ally not discussed in this way. In particular, general -purpose obfuscation with
perfect security is known to be impossible [3] and the hope is that achieving
perfect security or at least a good level of security for a specific algorithm is still
feasible. The most popular approach in academic literature (and perhaps also
beyond) for white-box implementations of symmetric encryption is to encode the
underlying symmetric cipher with a fixed key as a networks of look-up tables
(LUT). In particular, the LUTs depend on the secret key used in the cipher. An
additional protection technique is to apply linear and non-liner internal encod-
ings which are used to encode the intermediate state between LUTs. Another

106 E. Alpirez Bock et al.

popular technique are external encodings which are applied on the outside of
the cipher and help to bind the white-box to an application. In this paper, we
focus solely on internal encodings, because, as Bos et al. point out in [6], applying
external input and output encodings yields an implementation of a function that
is not functionally equivalent to AES anymore and thus, some of its security can
be shifted to other programs. Moreover, this paper focusses on using internal
encodings for LUT-based white-box constructions of AES. We will focus on the
encodings and refer to the LUT-based construction as an abstract design. The
interested reader may find the work by Muir [19] a useful read for a more detailed
description on how to construct an LUT-based white-box AES implementation.
In the following, we introduce the concept of internal encodings.

Consider an LUT-based white-box implementation of AES, where the LUTs
depend on the secret key. Internal encodings can now help to re-randomize those
LUTs to make it harder to recover secret-key information based on the LUTs.
Such internal encodings were first suggested by Chow et al. [9,10]. We now
discuss two types of encodings.

Non-linear Encodings. Recall that the secret key is hard-coded in the LUTs.
When non-linear encodings are applied, each LUT in the construction becomes
statistically independent from the key and thus, attacks need to exploit key
dependency across several LUTs. A table T can be transformed into a table T ′

by using the input bijections I and output bijections O as follows:

T ′ = O ◦ T ◦ I−1.

As a result, we obtain a new table T ′ which maps encoded inputs to encoded
outputs. Note that no information is lost as the encodings are bijective. If table
T ′ is followed by another table R′, their corresponding output and input encod-
ings can be chosen such that they cancel out each other. Considering a complex
network of LUTs of an AES implementation, we have input- and output encod-
ings on almost all look-up tables. The only exceptions are the very first and
the very last tables of the AES implementation, which take the input of the
algorithm and correspondingly return the output data. The first tables omit the
input encodings and the last tables omit the output encodings. As the internal
encodings cancel each other out, the encodings do not affect the input-output
behaviour of the AES implementation.

Size Requirements. Descriptions of uniformly random bijections (which are non-
linear with overwhelming probability) are exponential in the input size of the
bijection. Therefore, a uniformly random encoding of the 8-bit S-box requires a
storage of 28 bytes. Although this may still be acceptable, the problem arises
when two values with a byte encoding need to be XORed. An encoded XOR has
a storage requirement of 216 nibbles. As we need many of them, this becomes
an issue. Therefore, one usually splits longer values in nibbles of 4 bits. When
XORing those, we only need a lookup table of 28 nibbles. However, by moving
to a split non-linear encoding we introduce a vulnerability since a bit in one

On the Ineffectiveness of Internal Encodings 107

nibble does no longer influence the encoded value of another nibble in the same
encoded word. To (partly) compensate for this, Chow et al. propose to apply
linear encodings whose size is merely quadratic in the input size and thus, they
can be implemented on larger words.

LinearEncodings. Chowetal. suggest toapply linearencodingstowordsthatare
input or output of an XOR-network. These linear encodings have as width the com-
plete word and are applied before the non-linear encodings discussed above. While
the non-linear encodings need to be removedbefore performing anXOR-operation,
onecanperformtheXORonlinearlyencodedvalues(duetocommutativity).There-
fore, one usually refers to linear encodings as mixing bijections.

The linear encodings are invertible and selected uniformly at random. For
example, we can select L and A as a mixing bijections for inputs and outputs of
table T respectively:

A ◦ T ◦ L−1.

