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akupcu@ku.edu.tr

Abstract. Peer-to-peer (p2p) file sharing accounts for the most uplink
bandwidth use in the Internet. Therefore, in the past few decades, many
solutions tried to come up with better proposals to increase the social
welfare of the participants. Social welfare in such systems are categorized
generally as average download time or uplink bandwidth utilization. One
of the most influential proposals was the BitTorrent. Yet, soonafter stud-
ies showed that BitTorrent has several problems that incentivize selfish
users to game the system and hence decrease social welfare.

Previous work, unfortunately, did not develop a system that maxi-
mizes social welfare in a decentralized manner (without a trusted party
getting involved in every exchange), while the proposed strategy and
honest piece revelation being the only equilibrium for the rational play-
ers. This is what we achieve, by modeling a general class of p2p file
sharing systems theoretically, then showing honest piece revelation will
help achieve social welfare, and then introducing a new cryptographic
primitive, called randomized fair exchange, to instantiate our solution.

Keywords: Peer-to-peer file sharing · Optimistic fair exchange
Proof of storage · Cryptographic protocol · Game theory

1 Introduction

The interaction between parties in peer-to-peer (p2p) file sharing networks is
strategic and therefore the study of the incentives behind such networks have
become an active area of research. The best known and most successful file
sharing network BitTorrent, introduced by Cohen [18], accounts for the most
uplink bandwidth use in the Internet [50]. File sharing in BitTorrent can be
defined as a two-party game where the peers must decide whether or not to
trade a block of the file they are trying to download. It was originally believed
that the best strategy for the BitTorrent game was to play tit-for-tat, that is, if a
peer provides another peer with a block then the second peer should reciprocate
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and provide the first peer with another block. However, the appearance of clients
like BitThief [40] and BitTyrant [46], which do not play tit-for-tat, has called
this assumption into question. In particular, Levin et al. [37] argued that the
BitTorrent game is more properly modeled as an auction.

During a BitTorrent round (roughly 10 s), to whom a peer connects is decided
based on others’ uploads to the peer at hand and the pieces they advertise to
have. The BitTorrent protocol specifies that the peers should report the pieces
they own honestly. Yet, they can over- or under-report the pieces they own, to
gain strategical advantage, decreasing social welfare [37,49].

Consider an over-reporting peer. He may be attractive to many other peers
since he seems to have something that they do not have; many peers would want
to connect to him. But then, during their exchange, they may not be able to
obtain anything useful from him, whereas he may obtain many useful blocks. As
for an under-reporting peer, as observed before, the peer may gain some strategic
advantage against BitTorrent’s rarest piece first heuristic [37]. Moreover, if many
peers are under-reporting, the system would face starvation [49].

In this paper we address this issue for the first time, as we present a
BitTorrent-like p2p file sharing mechanism that incentivizes honest piece rev-
elation, hence increasing social welfare, while working in a decentralized manner
without any trusted party involvement per block exchange, and is an equilib-
rium for rational players. We achieve this goal in a simplified theoretical setting,
through the use of novel cryptographic techniques, and a game-theoretic app-
roach to p2p file sharing systems that encompasses different aspects of a protocol
such as peer matching and block exchange. We do not claim that our protocol
would replace BitTorrent in practice; rather we trust that our theoretical solu-
tion insight would help prominent researchers develop both theoretically-sound
and practically-applicable protocols for this goal. Our contributions are:

– We propose the first theoretical decentralized file sharing protocol (with no
trusted party involvement per exchange) that is an equilibrium with respect
to realistic utility functions (i.e., the number of pieces downloaded).

– To achieve this we introduce and construct a new cryptographic functionality
which we refer to as randomized fair exchange (RFE). We provide a security
definition for RFE and a construction.

– While the use of RFE is enough to disincentivize under-reporting, it does
not prevent over-reporting. We then combine RFE with proofs of storage to
ensure over-reporting is also discouraged.

– Finally, we show that under a simple theoretical model, our solution achieves
an equilibrium with the best possible social welfare (defined as upload band-
width utilization) among a large class of protocols that first match peers
based on their reported pieces, and then perform pair-wise exchanges.
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2 Preliminaries

File Sharing Protocols. In the BitTorrent protocol files are divided into pieces,
and pieces are divided into blocks (see [18] and1 for details). Exchange takes
place in terms of blocks. Only blocks of finished pieces are exchanged. A torrent
file contains hashes of the pieces so that they can be verified to be the correct
ones. There are two types of peers in the system: those who already have all
the pieces of the torrent at hand (the seeders), and those who do not have the
complete set of pieces and are still downloading (the leechers).

When a new peer joins the system, she obtains a peerset (a list of seeders and
leechers) from the Tracker (which is a central entity, but does not get involved
in exchanges) for the torrent she wants to download, and starts forming peer-
to-peer connections with those peers. They announce her the pieces they have.
Based on those announcements, she picks a subset of those peers to actually
perform block exchanges with. In BitTorrent, usually a peer would pick 4 peers
who have given her the most blocks in the previous round (e.g., past 10 s), and
1 more random peer (totaling 5 peers) to give a block to. Those exchanges are
not necessarily fair [40,46]. Each time she obtains a new piece, she reports it to
her peerset, which may not be done honestly either [37,49].

