
Formal Verification of Side-Channel
Countermeasures via Elementary Circuit

Transformations

Jean-Sébastien Coron(B)

University of Luxembourg, Luxembourg City, Luxembourg
jean-sebastien.coron@uni.lu

Abstract. We describe a technique to formally verify the security of
masked implementations against side-channel attacks, based on elemen-
tary circuit transforms. We describe two complementary approaches: a
generic approach for the formal verification of any circuit, but for small
attack orders only, and a specialized approach for the verification of spe-
cific circuits, but at any order. We also show how to generate security
proofs automatically, for simple circuits. We describe the implementation
of CheckMasks, a formal verification tool for side-channel countermea-
sures. Using this tool, we formally verify the security of the Rivain-Prouff
countermeasure for AES, and also the recent Boolean to arithmetic con-
version algorithms from CHES 2017.

Keywords: Side-channel attacks and countermeasures
High-order masking · Security proof · Automated security analysis

1 Introduction

The Masking Countermeasure. Masking is the most widely used counter-
measure against side-channel attacks for block-ciphers and symmetric-key algo-
rithms. In a first-order countermeasure, all intermediate variables x are masked
into x′ = x ⊕ r where r is a randomly generated value. For such countermea-
sure, it is usually straightforward to verify its security against first-order attacks;
namely it suffices to check that all intermediate variables have the uniform distri-
bution, or at least that their distribution is independent from the key; therefore
an attacker processing the side-channel leakage of intermediate variables sepa-
rately (as in a first-order attack) does not get useful information.

However second-order attacks combining the leakage on x′ and r can be
mounted in practice, so it makes sense to design masking algorithms resisting
higher-order attacks. This is done by extending Boolean masking to n shares
with x = x1 ⊕ · · · ⊕ xn; in that case an implementation should be resistant
against t-th order attacks, in which the adversary combines leakage information
from at most t < n intermediate variables.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 65–82, 2018.
https://doi.org/10.1007/978-3-319-93387-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_4&domain=pdf

66 J.-S. Coron

Security Proofs. In principle any countermeasure against high-order attacks
should have a security proof, but such proof can be either missing, incomplete, or
incorrect. In this paper we describe the construction of a tool, called CheckMasks,
to automatically verify the security of high-order masking schemes.

The first step is to specify what it means for a masking countermeasure to be
secure, i.e. what is the security model. Such formalization was initiated by Ishai
et al. in [ISW03]. In this model, the adversary can probe at most t wires in the
circuit, but he should not learn anything about the secret key. The approach for
proving security is based on simulation: one must show that any set of t wires
probed by the adversary can be perfectly simulated without the knowledge of
the secret-key. This shows that the t probes do not bring any useful information
to the attacker, since he could run this simulation by himself.

More precisely, the simulation technique consists in showing that any set of
t probes can be perfectly simulated by the knowledge of only a proper subset of
the input shares xi. At the beginning of the algorithm an original variable x is
shared into n shares xi. When x is part of the secret-key, this pre-sharing cannot
be probed by the adversary. Since any subset of at most n−1 input shares xi are
uniformly and independently distributed, the simulation of the probed variables
can be performed without knowing the secret-key.

The main result in [ISW03] is to show that any circuit C can be transformed
into a new circuit C ′ of size O(t2 · |C|) that is resistant against an adversary
probing at most t wires in the circuit. The construction is based on secret-sharing
every variable x into n shares with x = x1 ⊕ · · · ⊕ xn, and processing the shares
in a way that prevents a t-limited adversary from leaning any information about
the initial variable x, using n ≥ 2t + 1 shares.

Formal Verification of Masking. The formal verification of the masking
countermeasure was initiated by Barthe et al. in [BBD+15]. The authors describe
an automated method to prove the security of masked implementation against
t-th order attacks, for small values of t (in practice, t < 5). The method only
works for small values of t because the number of possible t-tuples of intermediate
variables grows exponentially with t. To formally prove the security of a masking
algorithm, the authors describe an algorithm to construct a bijection between
the observations of the adversary (corresponding to a t-tuple of intermediate
variables) and a distribution that is syntactically independent from the secret
inputs; this implies that the adversary learns nothing from this particular t-tuple
of intermediate variables. All possible t-tuples of intermediates variables are then
examined by exhaustive search.

The authors obtain a formal verification of various masked implementations,
up to second order masked implementation of AES, and up to 5-th order for the
masked Rivain-Prouff multiplication [RP10]. In particular, the authors were able
to rediscover some known attacks and discover new ways of attacking already
broken schemes. Their approach is implemented in the framework of EasyCrypt
[BDG+14], and relies on its internal representations of programs and expressions.

Formal Verification of Side-Channel Countermeasures 67

The main drawback of the previous approach is that it can only work for
small orders t, since the running time is exponential in t. To overcome this
problem, in a follow-up work [BBD+16], Barthe et al. studied the composition
property of masked algorithms. In particular, the authors introduce the notion
of strong simulatability, a stronger property which requires that the number
of input shares necessary to simulate the observations of the adversary in a
given gadget is independent from the number of observations made on output
wires. This ensures some separation between the input and the output wires: no
matter how many output wires must be simulated (to ensure the composition
of gadgets), the number of input wires that must be known to perform the
simulation only depends on the number of internal probes within the gadget.