As stated above, it is not necessary to cancel the effect of the linear encodings
before an XOR-operation. However, after the XOR-operation we obtain an out-
put which is still dependent on the linear function A and the effect of A needs to
be eventually removed, e.g. at the end of an AES round. In this case, dedicated
tables in the form of Ln ◦ A−1 are introduced, where Ln is the corresponding
linear encoding needed for the next LUT. In the white-box designs of Chow et
al. we have 8-bit and 32-bit mixing bijections. The former encode the 8-bit S-box
inputs, while the latter obfuscate the MixColumns outputs.

3 Differential Computational Analysis

We now revisit the DCA attack on white-box implementations, which aims
at finding key dependent correlations by analysing memory access informa-
tion recorded during the encryption process. To display the tracked memory-
information in so called software execution traces, one proceeds as follows: one
fixes one bit of information of the bit string that describes the memory address
and displays whether the bit was 0 or 1 at each memory access performed during
the execution. For more details on the acquisition of software traces, see the orig-
inal DCA paper by Bos et al. [6]. In this section we provide a detailed description
of one statistical method to analyse such software execution traces, namely the
difference of means method. Note that this method corresponds 1-to-1 to the
difference of means method as presented by Kocher using power traces [12]. Nev-
ertheless we now show the results obtained from a difference of means analysis
when performed using a group of software traces. The two attack capabilities
required to perform the DCA attack are as follows:

– execute the white-box program under attack several times in a controlled
environment with different input messages.

– knowledge of the plaintext1 values given to the program as input.
1 The attack works analogously when having access to the ciphertexts. The attacker

needs access to either plaintexts or ciphertexts.

108 E. Alpirez Bock et al.

The goal of the attack is to determine the first-round key of AES as it allows to
recover the entire key. The first-round key of AES is 128 bits long and the attack
aims to recover it byte-by-byte. For the remainder of this section, we focus on
recovering the first byte of the first-round key, as the recovery attack for the
other bytes of the first round key proceeds analogously. For the first key byte,
the attacker tries out all possible 256 key byte hypotheses kh, with 1 ≤ h ≤ 256,
uses the traces to test how good a key byte hypothesis is, and eventually returns
the key hypothesis that performs best according to a metric that we specify
shortly. For sake of exposition, we focus on one particular key-byte hypothesis
kh. The analysis steps on a DCA attack are performed as follows.

1. Collecting Traces: We first execute the white-box program n times, each
time using a different plaintext pe, 1 ≤ e ≤ n as input. For each execution, one
software trace se is recorded during the first round of AES. Figure 1 shows a
single software trace consisting of 300 samples. Each sample corresponds to one
bit of the memory addresses accessed during execution.

Fig. 1. Single software trace consisting of 300 samples

2. Selection Function: We define a selection function for calculating an
intermediate state-byte z of the calculation process of AES. More precisely, we
calculate a state-byte which depends on the key-byte we are analysing in the
actual iteration of the attack. The selection function returns only one bit of z,
which we refer to as our target bit. The value of our target bit will be used
as a distinguisher in the following steps. In this work, our selection function
Sel(pe, kh, j) calculates the state z after the SBox substitution in the first round.
The index j indicates which bit of z is returned, with 1 ≤ j ≤ 8.

Sel(pe, kh, j) := SBox(pe ⊕ kh)[j] = b ∈ {0, 1}. (1)

Depending on the white-box implementation being analysed, it may be the
case that strong correlations between b and the software traces are only observ-
able for some bits of z, i.e. depending on which j we choose to focus on. Thereby,
we perform the following Steps 3, 4 and 5 for each bit j of z.

3. Sorting of Traces: We sort each trace se into one of the two sets A0 or
A1 according to the value of Sel(pe, kh, j) = b:

For b ∈ {0, 1} Ab := {se|1 ≤ e ≤ n, Sel(pe, kh, j) = b}. (2)

On the Ineffectiveness of Internal Encodings 109

4. Mean Trace: We now take the two sets of traces obtained in the previous
step and calculate a mean trace for each set. We add all traces of one set sample
wise and divide them by the total number of traces in the set. For b ∈ {0, 1}, we
define

Āb :=

∑
s∈Ab

s

|Ab| . (3)

5. Difference of Means: We now calculate the difference between the two
previously obtained mean traces sample wise. Figure 2 shows the resulting dif-
ference of means trace:

Δ = |Ā0 − Ā1|. (4)