Throughout the paper, we simplify our discussion by using piece and block
interchangeably, since we are describing a BitTorrent-like protocol and not nec-
essarily BitTorrent itself. In our case, we only consider blocks in a torrent, where
the hash of each one of them is known from the torrent, and the blocks can be
exchanged as soon as they are downloaded.

Basic Game Theory. In an n-player game, we have players P1, . . . , Pn, where
player Pi has m possible actions A1

i , . . . , A
m
i and a real-valued utility function

ui. The utility ui of player Pi is a function of an action profile A such that A

specifies one action A
�j
j for every player Pj . The goal of the players is to obtain

the highest possible utility.
Strategy si of player Pi is a probability distribution over the possible actions

of player Pi. Let si(a) denote the probability the strategy si assigns to the action
a. Let s = {s1, . . . , sn} denote a strategy profile encompassing the strategies of
every player. Further denote by s−i = s − {si} the strategy profile of all players
except the player Pi. Given the strategies of each player, we can define expected
utility Ui for player Pi as Ui(s) = ΣA∈s

(
ui(A) ∗ Πn

j=1Pr[sj(Aj)]
)
.

A strategy profile s = {s1, . . . , sn} is a Nash equilibrium if ∀Pi ∀s′
i �=

si Ui(si∪s−i) ≥ Ui(s′
i∪s−i). A strategy profile s is a strict Nash equilibrium

if the inequality is strict.
In a computational setting, s is considered a computational Nash equi-

librium if there is a negligible function neg(k) in the security parameter k such
that ∀Pi ∀s′

i �= si Ui(si ∪ s−i) ≥ Ui(s′
i ∪ s−i) − neg(k). This allows the strat-

egy s to be negligibly worse than the other alternatives. Note that strictness is
not important here, since there would be another negligible function that makes

1 http://bittorrent.com.

http://bittorrent.com
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the inequality strict. Furthermore, we require that the actions of players can
be implemented in polynomial time using probabilistic Turing machines (PPT
actions, in short). ε-Nash equilibrium is a generalization where the negligible
function is replaced with some other ε.

Proofs of Storage. Efficient proofs of storage (PoS) were introduced in 2007,
independently by Ateniese et al. [4] and Juels and Kaliski [28]. Later on, Ateniese
et al. [5] and Dodis et al. [19] generalized these constructions, and Erway et al.
[21] and Cash et al. [15] made them work with dynamic data for the first time.

In these constructions, the general idea is that a file is divided into blocks,
then cryptographic tags are created for each block. In a regular PoS scenario,
the client creates those tags, and outsources the file and the tags to the server
for storage. Later, the client or some third party auditor can challenge the server
to prove that her file is kept intact. The server sends back a short proof, which
is verified using the associated PoS (public) key.

When Applied to a p2p File Sharing System, We Consider PoS as
Follows: The creator of the torrent creates those tags, and hence each block is
associated with a tag in the torrent file. Then, when peers advertise blocks, they
can prove to each other that they indeed have the actual blocks they claim to
have. Thus, the client role belongs to the torrent creator, and the auditor and
the server roles are played by all the peers. Moreover, since the torrent contents
are static once created, static proofs of storage with public verifiability (meaning
anyone can verify integrity using public information) are enough (e.g., [4,51]).

Fair Exchange. In a fair exchange scenario, there are two parties Alice and Bob,
where each has an item eA and eB , respectively, that they want to exchange.
At the end of the protocol, it must be the case that either Alice obtains eB

and Bob obtains eA, or neither of them obtains anything useful about the other
party’s item. It is known that fair exchange requires a trusted third party called
the Arbiter [45], but optimistic protocols employ this Arbiter only when a prob-
lem occurs [3]. Previously, two-party fair exchange protocols were used in the
BitTorrent setting [10,36], but assuming honest piece revelation.

Multi-party fair exchange protocols achieve similar fairness guarantees for
not only two but possibly more parties [31]. When there are multiple parties, we
talk about exchange topologies. For example, if we have players P1, . . . , Pn in a
ring topology, this means each Pi will send one item to P(i+1) mod n. We combine
two-party fair exchange protocols with coin tossing to obtain a new primitive
called randomized fair exchange.

Notation. Each player Pi has a set Si of blocks she already holds, and a set Ri of
blocks that she reports to have. Note that dishonest reporting means Si �= Ri.
The notation e

$←Si means that an element e is picked randomly from the set
Si. Sets are bold fonted.

We denote by (outA;outB) ← ΠA,B(X;Y ) the execution of a two-party
protocol Π between parties A and B, where X and Y are the inputs provided
by and outA and outB are the outputs returned to A and B, respectively. This
notation can be extended to multi-party protocols as well.
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3 Related Work

Prisoners’ Dilemma. Prisoners’ Dilemma is considered by many as the underly-
ing game of the BitTorrent protocol. Interestingly, even though tit-for-tat (TFT)
is not a game-theoretic solution to the finitely-repeated Prisoners’ Dilemma,
Axelrod’s experiments [6,7] show that it achieves the best results in overall
utility gained. Later on, Fader and Hauser [22] published experiments on multi-
player version of the Generalized Prisoners’ Dilemma, and argued that coalitions
of mutually-cooperating players will emerge implicitly, and win the tournaments.

