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Abstract. The Competition for Authenticated Encryption: Security,
Applicability and Robustness (CAESAR) has as its official goal to “iden-
tify a portfolio of authenticated ciphers that offer advantages over [the
Galois-Counter Mode with AES]” and are suitable for widespread adop-
tion.” Each of the 15 candidate schemes competing in the currently ongo-
ing 3rd round of CAESAR must clearly declare its security claims, i.e.
whether it can tolerate nonce misuse, and what is the maximal data com-
plexity for which security is guaranteed. These claims appear to be valid
for all 15 candidates. Interpreting “Robustness” in CAESAR as the abil-
ity to mitigate damage when security guarantees are void, we describe
attacks with 64-bit complexity or above, and/or with nonce reuse for
each of the 15 candidates. We then classify the candidates depending
on how powerful does an attacker need to be to mount (semi-)universal
forgeries, decryption attacks, or key recoveries. Rather than invalidating
the security claims of any of the candidates, our results provide an addi-
tional criterion for evaluating the security that candidates deliver, which
can be useful for e.g. breaking ties in the final CAESAR discussions.

Keywords: Authenticated encryption · CAESAR competition
Forgery · Decryption attack · Key recovery · Birthday bound
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1 Introduction

Authenticated encryption (AE) is a symmetric key primitive that simultaneously
ensures confidentiality, integrity and authenticity of encrypted messages [4,29]
and typically also allows to authenticate a public string, the associated data,
along with the message [37]. During the two decades of its existence, AE has been
not just a frequent research object but also a frequently used tool (e.g. in IEEE
802.11i, IPsec ESP and IKEv2, NIST SP 800-38D, ANSI C12.22, and ISO/IEC
19772:2009), especially because most practical applications of symmetric key
cryptography require both confidentiality and integrity at the same time.

In 2013, the Competition for Authenticated Encryption: Security, Applica-
bility and Robustness (CAESAR) was announced. The reason for its launch was,
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in part, a startling amount of recently discovered issues with the applications of
symmetric cryptography, and with the most popular AE schemes CCM [27,43]
and GCM (Galois Counter Mode) [32]. The security misses in the applications
constituted practically exploitable vulnerabilities [7] and for CCM and GCM,
concerns were expressed about their applicability [39], the security proofs [25]
or their susceptibility to serious attacks when not used correctly [16,28].

Thus CAESAR’s main goal was set to “identify a portfolio of authenticated
ciphers that offer advantages over AES-GCM and are suitable for widespread
adoption” [6]. GCM instantiated with the AES blockcipher has been used as
a reference that ought to be surpassed by the CAESAR candidates, while the
name of the competition spells out the properties the candidates are expected
to guarantee: security, applicability and robustness. Out of 57 submissions to
the first round of CAESAR, 15 candidates still compete in the 3rd round [5].
The security claims of each of them are supported by solid cryptanalysis and/or
security proofs, and are generally believed to be sound.

Table 1. An overview of 3rd round CAESAR candidates based on their claimed secu-
rity guarantees w.r.t the nonce misuse and quantitative security; 64-bit-bound refers
to about 264 processed bits. For security in presence of nonce misuse, we consider
MRAE [38], OAE [17] or RAE [21]. For each candidate, we consider an instance with
128-bit secret key. Deoxys II is listed twice due to its graceful degradation of security.

Up to 64-bit-bound Beyond 64-bit-bound

Unique nonces OCB, NORX, Jambu, CLOC& SILC Tiaoxin, Morus, Keyak,
Ketje, Deoxys I& II,
Ascon, AEGIS, ACORN

Nonce misuse Deoxys II, COLM, AEZ -

64-bit Bound and Nonce-Misuse. All of CAESAR candidates must accept
a nonce, a secret key, AD and a message as an input. The nonce is akin to an
initialization vector, and it can be assumed to have a unique value for every
encryption query. The candidates are allowed to request that the nonce must
not repeat in order for their security guarantees to apply. This is the case for 12
3rd round CAESAR candidates. AEZ and Deoxys guarantee no degradation of
authenticity, and the minimal (and unavoidable [38]) degradation of confiden-
tiality1 even if the nonces are misused, i.e. repeated. COLM guarantees a weaker
version of confidentiality protection in presence of nonce misuse, so called online
-misuse resistance [17]. Each candidate must also specify how much data can be
securely processed with a single secret key. Most CAESAR candidates guaran-
tee security up to the so called birthday-bound; for AES-based AE schemes, this
means processing no more than about 264 blocks of data per key and making no

1 As the encryption is required to be a deterministic algorithm, repeating all inputs
unavoidably means repeating the ciphertexts as well.
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more than 264 encryption queries. In this paper, we use the 64-bit data/query
complexity as a reference threshold for comparison of candidates, denoted by
64-bit-bound.