The paper [BBD+16] has a number of important contributions that we sum-
marize below. Firstly, the authors introduce the t-NI and t-SNI definitions. The
t-NI security notion corresponds to the original security definition in the ISW
probing model [ISW03]; it requires that any tc ≤ t probes of the gadget circuit
can be simulated from at most tc of its input shares. The stronger t-SNI notion
corresponds to the strong simulatability property mentioned above, in which
the number of input shares required for the simulation is upper bounded by the
number of probes tc in the circuit, and is independent from the number of output
variables |O| that must be simulated (as long as the condition tc+|O| < t is satis-
fied). We recall these definitions in Sect. 2, as they are fundamental in our paper.

The authors show that the t-SNI definition allows for securely composing
masked algorithms; i.e. for a construction involving many gadgets, one can prove
that the full construction is t-SNI secure, based on the t-SNI security of its
components. The advantages are twofold: firstly the proof becomes modular and
much easier to describe. Secondly as opposed to [ISW03] the masking order does
not need to be doubled throughout the circuit, as one can work with n ≥ t + 1
shares, instead of n ≥ 2t + 1 shares. Since most gadgets have complexity O(n2),
this usually gives a factor 4 improvement in efficiency. In [BBD+16], the authors
prove the t-SNI property of several useful gadgets: the multiplication of Rivain-
Prouff [RP10], the mask refreshing based on the same multiplication algorithm,
and the multiplication between linearly dependent inputs from [CPRR13].

Moreover, in [BBD+16] the authors also machine-checked the multiplication
of Rivain-Prouff and the multiplication-based mask refreshing in the EasyCrypt
framework [BDG+14]. The main point is that their machine verification works
for any order, whereas in [BBD+15] the formal verification could only be per-
formed at small orders t. However, the approach seems difficult to understand
(at least for a non-expert in formal methods), and when reading [BBD+16] it is
far from obvious how the automated verification of the countermeasure can be
implemented concretely; this seems to require a deep knowledge of the EasyCrypt
framework.

Finally, the authors built an automated approach for verifying that an algo-
rithm constructed by composing provably secure gadgets is itself secure. They
also implemented an algorithm for transforming an input program P into a pro-
gram P ′ secure at order t; their algorithm automatically inserts mask refreshing
gadgets whenever required.

68 J.-S. Coron

Our Contributions. Our main goal in this paper is to simplify and extend the
formal verification results from [BBD+15,BBD+16]. We describe two comple-
mentary approaches: a generic approach for the formal verification of any circuit,
but for small attack orders only (as in [BBD+15]), and a specialized approach
for the verification of specific circuits, but at any order (as in [BBD+16]).

For the generic verification of countermeasures at small orders, we use a dif-
ferent formal language from [BBD+15]. In particular we represent the underly-
ing circuit as nested lists, which leads to a simple and concise implementation in
Common Lisp, a programming language well suited to formal manipulations. We
are then able to formally verify the security of the Rivain-Prouff countermeasure
with very few lines of code. Our running times for formal verification are similar
to those in [BBD+15]. Thanks to this simpler approach, we could also extend
[BBD+15] to handle a combination of arithmetic and Boolean operations, and
we have formally verified the security of the recent Boolean to arithmetic conver-
sion algorithm from [Cor17c]. To perform these formal verifications we describe
the implementation of CheckMasks, our formal verification tool for side-channel
countermeasures.

For the verification of specific gadgets at any order (instead of small orders
only with the generic approach), our technique is quite different from [BBD+16]
and consists in applying elementary transforms to the circuit, until the t-NI or
t-SNI properties become straightforward to verify. We show that for a set of well-
chosen elementary transforms, the formal verification time becomes polynomial
in t (instead of exponential with the generic approach); this implies that the
formal verification can be performed at any order. Using our CheckMasks tool,
we provide a formally verified proof of the t-SNI property of the multiplication
algorithm in the Rivain-Prouff countermeasure, and of the mask refreshing based
on the same multiplication algorithm; in both cases the running time of the
formal verification is polynomial in the number of shares n.

Finally, we show how to get the best of both worlds, at least for simple
circuits: we show how to automatically apply the circuit transforms that lead to
a polynomial time verification, based on a limited set of generic rules. Namely
we identify a set of three simple rules that enable to automatically prove the t-
SNI property of the multiplication based mask refreshing, and also two security
properties of mask refreshing considered in [Cor17c].

Source Code. The source code of our CheckMasks verification tool is publicly
available at [Cor17a], under the GPL v2.0 license.