Fig. 2. Difference of means trace for correct key guess

6. Best Target Bit: We now compare the difference of means traces
obtained for all target bits j for a given key hypothesis kh. Let Δj be the differ-
ence of means trace obtained for target bit j, and let H(Δj) be the highest peak
in the trace Δj . Then, we select Δj as the best difference of means trace for kh,
such that H(Δj) is maximal amongst the highest peaks of all other difference of
means traces, i.e. ∀ 1 ≤ j′ ≤ 8, H(Δj′

) ≤ H(Δj).
In other words, we look for the highest peak obtained from any difference

of means trace. The difference of means trace with the highest peak H(Δj) is
assigned as the difference of means obtained for the key hypothesis kh analysed in
the actual iteration of the attack, such that Δh := Δj . We explain this reasoning
in the analysis provided after Step 7.

7. Best Key Byte Hypothesis: Let Δh be the difference of means trace
for key hypothesis h, and let H(Δh) be the highest peak in the trace Δh. Then,
we select kh such that H(Δh) is maximal amongst all other difference of means
traces Δh, i.e. ∀ 1 ≤ h′ ≤ 256, H(Δh′

) ≤ H(Δh).

Analysis. The higher H(Δh), the more likely it is that this key-hypothesis is the
correct one, which can be explained as follows. The attack partitions the traces
in sets A0 and A1 based on whether a bit in z is set to 0 or 1. First, suppose that
the key hypothesis is correct and consider a region R in the traces where (an
encoded version of) z is processed. Then, we expect that the memory accesses in
R for A0 are slightly different than for A1. After all, if they would be the same,
the computations would be the same too. We know that the computations are

110 E. Alpirez Bock et al.

different because the value of the target bit is different. Hence, it may be expected
that this difference is reflected in the mean traces for A0 and A1, which results in
a peak in the difference of means trace. Next, suppose that the key hypothesis is
not correct. Then, the sets A0 and A1 can rather be seen as a random partition
of the traces, which implies that z can take any arbitrary value in both A0 and
A1. Hence, we do not expect big differences between the executions traces from
A0 and A1 in region R, which results in a rather flat difference of means trace.

To illustrate this, consider the difference of means trace depicted in Fig. 2.
This difference of means trace corresponds to the analysis performed on a white-
box implementation obtained from the hack.lu challenge [8]. This is a public
table-based implementation of AES-128, which does not make any use of internal
encodings. For analysing it, a total of 100 traces were recorded. The trace in Fig. 2
shows four spikes which reach the maximum value of 1 (note that the sample
points have a value of either 0 or 1). Let � be one of the four sample points in
which we have a spike. Then, having a maximum value of 1 means that for all
traces in A0, the bit of the memory address considered in � is 0 and that this
bit is 1 for all traces in A1 (or vice versa). In other words, the target bit z[j]
is either directly or in its negated form present in the memory address accessed
in the implementation. This can happen if z is used in non-encoded form as
input to a lookup table or if it is only XORed with a constant mask. For sake of
completeness, Fig. 3 shows a difference of means trace obtained for an incorrect
key-hypothesis. No sample has a value higher than 0.3.

Fig. 3. Difference of means trace for incorrect key guess

The results of the DCA attack shown in this section correspond to the attack
performed using software traces which consist of the memory addresses accessed
during the encryption process. The attack can also be performed using software
traces which consist of other type of information, e.g., the stack writes and/or
reads performed during encryption. In all cases, the analysis is performed in an
analogous way as explained in this section.

Successful Attack. Throughout this paper, considering the implementation of
a cipher, we refer to the DCA attack as being successful for a given key k, if
this key is ranked number 1 among all possible keys for a large enough number
of traces. It may be the case that multiple keys have this same rank. If DCA

On the Ineffectiveness of Internal Encodings 111

is not successful for k, then it is called unsuccessful for key k. Remark that in
practice, an attack is usually considered successful as long as the correct key
guess is ranked as one of the best key candidates. We use a stronger definition
as we require the correct key guess to be ranked as the best key candidate.

Alternatively when attacking a single n-bit to n-bit key dependent look-up
table, we consider the DCA attack as being successful for a given key k, if this
key is ranked number 1 among all possible keys for exactly 2n traces. Thereby,
each trace is generated by giving exactly 2n different inputs to the look-up table,
i.e. all possible inputs that the look-up table can obtain. To get the correlation
between a look-up table output and our selection function, the correlation we
obtain by evaluating all 2n possible inputs is exactly equal to the correlation we
obtain by generating a large enough number of traces for inputs chosen uniformly
at random. We use this property for the experiments we perform in the following
section.