Radner [48] allows ε-departures from strict rationality, and shows that as
the number of repetitions increase in the finitely-repeated Prisoners’ Dilemma,
the ε-Nash equilibria allow for longer periods of collaboration in the Prisoners’
Dilemma. Later, Neyman [43] shows that if the players are limited to polynomial-
sized finite state automata, then cooperation in the Prisoners’ Dilemma will
give a Nash equilibrium. Unfortunately, this result does not hold in the Turing
machine model and hence we cannot conclude a computational equilibrium using
probabilistic polynomial time players. Halpern [27] argues that if memory has
a positive cost, then it acts as a discount factor and rationalizes TFT strategy
even for finitely-repeated Prisoners’ Dilemma.

If one thinks of BitTorrent as an unboundedly-repeated (or incomplete-
information) Prisoners’ Dilemma, then TFT can be seen as an equilibrium.
Ellison [20] shows this is the case in anonymous random-matching scenarios.
Feldman et al. [25] use Generalized Prisoners’ Dilemma to model p2p networks.

Honest Piece Reporting. Levin et al. [37] were the first to describe BitTorrent
as an auction rather than a TFT game. They show that under-reporting of
pieces constitute a problem and it leads to a tragedy of commons scenario if
all peers under-report. Unfortunately, BitTorrent does not enforce honest piece
reporting. prTorrent [49] also presents, via simulations, that this under-reporting
may cause starvation in BitTorrent. They also show that piece rarity, which may
be manipulated via under-reporting, can indeed be modeled game-theoretically
as a discount parameter in a repeated game such as BitTorrent.

Arteconi et al. [2] consider evolutionary p2p protocols where peers randomly
compare their utilities and replicate better actions. They consider honest report-
ing as the main issue, and analyze effects of dishonest reporting.

Luo et al. [41] define a multi-player game for sharing one piece, rather than
a two-player game, to model BitTorrent-like file sharing systems, and propose
a utility-based piece selection strategy. They define the concept of the marginal
utility of a piece; a concept directly related to the under-reporting strategy
described in the papers above. They also argue that as the number of peers
increase, each peer is more likely to not report the piece that he owns.

Since under-reporting may change the attractiveness of a peer (and rareness
of blocks), Guo et al. [26] and Okumuşoğlu et al. [44] argue that not all blocks
should be equally valuable, and propose value-based variants of BitTorrent.

Game-Theoretic File Sharing. In light of the game-theoretic limitations of Bit-
Torrent, alternative p2p file sharing protocols were proposed, including BAR-B
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[1], Equicast [30], FOX [38], and Ratfish [8]. Unfortunately, all these works have
limitations. For example, BAR-B and FOX only handle static sets of users. The
Equicast protocol is only an equilibrium under strong assumptions (e.g., the rate
of leechers that join has to equal the rate of leechers that leave) and for restricted
utility functions which do not appear to model the real utilities of users. The
Ratfish protocol, while being an equilibrium with respect to realistic player utili-
ties, is a partly centralized solution where the trusted Tracker is involved in every
exchange, which is undesirable in p2p settings. Similarly, Vilaça and Rodrigues
[53] assume a trusted mediator. See [17] for a survey.

Another limitation of all these previous works is that none of these works
show their solution’s performance against a social choice function for p2p file
sharing. As such, it is not clear how to evaluate these mechanisms or how to
compare them. We also do not compare ourselves against solutions that employ
monetary compensation, such as [10,52,54], or social network based reputation
solutions [16], whose incentives for honest piece revelation are not clearly ana-
lyzed. See [29] for a survey of monetary incentives.

Theoretical Optimum. Fan et al. [24] define a performance metric (using the aver-
age download time) and a fairness metric (using upload vs. download bandwidth)
and compare the original BitTorrent with some parameter-modified versions of
it. They prove in their technical report [23] that when fairness is enforced, the
average download time increases, slowing down the system.

Meng et al. [42] define a theoretical lower-bound for the distribution time of a
file using BitTorrent-like systems. They use the fluid model, which allows each bit
to be shared as soon as it is received, unlike BitTorrent that shares blocks once
pieces are received. Yet, interestingly, Kumar and Ross [33] show experimentally
that the error between the piece-based model’s minimum download time and
the fluid model’s is less than 1%. Indeed, they claim that the difference between
the two models can be safely ignored as long as the number of pieces in the file
is much larger than the logarithm of the number of leechers, which is true for
medium-sized or large files that we generally encounter in such systems.