2 Security Properties

In this section we recall the t-NI and t-SNI security definitions from [BBD+16].
For simplicity we only provide the definitions for a simple gadget taking as
input a single variable x (given by n shares xi) and outputting a single variable
y (given by n shares yi). Given a vector of n shares (xi)1≤i≤n, we denote by
x|I := (xi)i∈I the sub-vector of shares xi with i ∈ I. In general we wish to

Formal Verification of Side-Channel Countermeasures 69

simulate any subset of intermediate variables of a gadget from the knowledge of
as few xi’s as possible.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n

and outputting the vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any
set of tc ≤ t intermediate variables, there exists a subset I of input indices with
|I| ≤ tc, such that the tc intermediate variables can be perfectly simulated from
x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input (xi)1≤i≤n

and outputting (yi)1≤i≤n. The gadget G is said t-SNI secure if for any set of tc
intermediate variables and any subset O of output indices such that tc + |O| ≤ t,
there exists a subset I of input indices with |I| ≤ tc, such that the tc intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

The t-NI security notion corresponds to the original security definition in
the ISW probing model, in which n ≥ 2t + 1 shares are required. The stronger
t-SNI notion allows for securely composing masked algorithms, and allows to
prove the security with n ≥ t+1 shares only [BBD+16]. The difference between
the two notions is as follows: in the stronger t-SNI notion, the size of the input
shares subset I can only depend on the number of internal probes tc and is
independent of the number of output variables |O| that must be simulated (as
long as the condition tc + |O| ≤ t is satisfied). The t-SNI security notion is very
convenient for proving the security of complex constructions, as one can prove
that the t-SNI security of a full construction based on the t-SNI security of its
components.

3 Formal Verification of Generic Circuits for Small Order

In this section, we show that the t-NI and t-SNI properties can be easily verified
formally for any Boolean circuit, using a generic approach. As in [BBD+15] the
complexity of the formal verification is exponential in the number of shares n,
so this can only work for small n.

3.1 The RefreshMasks Algorithm

To illustrate our approach we first consider the RefreshMasks algorithm below
from [RP10]; see Fig. 1 for an illustration.

We first recall a straightforward property of the RefreshMasks algorithm:
when the intermediate variables of the algorithm are not probed, any subset
of n − 1 output shares yi of RefreshMasks is uniformly and independently dis-
tributed. In the next section, we show how to formally verify this property.

Lemma 1. Let (yi)1≤i≤n be the output of RefreshMasks. Any subset of n − 1
output shares yi is uniformly and independently distributed.

70 J.-S. Coron

Algorithm 1. RefreshMasks
Input: x1, . . . , xn, where xi ∈ {0, 1}k

Output: y1, . . . , yn such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn

1: yn ← xn

2: for i = 1 to n − 1 do
3: ri ← {0, 1}k

4: yi ← xi ⊕ ri
5: yn ← yn ⊕ ri � yn,i = xn ⊕ ⊕i

j=1 rj
6: end for
7: return y1, . . . , yn

x1 · · · xi · · · xn−1 xn

r1

...
ri

...
rn−1

y1 · · · yi · · · yn−1 yn

Fig. 1. The RefreshMasks algorithm, with the randoms ri accumulated on the last
column.

3.2 Formal Verification of Circuits

Circuit Representation. We represent a circuit with nested lists, using the
prefix notation. Consider for example the circuit taking as input x and y and
outputting x ⊕ y; we represent it as (+ X Y). Similarly the circuit computing
x · y is represented as (∗ X Y). To represent more complex circuits the lists are
recursively nested. For example, to represent the circuit x · (y ⊕ z), we write
(∗ X (+ Y Z)). If a circuit has many outputs, we represent the list of outputs
without any prefix operator; for example, the circuit outputting (x⊕y, x ·y) can
be represented as ((+ X Y) (∗ X Y)).

It is easy to write a program in Common Lisp that generates the circuit
corresponding to RefreshMasks; we refer to [Cor17a] for the source code. For
example, we obtain for n = 3 input shares:

> (RefreshMasks ’ (X1 X2 X3))
((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3)))

which corresponds to y1 = r1⊕x1, y2 = r2⊕x2 and y3 = r2⊕(r1⊕x3). Note that
the above RefreshMasks function in Common Lisp takes as input a list of n shares
(here n = 3) and outputs a list of n shares; therefore it can be easily composed
with other such Common Lisp functions to create more complex circuits.

Formal Verification of Side-Channel Countermeasures 71

List Substitutions. We now explain how to formally verify Lemma1. Con-
sider for example the two output variables (+ R1 X1) and (+ R2 (+ R1 X3)) from
above. We would like to show that these two variables are uniformly and inde-
pendently distributed. Since the random R2 is used only once in those two out-
puts, it can play the role of a one-time pad, and we can perform the following
substitution in the second output:

(+ R2 (+ R1 X3)) −→ R2

Namely, since R2 is used only once, the distribution of (+ R2 (+ R1 X3)) is the
same as the distribution of R2. Starting with the above list of two output vari-
ables, we can perform the following sequence of elementary substitutions:

((+ R1 X1) (+ R2 (+ R1 X3))) −→ ((+ R1 X1) R2) −→ (R1 R2)

The first substitution is possible because R2 is used only once, and the second
substitution is possible because R1 is used only once after the first substitution.
Since we have obtained two distinct randoms (R1 R2) at the end, the two output
variables are uniformly and independently distributed, as required.