4 Effect of the Encodings

Chow et al. [9] recommend a combination of linear and non-linear encodings
as means to protect key dependent look-up tables in a white-box implementa-
tion. These types of encodings are the methods usually applied in the literature
and in several publicly available white-box implementations. In this section we
analyse how these types of encodings affect the effectiveness of the DCA attack.
Namely, if intermediate values in an implementation are encoded, it becomes
more difficult to re-calculate such values using a selection function as defined in
Step 2 of the DCA, as this selection function does not consider any encodings
(see Sect. 3). For our analyses in this section, we first build single look-up tables
which map an 8-bit long input to an 8-bit long output. More precisely, these
look-up tables correspond to the key addition operation merged with the S-box
substitution step performed on AES. As common in the literature, we refer to
such look-up tables as T-boxes. We apply the different encoding methods to the
outputs of the look-up tables and obtain encoded T-boxes. Note that Chow et
al. merge the T-box and the MixColumns operation into one 8-to-32 bit look-up
table and encode the look-up table output via a 32-bit linear transformation.
However, an 8-to-32 bit look-up table can be split into four 8-to-8 bit lookup
tables, which correspond to the look-up tables used for our analyses.2

Following our definition for a successful DCA attack on an n-to-n look-up
table given in Sect. 3, we generate exactly 256 different software traces for attack-
ing a T-box. Our selection function is defined the same way as in Step 2 of Sect. 3
and calculates the output of the T-boxes before it is encoded. The output of the
T-box is a typical vulnerable spot for performing the DCA on white-box imple-
mentations as this output can be calculated based on a known plaintext and
a key guess. As we will see in this section, internal encodings as suggested by
2 It can be the case that the four lookup tables are, in isolation, not bijective. In that

case, our results do not apply directly. It is left as an exercise to adapt them to this
setting.

112 E. Alpirez Bock et al.

Chow et al. cannot effectively add a masking countermeasure to the outputs of
the S-box.

4.1 Linear Encodings

The outputs of a T-box can be linearly encoded by applying linear transforma-
tions. To do this, we randomly generate an 8-to-8 invertible matrix A. For each
output y of a T-box T , we perform a matrix multiplication A · y and obtain an
encoded output m. We obtain a new look-up table lT , which maps each input x
to a linearly encoded output m. Figure 4 displays this behaviour.

T-Box A
x m

Fig. 4. An lT-box maps each input x to a linearly encoded output m.

We now compute the DCA on the outputs of an lT , constructed with a ran-
domly generated invertible matrix A. Figure 5 shows the results of the analysis
when using the correct key guess. Since we are attacking only an 8 × 8 look-up
table, the generated software traces consist only of 24 samples. No high peaks
can be seen in the difference of means trace, i.e., no correlations can be identi-
fied and thus, the analysis is not successful if the output of the original T-box
is encoded using the matrix A.

Fig. 5. Difference of means trace for the lT-box

The results shown in Fig. 5 correspond to the DCA performed on a look-up
table constructed using one particular linear transformation to encode the output
of one look-up table. We observe that the DCA as described in Sect. 3 is not
effective in the presence of this particular transformation. The theorem below

On the Ineffectiveness of Internal Encodings 113

gives a necessary and sufficient condition under which linear transformations
provide protection against the DCA attack.

Theorem 1. Given a T-box encoded via an invertible matrix A. The difference
of means curve obtained for the correct key hypothesis returns a peak value equal
to 1 if and only if the matrix A has at least one row i with Hamming weight
(HW) = 1. Otherwise, the difference of means curve obtained for the correct key
hypothesis returns peak values equal to 0.