4 Model

Our goal is to create a system maximizing social welfare in the equilibrium. We
assume a homogeneous network, and analyze the protocol in rounds, where at
each round each peer can download at most one piece and upload at
most one piece. This makes our theoretical analysis easier. It also means that
there is no bandwidth-based auction as in PropShare [37]. Instead, the matching
between pairs will be done based on the mutual attractiveness in terms of the
pieces a peer is missing. This allows us to focus on piece revelation strategies
rather than bandwidth allocation issues.

Also note that seeders are irrational and altruistic entities, and there is
no piece-revelation strategy for them. In our game-theoretic analysis, therefore,
we keep them outside the discussion, since they are irrational. But, we allow
seeders to help the system perform better by still distributing blocks.
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Table 1. Matrix representation of number of pieces received by players at each round.
Rows are leechers. Columns are rounds.

1 2 3 ... m
P1 1 1 1 1 1
P2 1 1 1 1 1
P3 1 1 1 1 1
... 1 1 1 1 1
Pn 1 1 1 1 1

1 2 3 ... m m+1 m+2 m+3 ... m+n-1
P1 1 1 1 1 1 0 0 0 0 0
P2 0 1 1 1 1 1 0 0 0 0
P3 0 0 1 1 1 1 1 0 0 0
... 0 0 0 1 1 1 1 1 1 0
Pn 0 0 0 1 1 1 1 1 1 1

A more realistic analysis would model a heterogeneous network, where there
are several types of players with different upload/download capabilities (but the
protocol may still proceed in rounds). Moreover, our analysis only partly covers
malicious irrational entities: while the cryptographic protocols employed prevent
malicious actions, our incentive mechanism only works against rational entities.
Thus, malicious entities may still over- or under-report the pieces they own.

5 Social Welfare for P2P File Sharing

In this section, we first define social welfare, then relate it to honest piece reve-
lation for a general class of p2p file sharing protocols. This general class of pro-
tocols we consider incorporates two subprotocols: a peer matching protocol that
pairs the peers, and a pair-wise block exchange protocol. This accurately models
BitTorrent-like p2p file sharing systems restricted to a round-based exchange
model. At each round, first peers are matched in pairs (remember our restric-
tion that within one round only one block can be uploaded or downloaded), and
then the exchange takes place. In the upcoming sections, we instantiate those
subprotocols and show that they achieve the desired social welfare.

Social Welfare. When one considers the social welfare for a p2p file sharing
system, there can be several metrics. One of the commonly used metrics in the
literature is the average download time. Another good measure of an efficient
system is indicated as the utilization of the upload bandwidth [11], since it ensures
the system performs at its best in terms of distributing the file.

Let us denote a protocol as a matrix where rows denote the parties and the
columns denote the rounds. Each cell i, t denotes the probability that peer Pi

obtains some new block at round t (alternatively, it can denote the expected
number of blocks downloaded). The socially optimal protocol would be the one
where the cells are all 1 until the round m for every peer, where m is the number
of blocks in the file. The average download time would then be m ∗ n/n = m,
which is optimal in our model. Moreover, the upload/download bandwidths will
be fully utilized. This corresponds to the left side matrix in Table 1.

Realize that such a protocol may not always be achievable. Consider, for
example, a single seeder flash crowd scenario. In round 1, only one peer can
obtain some piece from the seeder, and all other peers will obtain 0 blocks. One
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socially optimal (and deterministic) protocol here would be the following: The
seeder, at round t, sends piece number t to peer P1. At the same round, each Pi

sends piece t − i to Pi+1, if she already has that piece, and stays idle otherwise.
Thus, peer Pi finishes downloading at round m + i − 1.2 This corresponds to
the right side matrix in Table 1. Note that the upload bandwidths are again
optimized to the best possible (except Pn).

Therefore, when we talk about socially optimal protocols, we cannot just
talk about making every entry in the associated matrix 1. Instead, we need the
following two properties to optimize the upload bandwidth in our model:

(1) For every peer Pi, Pi needs to be matched with some interesting Pj (if such
Pj exists). Here, interesting means Pj has some piece Pi does not have.

(2) For every Pi, Pi needs to be able to download a new piece (assuming she is
matched with some interesting Pj above).

Note that we want protocols that incentivize the behavior above. Observe
that (1) needs to hold for all peers, and (2) requires Pj to have an incentive
to send a new piece to Pi. One can create a global incentive mechanism for
that, but it would not be very practical. Consider the single seeder flash crowd
scenario above. In that deterministic protocol, no peer Pi has an incentive to
send a piece to peer Pi+1. To enforce the protocol, one may employ a ring-
topology fair exchange protocol that ensures either the whole ring completes,
or no peer can receive a new piece from the previous one (including from the
seeder). Unfortunately, this necessitates per round communication complexity
that is quadratic in the number of peers [31].

Pairwise Protocols. Hence, we concentrate on local incentive mechanisms, and in
particular, pair-wise ones. If we match mutually interesting peers and perform
a fair exchange between them, then we incentivize the desired behavior using
only simple, constant complexity two-party fair exchanges instead of a global
multi-party fair exchange mechanism that is costly. Thus, we consider protocols
of the following type, where FMATCH denotes the functionality to match the
peers, and FEXCH denotes the exchange functionality: First peers are matched
pair-wise according to their piece revelations, and then pair-wise exchanges take
place within the same round. This is depicted in Algorithm1.