Formal Verification. To formally verify Lemma1, it suffices to consider all
possible subsets of n − 1 output shares yi among n, and check that for every
subset, we obtain after a series of elementary substitutions a list of n−1 distinct
randoms. These substitutions are easy to implement in Common Lisp. Namely it
suffices to perform a tree search to count the number of times a given random R is
used, and if a random R is used only once, we can then perform the substitution:

(+ R X) −→ R (1)

In the particular case of Lemma 1, there are only n subsets to consider, so
the formal verification is performed in polynomial time. We obtain for example
for n = 3:

> (Check−RefreshMasks−Uni 3)
Input : (X0 X1 X2)
Output : ((+ R1 X0) (+ R2 X1) (+ R2 (+ R1 X2)))
Case 0 : ((+ R2 X1) (+ R2 (+ R1 X2))) => ((+ R2 X1) (+ R2 R1))

=> ((+ R2 X1) R1) => (R2 R1)
Case 1 : ((+ R1 X0) (+ R2 (+ R1 X2))) => ((+ R1 X0) R2)

=> (R1 R2)
Case 2 : ((+ R1 X0) (+ R2 X1)) => ((+ R1 X0) R2) => (R1 R2)

The above transcript shows that Lemma 1 is formally verified for n = 3; namely
in all 3 possible cases, after a sequence of elementary substitutions, we obtain a
list of 2 distinct randoms, showing that the two output variables are uniformly
and independently distributed; see [Cor17a] for the source code.

72 J.-S. Coron

3.3 Security Properties of RefreshMasks

In this section we show how to formally verify some existing properties of Refresh-
Masks. We first consider the straightforward t-NI property, for t = n − 1.

Lemma 2 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input of Refresh-
Masks and let (yi)1≤i≤n be the output. For any set of tc ≤ n − 1 intermediate
variables, there exists a subset I of input indices such that the tc intermediate
variables can be perfectly simulated from x|I , with |I| ≤ tc.

Formal Verification of the t-NI Property of RefreshMasks. The t-NI prop-
erty of RefreshMasks is straightforward because in the definition of RefreshMasks,
any intermediate variable depends on at most one input xi; therefore any subset
of tc probes can be perfectly simulated from the knowledge of at most tc inputs
xi. Consider for example RefreshMasks with n = 3 as previously:

> (RefreshMasks ’ (X1 X2 X3))
((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3)))

If we probe the two intermediate variables (+ R1 X1) and (+ R1 X3), then the
knowledge of the two inputs X1 and X2 is sufficient for the simulation; moreover
we cannot perform any substitution because the random R1 is used twice. On
the other hand if we probe the two variables (+ R2 X2) and (+ R1 X3), we can
perform the substitution:

((+ R2 X2) (+ R1 X3)) → (R2 (+ R1 X3)) → (R2 R1)

showing that the knowledge of the input variables X2 and X3 is not required for
that simulation.

More generally, to verify the t-NI property of any circuit, it suffices to exhaus-
tively consider all possible tc-tuples of intermediate variables for all tc ≤ t, and
verify that after a set of elementary substitutions the knowledge of at most tc
input variables is needed for the simulation of the tc-tuple.

Other Security Properties of RefreshMasks. We perform a formal verification
of several non-trivial properties of RefreshMasks that were used to prove the
security of the Boolean to arithmetic conversion algorithm from [Cor17c]; the full
version of this paper [Cor17b]. The first property is the following: if the output yn
is among the tc probed variables, then we can simulate those tc probed variables
with tc − 1 input shares xi only, instead of tc as in Lemma 2. This property
was crucial for obtaining a provably secure Boolean to arithmetic conversion
algorithm in [Cor17c].

Lemma 3 (RefreshMasks [Cor17c]). Let x1, . . . , xn be the input of a Refresh-
Masks where the randoms are accumulated on xn, and let y1, . . . , yn be the out-
put. Let tc be the number of probed variables, with tc < n. If yn is among the
probed variables, then there exists a subset I such that all probed variables can
be perfectly simulated from x|I , with |I| ≤ tc − 1.

Formal Verification of Side-Channel Countermeasures 73

As previously, to perform a formal verification of Lemma3, it suffices to
consider all possible tc-tuples of intermediate variables (where yn is part of the tc-
tuple) and show that after a sequence of elementary substitutions, there remains
at most tc − 1 input variables. In the full version of this paper [Cor17b], we
argue that it is actually sufficient to perform such verification for tc = n−1 only,
instead of all 1 ≤ tc ≤ n − 1. The timings of formal verification are summarized
in Table 1. Although we are only able to verify Lemma3 for small values of
n, this still provides some confidence in the correctness of Lemma 3 for any n.
We refer to the full version of this paper [Cor17b] for some other properties of
RefreshMasks and their formal verification for small values of n.

Table 1. Formal verification of Lemma 3, for small values of n.

n #variables #tuples Security Time

3 9 36 � ε

4 13 286 � ε

5 17 2,380 � ε

6 21 20,349 � 0.2 s

7 25 177,100 � 1.5 s

8 29 1,560,780 � 17 s

9 33 13,884,156 � 195 s

3.4 Formal Verification of t-SNI Properties: The FullRefresh and
SecMult Algorithms

It is easy to see that that the RefreshMasks algorithm from the previous section
does not achieve the stronger t-SNI property, as already observed in [BBD+16].
Namely one can probe the output y1 = r1 ⊕ x1 and the internal variable yn,1 =
r1 ⊕ xn. This gives y1 ⊕ yn,1 = x1 ⊕ xn and therefore the knowledge of both
inputs x1 and xn is required for the simulation, whereas only tc = 1 internal
variable has been probed.