Proof. For all 1 ≤ j ≤ 8 let y[j] be the jth bit of the output y of a T-box. Let
aij ∈ GF (2) be the entries of an 8 × 8 matrix A, where i denotes the row and j
denotes the column of the entry. We obtain each encoded bit m[i] of the lT-box
via

m[i] =
∑

j

aij · y[j] =
∑

j:aij=1

y[j]. (5)

Suppose that row i of A has HW (i) = 1. Let j be such that aij = 1. It follows
from Eq. (5) that m[i] = y[j]. Let kh be the correct key hypothesis and let bit
y[j] be our target bit. With our selection function Sel(pe, kh, j) we calculate the
value for y[j] and sort the corresponding trace in the set A0 or A1. We refer
to these sets as sets consisting of encoded values m, since a software trace is a
representation of the encoded values. Recall now that y[j] = m[i]. It follows that
m[i] = 0 for all m ∈ A0 and m[i] = 1 for all m ∈ A1. Thus, when calculating the
averages of both sets, for Ā[i], we obtain Ā0[i] = 0 and Ā1[i] = 1. Subsequently,
we obtain a difference of means curve with Δ[i] = 1, which leads us to a successful
DCA attack.

What’s left to prove is that if row i has HW (i) > 1, then the value of bit
y[j] is masked via the linear transformation such that the difference of means
curve obtained for Δ[i] has a value equal to zero. Suppose that row i of A has
HW (i) = l > 1. Let j be such that aij = 1 and let y[j′] denote one bit of y, such
that aij′ = 1. It follows from Eq. (5) that the value of m[i] is equal to the sum of
at least two bits y[j] and y[j′]. Let kh be the correct key hypothesis and let y[j′]
be our target bit. Let ⇀v be a vector consisting of the bits of y, for which aij = 1,
excluding bit y[j′]. Since row i has HW (i) = l, vector ⇀v consists of l − 1 bits.
This means that ⇀v can have up to 2l−1 possible values. Recall that each non-
encoded T-box output value y occurs with an equal probability of 1/256 over
the inputs of the T-box. Thus, all 2l−1 possible values of ⇀v occur with the same
probability over the inputs of the T-box. The sum of the l−1 bits in ⇀v is equal to
0 or 1 with a probability of 50%, independently of the value of y[j′]. Therefore,
our target bit y[j′] is masked via

∑
j:aij=1,j �=j′ y[j] and our calculations obtained

with Sel(pe, kh, j′) only match 50% of the time with the value of m[i]. Each set
Ab consists thus of an equal number of values m[i] = 0 and m[i] = 1 and the
difference between the averages of both sets is equal to zero. �

One could be tempted to believe that using a matrix which does not have
any identity row serves as a good countermeasure against the DCA. However, we
could easily adapt the DCA attack such that it is also successful in the presence

114 E. Alpirez Bock et al.

of a matrix without any identity row. In Step 2, we just need to define our
selection function such that, after calculating an 8-bit long output state z, we
calculate all possible linear combinations LC of the bits in z. Thereby, in Step 3
we sort according to the result obtained for an LC. This means that we perform
Steps 3 to 5 for each possible LC (28 = 256 times per key guess). For at least
one of those cases, we will obtain a difference of means curve with peak values
equal to 1 for the correct key guess as our LC will be equal to the LC defined
by row i of matrix A. Our selection function calculates thus a value equal to the
encoded value m[i] and we obtain perfect correlations.

Note that Theorem 1 also applies in the presence of affine encodings. In case
we add a 0 to a target bit, traces Ā0 and Ā1 do not change and in case we add a
1 the entries in Ā0 and Ā1 that relate to the target bit change to 1 minus their
value. In both cases, the difference of means value does not change.

To illustrate how the effect of linear encodings is shown on complete white-
box implementations, we now perform the DCA attack on our white-box imple-
mentation of AES which only makes use of linear encodings. This is a table
based implementation which follows the design strategy proposed by Chow et
al., but only uses linear encodings. We collect 200 software traces, which consist
of the memory addresses accessed during the encryption process. We use our
selection function Sel(pe, kh, j) = z[j]. Figure 6 shows the difference of means
trace obtained for the correct key guess.

Fig. 6. DCA results for our white-box implementation with linear encodings

Figure 6 shows one peak reaching a value of 1 (see sample 3001). Since the
peak reaches the value of 1, we can again say that our selection function is
perfectly correlated with the targeted bit z[j], even though the output z was
encoded using a linear transformation. Since our partition was done with our
selection function calculating the output of the T-box, our results tell us that
the matrix used to encode the T-box outputs contains at least one identity row.