Such protocols assume that the exchanges occur between pairs of peers. Due
to our simplification that one piece can be exchanged per round, such a simplified
version of BitTorrent would also fit the framework above. As observed before,
it may be impossible to reach the social optimum with such a protocol, but on
the other hand, global matching and exchange protocols would be impractically
inefficient. Therefore, we choose to restrict ourselves to pairwise matching and
pairwise exchange protocols. As discussed, we know that to obtain the best pos-
sible social welfare (upload bandwidth utilization) in this restricted setting, we
2 For simplicity, representing common behavior, assume each Pi leaves the system the

moment she finishes downloading (at the end of round m + i − 1). Afterward, at
round m + i, the seeder sends the last block to peer Pi+1 (thus every peer receives
the last block from the seeder).
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Algorithm 1. Pairwise P2P File Sharing Protocol
while some peer is still downloading do

(Pj1 ;Pj2 ; ...;Pjn) ← FMATCH
P1,P2,...,Pn

(R1;R2; ...;Rn)
// pair-wise such that if the output to Pi is Pji then the output to Pji is Pi

for i = 1 to n do
(eki ; ekji

) ← FEXCH
Pi,Pji

(Si;Sji)

// actually, n/2 exchanges take place because of pair-wise matching and our
round-based model

end for
end while

need to incentivize honest piece revelation and maximize the exchanges between
the peers to obtain as many 1 values in the corresponding exchange matrix as
possible. In the following sections, we first assume that every peer is matched
with some interesting peer according to their piece revelations and show how to
perform the FEXCH phase by instantiating it via randomized fair exchange and
proofs of storage. This is where our main contribution lies. Then, we finalize our
DogFish protocol description by also instantiating the FMATCH protocol via
existing known solutions and finalizing our game-theoretic analysis.

6 FEXCH Instantiation

We instantiate our FEXCH functionality using randomized fair exchange (a
primitive that we introduce and construct) together with proofs of storage.
We first define these individual building blocks, and then provide our instan-
tiation and its analysis. Throughout this section, we assume that FMATCH is
already completed matching mutually-interesting peers, and we concentrate on
performing pair-wise exchanges during FEXCH . In practice, leechers may also
get matched with seeders, but remember that seeder interactions are outside our
game-theoretical scope, and hence in our protocols, we only deal with exchanges
between two leechers.

6.1 Randomized Fair Exchange (RFE)

In regular fair exchange protocols, two parties exchange items such that at the
end of the protocol, either both parties obtain each other’s item, or neither
party obtains anything useful [3]. RFE allows two parties to exchange elements
from their sets of items in such a way that each party receives a new element at
random. The RFE functionality is formally described in Fig. 1 and a construction
is provided later.

RFE is a crucial building block of the DogFish protocol, and is used to instan-
tiate the FEXCH functionality. Intuitively, we want to prevent an adversarial
user to strategically pick the pieces to download, hence breaking fairness and
deviating the system away from social welfare for the sake of his selfish utility.
When blocks to be exchanged are picked randomly by the functionality, as we will
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The RFE Functionality

– Upon receiving set X1 from P1 and set X2 from P2:
1. if X2 \ X1 = ∅ or X1 \ X2 = ∅, sent ⊥ to both parties.

2. else, pick random e2
$ X2 \ X1 and e1

$ X1 \ X2 and send e2 to
P1 and e1 to P2.

Fig. 1. The randomized fair exchange functionality.

show later, the adversary loses any advantage gained by under-reporting. Con-
sider a player who under-reported the pieces he owns. During RFE, it is possible
that he will receive a piece that he already owns, hence gaining no utility from
the exchange, and in general, decreasing his expected utility. On the contrary,
honestly-reporting players, who were matched with mutually-interesting peers,
are expected to gain positive utility in RFE (more details later). We instantiate
FRFE using fair exchange and coin tossing protocols in Sect. 7.

6.2 Proofs of Storage (PoS)

Another building block for our FEXCH functionality is a proof of storage proto-
col. We present the protocol as adapted to the p2p file sharing setting. Remember
that the creator of the torrent file constructed the tags and put them in the tor-
rent, together with the public key that will be used for verification purposes
(thus, we only consider PoS schemes without secret keys used during challenge
verification [34]). Also, we just need static PoS solutions, since torrent contents
never change. Thus, such a protocol may be instantiated via, for example, [51]
or [4] with only constant communication cost.

The PoS Functionality

– Upon receiving the actual blocks S1 and their tags from P1, and the
claimed blocks R1 and the verification key from P2:
1. if S1 does not contain all the claimed blocks in R1, return reject

to P2;
2. else, if all the blocks in R1 match their corresponding tags and the

tags verify using the verification key, send accept to P2.
3. else, send reject to P2.

Fig. 2. The proof of storage functionality in the p2p file sharing setting.