The FullRefresh Algorithm. We recall below an improved mask refreshing algo-
rithm that does satisfy the t-SNI property for t = n− 1, as shown in [BBD+16].
The algorithm FullRefresh is based on the masked multiplication from [ISW03]
and was already used in [ISW03,DDF14]. Note that the algorithm has complex-
ity O(n2) instead of O(n) for RefreshMasks.

Lemma 4 (t-SNI of FullRefresh [BBD+16]). Let (xi)1≤i≤n be the input shares
of the FullRefresh operation, and let (yi)1≤i≤n be the output shares. For any
set of tc intermediate variables and any subset O of output shares such that
tc + |O| < n, there exists a subset I of indices with |I| ≤ tc, such that the tc
intermediate variables as well as the output shares y|O can be perfectly simulated
from x|I .

74 J.-S. Coron

Algorithm 2. FullRefresh
Input: x1, . . . , xn

Output: y1, . . . , yn such that
⊕n

i=1 yi =
⊕n

i=1 xi

1: for i = 1 to n do yi ← xi

2: for i = 1 to n do
3: for j = i + 1 to n do
4: r ← {0, 1}k � Referred by ri,j
5: yi ← yi ⊕ r � Referred by yi,j

6: yj ← yj ⊕ r � Referred by yj,i

7: end for
8: end for
9: return y1, . . . , yn

Formal Verification of FullRefresh. In the following, we describe the formal
verification of Lemma 4 using our CheckMasks tool. As previously we first imple-
ment the FullRefresh algorithm in Common Lisp; for example, we get the follow-
ing output for n = 3 shares:

> (Fu l lRe f r e sh ’ (X1 X2 X3))
((+ R2 (+ R1 X1)) (+ R3 (+ R1 X2)) (+ R3 (+ R2 X3)))

Using our CheckMasks tool, the (n − 1)-SNI property in Lemma4 can be
easily verified for small values of n. Namely it suffices to compute the list of all
(n−1)-tuples of intermediate variables (including the outputs yi) and check that
every such (n − 1)-tuple can be perfectly simulated from the knowledge of at
most tc inputs xi, where tc is the number of non-output variables in the (n− 1)-
tuple. Consider for example the two variables (+ R2 (+ R1 X1)) and (+ R1 X2)

in the circuit above for n = 3; since (+ R2 (+ R1 X1)) is an output variable, the
simulation must be performed using at most a single input xi. We obtain using
elementary substitutions:

((+ R2 (+ R1 X1)) (+ R1 X2)) → (R2 (+ R1 X2)) → (R2 R1)

and therefore no input xi is actually needed to simulate those two variables.
However if we probe the two variables (+ R2 (+ R1 X1)) and X2, we can perform
the substitutions:

((+ R2 (+ R1 X1)) X2) → (R2 X2)

and therefore the knowledge of X2 is required for the simulation.1 Note that
the running time to consider all possible (n− 1)-tuples of intermediate variables
is exponential in n. We summarize in Table 2 the running time of the formal
verification of FullRefresh, up to n = 6. In Sect. 5 we will show how to formally
verify Lemma 4 in time polynomial in n, so that the formal verification can be
performed for any number of shares n used in practice.

1 This is still according to the t-SNI property, because (+ R2 (+ R1 X1)) is an output
variable and therefore tc = 1.

Formal Verification of Side-Channel Countermeasures 75

Table 2. Formal verification of the t-SNI property of FullRefresh for t = n − 1, for
small values of n.

n #variables #tuples Security Time

3 12 66 � ε

4 22 1,540 � 0.02 s

5 35 52,360 � 0.6 s

6 51 2,349,060 � 46 s

The Rivain-Prouff Countermeasure. The Rivain-Prouff countermeasure for
AES is based on an extension over F2k of the masked AND gate from [ISW03]. It
enables to securely compute a n-sharing of the product c = a·b over F2k , from an
n-sharing of a and b. The algorithm was proven t-SNI in [BBD+16]. In the full
version of this paper [Cor17b], we recall the corresponding SecMult algorithm,
and we show how to formally verify its t-SNI property for small values of n, for
t = n − 1.

4 Formal Verification of Boolean to Arithmetic
Conversion

In this section we show how to extend [BBD+15] to handle a combination of
arithmetic and Boolean operations. This enables to formally verify the security
of the high-order Boolean to arithmetic conversion algorithm recently described
at CHES 2017 [Cor17c], with a t-SNI security proof for n ≥ t+1. The algorithm
can be seen as a generalization of Goubin’s algorithm [Gou01] to any order, still
with a complexity independent of the register size k. Although the algorithm
has complexity O(2n), instead of O(n2 · k) in [CGV14], for small values of n it
is an order of magnitude more efficient. The algorithm takes as input n Boolean
shares xi such that

x = x1 ⊕ · · · ⊕ xn

and using a recursive algorithm computes n arithmetic shares Di such that

x = D1 + · · · + Dn (mod 2k)

Boolean to Arithmetic Conversion. The algorithm from [Cor17c] is based
on the affine property of the function Ψ(x, r) := (x ⊕ r) − r (mod 2k). As illus-
trated in Fig. 2 the algorithm is recursive and makes two recursive calls to the
same algorithm C with n − 1 inputs. For n = 2 one uses a t-SNI variant of
Goubin’s algorithm:

D1 =
(
(x1 ⊕ r1) ⊕ Ψ(x1 ⊕ r1, r2 ⊕ (x2 ⊕ r1))

) ⊕ Ψ(x1 ⊕ r1, r2) (2)
D2 = x2 ⊕ r1 (3)

76 J.-S. Coron

R ψ R F C +

R F C

x D

Fig. 2. Sequence of operations in the Boolean to arithmetic conversion algorithm from
[Cor17c].