4.2 Non-linear Encodings

Next, we consider the effect that non-linear encodings have on the outputs of
a T-box. For this purpose, we randomly generate bijections, which map each
output value y of the T-box to a different value f and thus obtain a non-linearly

On the Ineffectiveness of Internal Encodings 115

encoded T-box, which we call OT-box. Recall that a T-box is a bijective func-
tion. If we encode each possible output of a T-box T with a randomly generated
byte function O and obtain the OT-box OT , then OT does not leak any infor-
mation about T . Namely, given OT , any other T-box T ′ could be a candidate
for constructing the same OT-box OT , since there always exists a corresponding
function O′ which could give us OT ′ such that OT ′ = OT . Chow et al. refer to
this property as local security [10]. Based on this property, we could expect resis-
tance against the DCA attack for a non-linearly encoded T-box. For practical
implementations, unfortunately, using an 8-to-8 bit encoding for each key depen-
dent look-up table is not realistic in terms of code size (see Sect. 4.1 of [19] for
more details). Therefore, non-linear nibble encodings are typically used to encode
the outputs of a T-box. The output of a T-box is 8-bits long and each half of the
output is encoded by a different 4-to-4 bit transformation and both results are
concatenated. Figure 7 displays the behaviour of an OT-box constructed using
two nibble encodings.

T-Box

O1

O2

x

f [1...4]

f [5...8]

Fig. 7. Non-linear encodings of the T-Box outputs

Encoding the outputs of a T-box via non-linear nibble encodings does not
hide correlations between the secret key of the T-box and its output bits as
proved in the theorem below. When collecting the traces of an OT-box to perform
a DCA using the correct key hypothesis, each (encoded) nibble value is returned
a total of 16 times. Thereby, all encoded nibbles that have the same value are
always grouped under the same set Ab in Step 3. Therefore, we always obtain a
difference of means curve which consists of only 5 possible correlation values.

Theorem 2. Given an OT-box which makes use of nibble encodings, the differ-
ence of means curve obtained for the correct key hypothesis kh consists only of
values equal to 0, 0.25, 0.5, 0.75 or 1.

Proof. We first prove that the mean value of the set A0 is always a fraction of 8
when we sort the sets according to the correct key hypothesis. The same applies
for the set A1 and the proof is analogous. For all 1 ≤ j ≤ 8 let yd[j] be the jth
bit of the output y of a T-box, where d ∈ {1, 2} refers to the nibble of y where bit
j is located. Let kh be the correct key hypothesis. With our selection function
Sel(pe, kh, j) we calculate a total of 128 nibble values yd, for which yd[j] = 0.

116 E. Alpirez Bock et al.

As there exist only 8 possible nibble values yd for which yd[j] = 0 holds, we obtain
each value yd a total of 16 times. Each time we obtain a value yd, we group its
corresponding encoded value fd under the set A0. Recall that an OT-box uses
one bijective function to encode each nibble yd. Thus, when we calculate the
mean trace Ā0 and focus on its region corresponding to fd, we do the following:

Ā0[fd] =
16fd
128

+ · · · +
16f ′

d

128
=

fd
8

+ · · · +
f ′
d

8
,

with fd �= f ′
d. We now prove that the difference between the means of sets A0

and A1 is always equal to the values 0, 0.25, 0.5, 0.75 or 1. Let fd[j] be one bit
of an encoded nibble fd.

– If fd[j] = 0 is true for all nibbles in set A0, then this implies that fd[j] = 1 is
true for all nibbles in set A1, that is Ā0[j] = 8

8 and Ā1[j] = 0
8 . The difference

between the means of both sets is thus Δ[j] = |08 − 8
8 | = |0 − 1| = 1.

– If fd[j] = 1 is true for 1 nibble in set A0, then fd[j] = 1 is true for 7 nibbles in
set A1, that is, the difference between both means is Δ[j] = |18 − 7

8 | = |68 | =
0.75.

– If fd[j] = 1 is true for 2 nibbles in set A0, then fd[j] = 1 is true for 6 nibbles
in set A1, that is, the difference between both means is Δ[j] = |28 − 6

8 | = |48 | =
0.5.

– If fd[j] = 1 is true for 3 nibbles in set A0, then fd[j] = 1 is true for 5 nibbles
in set A1, that is, the difference between both means is Δ[j] = |38 − 5

8 | = |28 | =
0.25.