Realize that if P1 over-reported during the matching phase, meaning that
he does not have all the blocks he claimed in R1, then P2 will obtain a rejec-
tion signal. Similarly, if P1 tries to use fake blocks, P2 will reject. PoS, on the
other hand, does not prevent under-reporting, since if one can prove storage of
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more blocks, he could also prove storage of fewer blocks. Remember though the
RFE functionality discouraged under-reporting. PoS functionality discourages
over-reporting. In the next section, we combine them to achieve our pair-wise
exchange functionality. It is worth noting that FPoS discourages over-reporting
for P1 only. But for our system to be an equilibrium, this must apply to all par-
ties. Hence, we will employ two executions of FPoS to discourage both parties.

6.3 FEXCH and its Analysis

We first instantiate our pair-wise exchange protocol using the RFE and PoS
functionalities described. The FEXCH functionality instantiation is shown in
Fig. 3. The idea is that, to be able to exchange blocks, peers must also prove to
each other that they possess the blocks that they claim to own.

The EXCH Functionality Instantiation

– P1 provides his blocks S1 and their PoS tags, the block identifiers R2

that P2 claimed to know, and the PoS verification key.
– P2 provides her blocks S2 and their PoS tags, the block identifiers R1

that P1 claimed to know, and the PoS verification key.
1. Run PoS . If P2 receives reject at the end, send ⊥ to both parties

and abort.
2. Run PoS again, but with the roles of P1 and P2 reversed. If P1

receives reject at the end, send ⊥ to both parties and abort.
3. If still not aborted, run RFE .

Fig. 3. The pair-wise exchange functionality instantiation.

Game-Theoretic Analysis. Since our simplified model only considers exchanging
one block per round between peers, the best utility each pair of matched partic-
ipants can obtain in one round in our analysis is (1, 1) (both peers can obtain
1 block at the end of the exchange). Assuming the matching was done among
mutually-interesting peers, the utilities of the matched peers using FEXCH are
described in Table 2. It is impossible assign a number for the “<1” parts, since
it depends on the runtime values of the sets, and the sheer number of possibili-
ties make the analysis impractical; but it is also unnecessary. In the exchange
game, there is only one strict Nash equilibrium, and that is when both
matched peers honestly reported the pieces they own.3

3 More precisely, the zeros in the game should be replaced with negligible utilities
(of managing to break PoS security), <1 values should be <1 − 1/m (one minus
non-negligible, where the file has m blocks), and ones should be one minus negligible
(due to the negligible probability of the fair exchange failing). Overall, we chose not
to complicate the presentation with these details, but indeed our equilibrium is a
computational Nash equilibrium.
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Table 2. Two-player game during FEXCH assuming peers are matched based on
mutual interest. <1 denotes some utility strictly less than one.

Peer i/j Honest reporting Under reporting Over reporting

Honest reporting 1, 1 1, <1 0, 0

Under reporting <1, 1 <1, <1 0, 0

Over reporting 0, 0 0, 0 0, 0

The COIN Functionality

– Upon receiving integer v from P1 and integer v′ from P2:
1. if v �= v′ or v = v′ = 0, return ⊥ to both parties.
2. else, pick random integer r $ [1, v] and send it to both parties.

Fig. 4. The coin tossing functionality.

The intuition is that the PoS makes it irrational for any rational party
to over-report, because if she does, then it will be detected during the PoS stage
and the exchange will be aborted, resulting in zero utility for the over-reporter
as well. PoS, however, does not deter under-reporting because it cannot detect
that a party has more blocks than it claims to have. But under-reporting is
handled by the RFE protocol, because if a player under-reports, then she
has a non-zero probability of receiving a block she already has, whereas if she
reports honestly she will receive a block she does not have with certainty.

7 RFE Instantiation

To realize randomized fair exchange, we employ unfair coin tossing protocols
together with regular two-party fair exchange protocols.4

7.1 Coin Tossing

Figure 4 shows the coin tossing (COIN) functionality, where the coin is picked
from an agreed-upon range. For our purposes, even though we model the func-
tionality fairly, it is enough to instantiate via an unfair protocol where only one
party learns the result, and is supposed to send that to the other party [9,12].

4 RFE is also related to oblivious transfer [47]. Indeed, at first, we were imagining a
randomized oblivious fair exchange would be necessary, but it turns out we do not
need obliviousness for the game theoretic analysis to go through.
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The FEX Functionality

– Upon receiving item i1 and hash h2 from P1 and item i2 and hash h1

from P2:
1. if hash(i1) �= h1 or hash(i2) �= h2, return ⊥ to both parties.
2. else, send i2 to P1 and i1 to P2.

Fig. 5. The fair exchange functionality.

The RFE Functionality Instantiation

– P1 calculates the set F1 = S1 −R2 of blocks that he has but P2 claims
not to have. Note that if P1 honestly reported, S1 = R1 and hence
F1 = R1 − R2. Then, P1 sets v1 = |F1|.

– P1 also calculates the set F2 = R2 − S1 of blocks that he does not
have but P2 claims to have. Again if P1 honestly reported, we have
F2 = R2 − R1. Then, P1 sets v2 = |F2|.