For n ≥ 3 the algorithm works as follows. One first performs a mask refreshing
R, while expanding the xi’s to n + 1 shares. One obtains, from the definition of
the Ψ function:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn+1

= (x1 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

From the affine property of the Ψ function, the left term can be decomposed
into the xor of n shares Ψ(x1, xi) for 2 ≤ i ≤ n + 1, where the first share is
(n ∧ 1) · x1 ⊕ Ψ(x1, x2):

x = (n ∧ 1) · x1 ⊕ Ψ(x1, x2) ⊕ Ψ(x1, x3) ⊕ · · · ⊕ Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

We obtain that x is the arithmetic sum of two terms, each with n Boolean
shares; this corresponds to the two branches in Fig. 2. One then performs a mask
refreshing R on both branches, and then a compression function F that simply
xors the last two shares, so there remains only n − 1 shares on both branches.
One can then apply the Boolean to arithmetic conversion C recursively on both
branches, taking as input n − 1 Boolean shares (instead of n), and outputting
n − 1 arithmetic shares; we obtain:

x =
(
A1 + · · · + An−1

)
+

(
B1 + · · · + Bn−1

)
(mod 2k)

Eventually it suffices to do some additive grouping to obtain n arithmetic shares
as output, as required:

x = D1 + · · · + Dn (mod 2k)

We refer to [Cor17c] for the details of the algorithm. The algorithm is proven
t-SNI secure with n ≥ t + 1 shares in [Cor17c].

Algorithm Representation. In Sect. 3.3 we have described a formal verifica-
tion of the security properties of RefreshMasks that are required for the secu-
rity proof of the above Boolean to arithmetic conversion algorithm in [Cor17c].
However this provides only a partial verification of the algorithm, since in that
case the adversary is restricted to only probing the Boolean operations per-
formed within the RefreshMasks. To obtain a full verification, we must consider

Formal Verification of Side-Channel Countermeasures 77

an adversary who can probe any variable in the Boolean to arithmetic algorithm.
In that case the formal verification becomes more complex as we must handle
both Boolean and arithmetic operations.

Since in our nested list representation we have already using the + operator
for the xor, we use the ADD keyword to denote the arithmetic sum. For example,
the final additive grouping can be represented as:

> (addit ive−grouping ’ (A1 A2) ’ (B1 B2))
((ADD A1 B1) A2 B2)

which corresponds to the three arithmetic shares D1 = A1+B1 (mod 2k), D2 =
A2 and D3 = B2. We also use the PSI operator to denote the application of
the Ψ function. For example, the Boolean to arithmetic conversion algorithm for
n = 2 gives from (2) and (3):

> (convba ’ (X1 X2))
((+ (+ (+ X1 R1) (PSI (+ X1 R1) (+ R2 (+ X2 R1))))

(PSI (+ X1 R1) R2))
(+ X2 R1))

Simplification Rules. Given a list of intermediate variables that must be sim-
ulated, as previously we must use a set of simplification rules to determine how
many inputs xi are required for the simulation. For the verification of Boolean
circuits in the previous section, this was relatively straightforward as we had
essentially a single simplification rule, namely replacing x ⊕ r by r when the
random r appears only once in the intermediate variables. However when com-
bining arithmetic and Boolean operations the formal verification becomes more
complex and we used the following simplification rules. We illustrate every rule
by an example that can be run from the source code [Cor17a].

• Rule 1: when ω = x1 + x2 mod 2k must be simulated, simulate both x1 and
x2.

> (prop−add ’ ((ADD X1 X2)))
(X1 X2)

• Rule 2: from the affine property of the function Ψ , replace Ψ(x, y) ⊕ Ψ(x, z)
by x ⊕ Ψ(x, y ⊕ z).

> (r ep lace−ps i ’(+ (PSI A B) (PSI A C)))
(+ A (PSI A (+ B C)))

• Rule 3: from the definition of Ψ , replace Ψ(x, y) by (x ⊕ y) − y mod 2k; we
denote by SUB the arithmetic subtraction.

> (replace−psi−sub ’ (PSI A B)
(SUB (+ A B) B)

78 J.-S. Coron

• Rule 4: when a random r is used only once, replace x ⊕ r by r, and similarly
for x + r mod 2k and x − r mod 2k. This is an extension of the rule given by
(1).