– If fd[j] = 1 is true for 4 nibbles in set A0, then fd[j] = 1 is true for 4 nibbles in
set A1, that is, the difference between both means is Δ[j] = |48 − 4

8 | = |08 | = 0.

The remaining 4 cases follow analogously and thus, all difference of means traces
consist of only the values 0, 0.25, 0.5, 0.75 or 1. �

A peak value of 0.5, 0.75 or 1 is high enough to ensure that its corresponding
key candidate will be ranked as the correct one. We now argue that, when we use
an incorrect key guess, nibbles with the same value may be grouped in different
sets. If we partition according to an incorrect key hypothesis kh, the value we
calculate for yd[j] does not always match with what is calculated by the T-box
and afterwards encoded by the non-linear function. It is not the case that for
each nibble value yd for which yd[j] = 0, we group its corresponding encoded
value fd in the same set. Therefore, our sets Ab consist of up to 16 different
encoded nibbles, whereby each nibble value is repeated a different number of
times. This applies for both sets A0 and A1 and therefore, both sets have similar
mean values, such that the difference between both means is a value closer to
zero.

To get practical results corresponding to Theorem 2, we now construct 10 000
different OT-boxes. Thereby, each OT-box is based on a different T-box, i.e. each

On the Ineffectiveness of Internal Encodings 117

one depends on a different key, and is encoded with a different pair of functions
O1 and O2. We now perform the DCA attack on each OT-box. The DCA attack
is successful on almost all of the 10 000 OT-boxes with the exception of three.
In all cases, the difference of means curves obtained when using the correct key
hypotheses return a highest peak value of 0.25, 0.5, 0.75 or 1. The three OT-
boxes which cannot be successfully attacked return peak values of 0.25 for the
correct key guess. For each of the three cases, the correct key guess is not ranked
as the best key candidate because there exists at least one other key candidate
with a peak value slightly higher or with the same value of 0.25. The table
below summarizes how many OT-boxes return each peak value for the correct
key hypotheses.

Peak value for correct key Nr. of OT-boxes

1 55

0.75 2804

0.5 7107

0.25 34

We now perform the DCA attack on our table-based white-box implemen-
tation of AES which only makes use of non-linear nibble encodings. We collect
2000 software traces, which consist of the memory addresses accessed during the
encryption process. Figure 8 shows the difference of means trace obtained when
using the correct key byte with our selection function.

Fig. 8. DCA results for our white-box implementation with non-linear encodings

Figure 8 is flat with one peak with a value very close to 0.75 (see sample 1640),
another peak with a value very close to 0.5 (see sample 1750). Additionally, the
value of two peaks is very close to 0.25. This result corresponds to the difference
of means results obtained with our OT-box examples and to Theorem2. Based on
the results shown in this section we can conclude that randomly generated nibble
encodings do not effectively work as a countermeasure for hiding key dependent
correlations when performing the difference of means test. Additionally, we learn
one way to increase our success probabilities when performing the DCA: when

118 E. Alpirez Bock et al.

ranking the key hypotheses, if no key candidate returns a peak value which really
stands out (0.5 or higher), we could rank our key candidates according to the
convergence of their peaks to the values 0.25 or 0. In the extended version of
this paper, we describe this generalization of the DCA attack in more detail [1].

4.3 Combination of Linear and Non-linear Encodings

We now discuss shortly the effectiveness of the DCA when performed on white-
box implementations that make use of both linear and non-linear encodings to
protect their key-dependent look-up tables. For a more detailed description of
the effect of this type of encodings, we refer the reader to the extended version
of this paper [1]. The combination of both encodings is the approach proposed
by Chow et al. in order to protect the content of the look-up tables from reverse
engineering attempts. The output of each key-dependent look-up table, such
as a T-box, is first encoded by a linear transformation and afterwards by the
combination of two non-linear functions.

We now perform the DCA attack on the OpenWhiteBox challenge by Chow.3

This AES implementation was designed based on the work described in [9,19].
We collect 2000 software traces which consist of values read and written to the
stack during the first round. We define our selection function the same way as
in Sect. 3, Sel(pe, kh, j) = z[j]. For the correct key byte 0x69 we obtain the
difference of means trace shown in Fig. 9.