– P2 computes the sets F′
1 = R1 − S2 and F′

2 = S2 − R1 (similarly, for
honest P2 we have F′

1 = R1 − R2 and F′
2 = R2 − R1). Then, P2 sets

v′
1 = |F′

1| and v′
2 = |F′

2|.
1. Run COIN where P1 inputs v1 and P2 inputs v′

1, and they both
obtain r1. If any party obtains ⊥ instead, abort.

2. Run COIN again where P1 inputs v2 and P2 inputs v′
2, and they

both obtain r2. If any party obtains ⊥ instead, abort.
3. Run FEX where the input of P1 is the rth1 element of F1 together

with the hash/tag in the torrent file for the rth2 element of F2.
Similarly, the input of P2 is the rth2 element of F′

2 together with
the hash/tag in the torrent file for the rth1 element of F′

1.

Fig. 6. The randomized fair exchange functionality instantiation.

Note that, coin tossing protocols generally employ commitments, and hence one
cannot cheat at the resulting r, but can only prevent the other party from learn-
ing r (and hence outputting ⊥).

7.2 (Non-randomized) Fair Exchange

As explained before, fair exchange is a simple functionality which requires the
existence of a trusted third party [45]. But, in optimistic fair exchange scenar-
ios, this trusted Arbiter does not get involved in every exchange [3,35]. This
is the main disadvantage of the RatFish protocol, where the trusted Tracker
must get involved in every exchange [8]. Figure 5 shows the fair exchange (FEX)
functionality.

We focus on fair exchange of blocks, where the hash found in the torrent
file enables checking that the block is authentic. In our case PoS tags serve the
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same purpose as hash values, and hence they can also be employed to check for
correctness of the blocks exchanged, using existing instantiations [3,36].

7.3 Randomized Fair Exchange Protocol

The idea is similar to our FEXCH functionality in the sense that we repeat
unidirectional protocols both ways. Hence, in FRFE we execute coin tossing
twice, and then perform fair exchange on those random items. Remember that
the items’ correctness are guaranteed via PoS tags during FFEX . The protocol
is depicted in Fig. 6.

Observe that while this functionality checks that the number of different
blocks claimed by both parties are the same, this does not immediately prevent
under- or over-reporting. For example, a party may under-report one piece and
over-report another piece, such that the size of the difference remains the same.
In general, we do not even need to ensure the sizes of set differences match,
since PoS protocols within FEXCH ensure that over-reporting is prevented, and
randomization in FRFE ensures that under-reporting is disincentivized. Finally,
observe that FRFE has constant communication and round complexity. (Further
note that a parallel coin tossing protocol can be employed as well [39].)

8 The DogFish Protocol

Initialization. As DogFish is a variant of a BitTorrent-like p2p file-sharing proto-
col, we assume the existence of an external mechanism that enables the parties
to find the swarm for a given file f . In BitTorrent, this duty is handled by track-
ers and hence we assume the same. Moreover, to be able to use the PoS, we
assume that the owner of the file encodes it with a PoS which yields a set of
tags. We assume that the torrent file contains those tags, as well as any public
information necessary to verify those tags (i.e., PoS verification key). Finally, we
start our description assuming the users already downloaded the torrent file and
contacted the tracker, thereby obtaining the list of other peers and the PoS tags
and verification key.

Matching Phase. DogFish is a peer-to-peer file sharing protocol that is pairwise
as in Algorithm 1. At the first phase of the protocol, for the FMATCH peer
matching phase, we need to employ some existing mutual matching protocol.
The only requirement in the FMATCH phase is that it matches peers if and
only if they both reported some block that the other does not possess. Thus,
if Pi and Pj are matched, both Ri − Rj and Rj − Ri should be non-empty.
Remember that we treat irrational seeders separately, and they can get matched
even though they are not interested in the other peer. Moreover, as many pairs
as possible should be matched for getting closer to the social optimum.

For achieving this, we are faced with two alternatives: Existing BitTorrent
papers assume that the FMATCH protocol of BitTorrent matches mutually inter-
esting peers (both parties have a piece that the other does not possess) through
the rarest-first heuristic [11]. Therefore, we can simply employ the BitTorrent



710 S. Kamara and A. Küpçü

FMATCH protocol. Alternatively, we can we use a distributed stable matching
protocol [13,14,32] where parties share their reported blocks Ri and jointly com-
pute a mutual matching in a distributed manner. As long as the same Ri values
are used during FMATCH and FEXCH phases by rational peers, any cheating
attempt during FMATCH will be penalized during FEXCH . Thus, via one of
these alternative methods, we assume DogFish obtains a matching of mutually
interesting peers at the end of FMATCH . Observe furthermore that priotization
(e.g., via rarest-first heuristic) does not affect our game theoretic analysis, as
long as FMATCH matches as many mutually interested peers as possible.

Exchange Phase. Once the matching is done, the round proceeds with the
FEXCH phase where we use the RFE and PoS protocols. Consider the two
types of dishonest reporting: over-reporting and under-reporting.