> (i t e r− s imp l i f y ’((+ X1 R1) (ADD X2 R2) (SUB X3 R3)))
(R1 R2 R3)

• Rule 5: when a random r is not used in two intermediate variables e1 and e2,
replace the simulation of (e1 ⊕ r, e2 ⊕ r) by the simulation of (r, (e1 ⊕ r)⊕ e2);
this corresponds to the change of variable r′ = e1 ⊕ r.

> (s impl i fy−x ’((+ R1 X1) (+ R1 X2)))
(R1 (+ (+ R1 X1) X2))

• Rule 6: when Ψ(x1, x2) must be simulated, simulate both x1 and x2.

> (prop−psi ’ ((PSI A B)))
(A B)

We note that the order in which the rules are applied matters. For example,
once Rule 3 has been applied, Rule 2 cannot be applied to the same expression,
because the PSI operator has been replaced by SUB. One must therefore use the
right strategy for the application of the rules; an overview is provided in Fig. 3.
In particular, we only apply Rule 3 if subsequently applying Rule 4 enables to
eliminate the SUB operator, and Rule 6 is only applied as a last resort, when
other rules have failed.

R1 R2 R4 R3+R4 R5 R6
no

yes yes
no no

yes yes
no

Fig. 3. The rule application strategy for the formal verification of Boolean to arithmetic
conversion.

Formal Verification. In order to verify the t-SNI property of the Boolean to
arithmetic algorithm, as previously we must check that for all possible (n − 1)-
tuples of intermediate variables (including the outputs Di), the number of input
variables xi’s that remain after the application of the above rules is always ≤ tc,
where tc is the number of non-output variables in the (n − 1)-tuple.

We summarize in Table 3 the timings of formal verification for the algorithm
in [Cor17c]. Note that the Boolean to arithmetic conversion algorithm has com-
plexity O(2n), and therefore the number of possible (n−1)-tuples of intermediate
variables is O(2n

2
); that is why we could only perform the formal verification

up to n = 5.

Formal Verification of Side-Channel Countermeasures 79

Table 3. Formal verification of the t-SNI property of the Boolean to arithmetic con-
version algorithm from [Cor17c].

n #variables #tuples Security Time

2 11 11 � ε

3 48 1,128 � 0.08 s

4 133 383,306 � 85 s

5 312 387,278,970 � 88 h

5 Formal Verification in Polynomial Time

The main drawback of the previous approach is that it has exponential complex-
ity in the number of shares n, because the number of t-tuples to consider grows
exponentially with n. In this section we describe a new approach for proving
the security of a side-channel countermeasure. Instead of performing a simula-
tion of the probed variables as in [ISW03], our approach consists in applying a
sequence of elementary circuit transforms, until the transformed circuit becomes
so simple that the security property becomes straightforward to verify. The main
advantage is that in the context of formal verification, our new approach seems
much easier to verify formally than the classical simulation-based approach from
[ISW03]. For Boolean circuits our technique is based on the following two ele-
mentary transforms:

• The Random-zero transform: we set to 0 a subset of the randoms ri used in
the circuit.

• The One-time-pad transform: if a random r appears only once in a circuit,
and moreover r is not probed, we can replace any variable x ⊕ r by r.

The Random-Zero Transform. Our first circuit transformation consists in
setting to 0 a subset of the randoms ri used in the circuit. The transform only
applies to additively masked circuits.

Definition 3 (Additive masking). Let C be a circuit taking as input x1, . . . ,
xn. We say that C is additively masked if every intermediate variable y in the
circuit can be written as y = f(x1, . . . , xn) + g(r1, . . . , rn), where g is a linear
function.

For example, the circuit computing y = x1 ·x2 +r1 +r2 is additively masked,
while the circuit computing y = x1 · r1 is not. Most side-channel countermea-
sures for block-ciphers are additively masked. In particular, this holds for the
RefreshMasks, FullRefresh and SecMult algorithms considered in the previous sec-
tions. The following lemma shows that it is sufficient to consider the security
of a simpler circuit C0 where a subset of the randoms are fixed to 0. Namely if
there is an attack against the original circuit C, then the same attack applies
against C0; see the full version of this paper [Cor17b] for the proof.

80 J.-S. Coron

Lemma 5 (Random-zero transform). Let C be an additively masked circuit
and let C0 be the same circuit as C but with a subset of the randoms fixed to 0.
Anything an adversary can compute from a set of probes in C, he can compute
from the same set of probes in the circuit C0.

Remark 1. Lemma 5 does not hold for general circuits; consider for example the
circuit taking as input sk and outputting (sk ·r, r); when considering the output
only, the circuit would be secure when r is fixed to 0, but the output leaks the
secret sk whenever r �= 0.

Application: t-NI of RefreshMasks. The t-NI property of RefreshMasks, as
stated in Lemma 2, is easily verified formally using the Random-zero transform.
Namely, if we fix all randoms of RefreshMasks to 0, we obtain the identity func-
tion, which is trivially t-NI. For example, we obtain for n = 4:

> (check−refreshmasks−tni−poly 4)
Input : (X1 X2 X3 X4)

Output : ((+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ R1 X4))))

Random zero => (X1 X2 X3 X4)
Id en t i t y func t i on : T

Note that the verification is performed in polynomial time in n, while in the
generic approach the complexity would be exponential in n when examining all
possible t-tuples.