Fig. 9. Difference of means results for the OpenWhiteBox Challenge when using the
correct key guess and targeting bit z[2]

Figure 9 shows a flat trace with 7 peaks reaching a value of almost 0.5 (see
e.g. sample 327). Due to this trace, the key byte 0x69 is ranked as the best key
candidate and the DCA attack is successful. The peak values shown in Fig. 9 cor-
respond to those described in Theorem2. We discuss these results shortly based
on Theorems 1 and 2. From Theorem 1 we can conclude that, when considering
an output bit of a T-box, it is important that all bits can still be transformed in
all possible values (i.e., 0 and 1) for achieving resistance against the DCA. When
a white-box uses the combination of linear and non-linear encodings and we tar-
get an output bit, we need to consider the output of a T-box as two individual

3 https://github.com/OpenWhiteBox/AES/tree/master/constructions/chow.

https://github.com/OpenWhiteBox/AES/tree/master/constructions/chow

On the Ineffectiveness of Internal Encodings 119

nibbles. Thereby, it is important that each nibble can be transformed into each
possible value in GF (24). If that is the case, we can avoid correlation values
such as those mentioned in Theorem 2 caused by the use of non-linear nibble
encodings.

5 Conclusions

As automated attacks on white-box implementations become more popular, it is
important to understand the experimental success of the original DCA attack in
order to aim for resistance against such attacks. Internal encodings as suggested
by Chow et al. do not effectively hide information regarding the outputs of a key
dependent look-up table. Therefore, the use of such encodings makes a white-
box implementation very vulnerable against DCA. In this work we focused on
analysing these types of encodings due to their popularity amongst the white-box
community and hope that our results motivate the further research on efficient
alternatives for internal encodings in white-box cryptographic designs.

Acknowledgments. The authors would like to thank the anonymous referee for
his/her helpful comments. The authors would like to acknowledge the contribution
of the COST Action IC1306. Chris Brzuska is grateful to NXP for supporting his chair
for IT Security Analysis.

References

1. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of
internal encodings - revisiting the DCA attack on white-box cryptography (2018).
https://eprint.iacr.org/2018/301

2. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.: Analysis of software countermea-
sures for whitebox encryption. IACR Trans. Symmetric Cryptol. 2017(1), 307–328
(2017)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

4. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

5. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 5

6. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

https://eprint.iacr.org/2018/301
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-53887-6_5
https://doi.org/10.1007/978-3-662-53140-2_11

120 E. Alpirez Bock et al.

7. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
Cryptology ePrint Archive, Report 2006/468 (2006). http://eprint.iacr.org/2006/
468

8. Bédrune, J.-B.: Hack.lu 2009 reverse challenge 1 (2009). https://2017.hack.lu/
9. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography

and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

10. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

11. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

12. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power anal-
ysis. J. Cryptogr. Eng. 1, 5–27 (2011)

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

15. Mastercard Mobile Payment SDK: Security guide for MP SDK v1.0.6.
White paper (2017). https://developer.mastercard.com/media/32/b3/
b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-
v2.0.pdf

16. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

17. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

18. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis
attacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard
Technology, WOST 1999, Berkeley, CA, USA, p. 17. USENIX Association (1999)

19. Muir, J.A.: A tutorial on white-box AES (2013). https://eprint.iacr.org/2013/104.
pdf

20. Sanfelix, E., de Haas, J., Mune, C.: Unboxing the white-box: practical attacks
against obfuscated ciphers. In: Presentation at BlackHat Europe 2015 (2015).
https://www.blackhat.com/eu-15/briefings.html

21. Sasdrich, P., Moradi, A., Güneysu, T.: White-box cryptography in the gray box.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 185–203. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 10

http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://2017.hack.lu/
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://eprint.iacr.org/2013/104.pdf
https://eprint.iacr.org/2013/104.pdf
https://www.blackhat.com/eu-15/briefings.html
https://doi.org/10.1007/978-3-662-52993-5_10

	On the Ineffectiveness of Internal Encodings - Revisiting the DCA Attack on White-Box Cryptography
	1 Introduction
	2 White-Box Cryptography Implementations
	3 Differential Computational Analysis
	4 Effect of the Encodings
	4.1 Linear Encodings
	4.2 Non-linear Encodings
	4.3 Combination of Linear and Non-linear Encodings

	5 Conclusions
	References