1. If a peer Pi under-reports, her probability of getting a useful block (a block
that she does not already possess) goes down (compared to honest reporting)
because:

– While the effect of under-reporting in the matching phase is unclear, she
is potentially less likely to be matched. This is because while Rj − Ri is
now potentially larger due to under-reporting, Ri −Rj is getting smaller,
and hence Pi is potentially less interesting for other peers. But, this does
not affect our analysis, as we show below.

– Even when Pi gets matched with some Pj , because random blocks are
picked from Ri − Rj and Rj − Ri during RFE, it is possible that she
gets some block that she under-reported (meaning that she already had
the block but reported it as missing). Note that if she honestly reported
instead, she was guaranteed to get a useful block after the exchange phase
(assuming Pj was honest).

2. If a peer Pi over-reports, her probability of getting a useful block again goes
down because:

– Note that the effect of over-reporting during the matching phase is
unclear. While over-reporting may create a larger Ri − Rj and hence
makes Pi more interesting for Pj , the set Rj − Ri is potentially getting
smaller, decreasing the chance of a mutual matching. A history-based
peer selection may help here, by penalizing previous cheating attempts
of a peer, but again with random matchings, the effect is unclear. Fortu-
nately, as before, this does not affect our analysis.

– Regardless of how matching is affected, when Pi gets matched with some
Pj , over-reporting will be caught during the PoS part of the exchange
phase (except with negligible probability), and hence she will not obtain
any useful block. Note that if she honestly reported instead, she was
guaranteed to get a useful block after FEXCH (assuming Pj was honest).

The discussion above makes one thing clear: Even when FMATCH can be
gamed, our FEXCH instantiation ensures honest piece revelation as its equilib-
rium, as long as FMATCH always matches all mutually-interesting peers. When
peers are matched based on mutual interest, our exchange protocol provides
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enough incentive to act honestly, even during the matching phase. Realize that,
as long as all mutually interesting peers are matched, for example via distributed
stable matching, we do not need a multi-round analysis. This is because under-
or over-reporting in one round does not provide any particular advantage in the
matching phase afterward: The main constraint in the matching phase is that
each matched peer has at least one block the other peer does not have.

After each exchange, when the new round begins, the peers again advertise
their blocks during matching. Since honest piece revelation is the rational thing
to do, all rational peers will advertise honestly, including the new piece they
obtained in the last round. The protocol proceeds this way for every round, as
long as there are at least two leechers. Peers may join or leave the system freely.

In summary, by matching mutually-interesting pairs during FMATCH (e.g.,
via the BitTorrent rarest-first mutual matching protocol [11] or via some dis-
tributed mutual matching protocol such as stable matching) and making sure
both parties obtain the best possible utility during FEXCH (via RFE and PoS),
we maximize the utilization of the upload bandwidth, and hence obtain social
welfare. Essentially, we maximized the entries in the matrix representation of
the piece exchanges (among pairwise p2p file sharing protocols). Moreover, the
DogFish mechanism, and hence honest piece revelation, is the equilibrium in a
game where utilities of players are defined as the number of pieces they download
in a round. Note that in contrast to RatFish [8], we only need trackers at the
beginning, and the rest of the protocol is purely peer-to-peer and decentralized
(the Arbiter in our RFE instantiation gets involved only if there is a dispute
during the fair exchange). This makes DogFish the only known decentralized
equilibrium protocol for p2p file sharing achieving social welfare among a large
class of protocols under realistic utility functions.

We constructed and analyzed DogFish as a theoretical proposal, hoping that
prominent researchers will improve it to be practical. At the current stage, while
the cryptographic protocols employed in DogFish are efficient computationally,
the round complexity makes the proposal theoretical. For FMATCH , practical
solution would be the existing BitTorrent rarest-first mutual matching proto-
col, since distributed stable matching is costly. For FEXCH , all sub-protocols
(coin tossing, fair exchange, and proof of storage) are known to have O(1) com-
putational and communication costs for both parties (usually measured with
milliseconds and kilobytes), with O(1) rounds of interaction. But, while O(1),
each message passing round increases the total latency, which is another met-
ric to optimize against in practice, and is not considered within our theoretical
model. As future work, better FMATCH protocols should be developed, num-
ber of rounds in FEXCH should be optimized (potentially employing protocols
that can be securely parallelized), and an analysis under a heterogeneous model
should be conducted.
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35. Küpçü, A., Lysyanskaya, A.: Optimistic fair exchange with multiple arbiters. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol.
6345, pp. 488–507. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15497-3 30
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41. Luo, J., Xiao, B., Bu, K., Zhou, S.: Understanding and improving piece-related
algorithms in the BitTorrent protocol. IEEE Trans. Parallel Distrib. Syst. 24(12),
2526–2537 (2013)

42. Meng, X., Tsang, P.-S., Lui, K.-S.: Analysis of distribution time of multiple files
in a P2P network. Comput. Netw. 57(15), 2900–2915 (2013)

43. Neyman, A.: Bounded complexity justifies cooperation in the finitely repeated
Prisoners’ Dilemma. Econ. Lett. 19(3), 227–229 (1985)
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