The One-Time Pad Transform. The One-time Pad transform is defined as
follows: if a random r is used only once in a circuit, and moreover r is not probed,
then we can replace the variable x ⊕ r by r. Note that in principle the variable
x can still be probed, so it must not be removed from the circuit.

We can assume that a certain random r has not been probed when we have
an upper bound on the number of probes in the circuit, as it is the case for
the t-NI and t-SNI properties. For example, if a circuit contains n randoms ri
but the adversary has only access to t = n − 1 probes, then we are guaranteed
that at least one of the random ri has not been probed, and we can apply the
One-time Pad transform on this random. The proof technique then consists in
considering all possible n cases separately (corresponding to the non-probed ri,
for 1 ≤ i ≤ n), and then applying the admissible One-time Pad transform in
each case.

Formal Verification in Polynomial-Time. More generally, the proof strat-
egy is to perform a sequence of elementary circuit transforms until we obtain
a simple circuit C for which the t-NI or t-SNI properties is straightforward to
verify. In the full version of this paper [Cor17b] we illustrate this approach by
providing a formal verification of the same security properties of the Refresh-
Masks, FullRefresh and SecMult algorithms as considered in Sect. 3, but this time
with complexity polynomial in n, instead of exponential. This implies that the

Formal Verification of Side-Channel Countermeasures 81

security of these algorithms can be formally verified for any value of n for which
the countermeasure would be used in practice. We refer to [Cor17a] for the source
code of the formal verification.

6 Towards Automatic Generation of Security Proofs

The drawback of the previous approach is that for the security verification to
happen in polynomial time, we must select ourselves the right sequence of circuit
transforms. Instead we would like to have the circuit transforms being selected
automatically by our verification tool, based on a limited set of elementary rules,
and still in polynomial-time.

In the following, we show that this can be achieved for simple circuits based
on the three following rules. We denote by P the property that must be checked;
for example, for t-NI security, the property P would require that any t-tuple
of intermediate variables is simulatable from a subset of the inputs x|I , with
|I| ≤ t. Below we denote by Cotp the circuit yi = xi ⊕ ri for 1 ≤ i ≤ n (see the
full version of this paper [Cor17b]). We assume that the property P is already
verified by Cotp, so that P does not need to be verified explicitly for Cotp.

(R1) Perform a loop to select and remove the subset of the circuit that is
unprobed.

(R2) Apply the random-zero transform, except on randoms used only once in
the circuit.

(R3) Check whether the resulting circuit is equal to Cotp. Otherwise check the
property P for all possible t-tuple of probes.

We show in the full version of this paper [Cor17b] that from the three above
rules, we can formally verify in polynomial time the main properties of Refresh-
Masks and FullRefresh considered in this paper.

References

[BBD+15] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B.,
Strub, P.-Y.: Verified proofs of higher-order masking. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 457–485.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 18. https://eprint.iacr.org/2015/060

[BBD+16] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub,
P.-Y., Zucchini, R.: Strong non-interference and type-directed higher-
order masking. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, 24–28 Octo-
ber 2016, pp. 116–129 (2016). Publicly available at https://eprint.iacr.org/
2015/506.pdf. See also a preliminary version, under the title “Composi-
tional Verification of Higher-Order Masking: Application to a Verifying
Masking Compiler”, publicly available at https://eprint.iacr.org/2015/506/
20150527:192221

https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://eprint.iacr.org/2015/060
https://eprint.iacr.org/2015/506.pdf
https://eprint.iacr.org/2015/506.pdf
https://eprint.iacr.org/2015/506/20150527:192221
https://eprint.iacr.org/2015/506/20150527:192221

82 J.-S. Coron

[BDG+14] Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub,
P.-Y.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.)
FOSAD 2012-2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10082-1 6

[CGV14] Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between
boolean and arithmetic masking of any order. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44709-3 11

[Cor17a] Coron, J.-S.: CheckMasks: formal verification of side-channel countermea-
sures (2017). Publicly available at https://github.com/coron/checkmasks

[Cor17b] Coron, J.-S.: Formal verification of side-channel countermeasures via
elementary circuit transformations. Cryptology ePrint Archive, Report
2017/879 (2017). https://eprint.iacr.org/2017/879

[Cor17c] Coron, J.-S.: High-order conversion from Boolean to arithmetic masking.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93–
114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 5

[CPRR13] Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel
security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 410–424. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43933-3 21

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 24

[Gou01] Goubin, L.: A sound method for switching between boolean and arithmetic
masking. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 3–15. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44709-1 2

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15031-9 28

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-662-44709-3_11
https://github.com/coron/checkmasks
https://eprint.iacr.org/2017/879
https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28

	Formal Verification of Side-Channel Countermeasures via Elementary Circuit Transformations
	1 Introduction
	2 Security Properties
	3 Formal Verification of Generic Circuits for Small Order
	3.1 The RefreshMasks Algorithm
	3.2 Formal Verification of Circuits
	3.3 Security Properties of RefreshMasks
	3.4 Formal Verification of t-SNI Properties: The FullRefresh and SecMult Algorithms

	4 Formal Verification of Boolean to Arithmetic Conversion
	5 Formal Verification in Polynomial Time
	6 Towards Automatic Generation of Security Proofs
	References