In Table 1, we categorize the 3rd round candidates, as well as CCM and
GCM, based on their security claims w.r.t. the nonce misuse and quantitative
security. We consider a scheme to claim security against nonce reuse if it targets
MRAE [38], OAE [17] or RAE [21] security. For each candidate, we consider an
instance with a 128-bit secret key.

Robustness: (In)security Beyond Guarantees. All CAESAR candidates
clearly state what security properties do they guarantee as long as the condi-
tions on the nonces or data limits are respected. However, they give little or no
information on the actual impact of attacks that violate these usage conditions.

This is what we aim to determine in this work. We take the liberty to inter-
pret robustness of AE schemes as the ability to resist powerful attacks, possibly
beyond the limitations guaranteed by the designers, and analyze the security of
all 15 third round CAESAR candidates against attacks with very high data com-
plexity, and against nonce-misuse attacks. In order to make the result compara-
ble, we consider instances using secret keys of 128 bits, and use the 64-bit-bound
(i.e. the “birthday bound” of AES-GCM) as a point of reference.

An Overview. For each candidate we describe one or more attacks, unless
relevant attacks already exist. We sort the CAESAR candidates into six cate-
gories based on the adversarial powers necessary to break them: (A) Those for
which we have a nonce-respecting universal forgery and a decryption attack at
the 64-bit-bound. (B) Others for which we have a nonce-respecting universal
forgery and a decryption attack above the 64-bit-bound, but below exhaustive
search. (C) Those for which we have a reusable forgery and a reusable decryption
attack with small complexity, possibly with nonce-misuse. (D) Others for which
we have a forgery or a decryption attack with small complexity, possibly with
nonce-misuse. (E) Others for which we have a forgery or a decryption attack at
the 64-bit-bound, possibly with nonce-misuse. (F) Remaining ones. Our results
are summarized in Table 2. For each candidate, we indicate the type of attack,
the query complexity2, whether the attack needs nonce misuse, and whether it
is reusable. All attacks presented in Table 2 succeed with high probability.

The categories can be ordered by a decreasing level of resilience as follows:
(F) ≥ (E) ≥ (D) ≥ (C) and (F) ≥ (E) ≥ (B) ≥ (A). The categories (A) and (C)
are incomparable (same for (B) and (D)), as the impacted schemes succumb to
different kinds of misuse. However, the attacks in category (C) may be seen as a
more serious threat than those in (A), as they are much more likely in practice.

Our Contribution. Table 2 sheds more light on the actual impact of nonce-
reuse/high-data attacks, and arguably provides much more information than the
guarantees provided by the authors (summarized in Table 1). This can be very
useful to break ties at the end of 3rd round of CAESAR competition. Some of
2 The time and memory complexities of the attacks mentioned in the Table 2 are small

multiples/small powers of the query complexity.
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Table 2. A summary of attacks on 3rd round CAESAR candidates and their clustering
based on the type of attack. The categories (A), (B), (C), (D), (E) and (F) are listed
from top to bottom. The column “source” lists the sections and/or bibliography refer-
ences that describe the relevant attacks. The comments “(N, A)”, “(N)” and “(A)” in
the reusability column (see Sect. 2) mean that the reusability is limited to fixed values
of the listed parameters. The values in the column “nonce-reuse” indicate maximal
number of times any nonce is used (so 1 means nonce respecting), q denotes the num-
ber of independent forgeries made in a single attack, and m is used as a parameter.
#The attack applies only if |N | > 128.

Algorithm Source(s) Type of attack Nonce-reuse # Queries Reusable

A AES-GCM [32]# 4 Univ. forgery 1 3 · 264 Yes

AEZ [22] 5, [12] Key recovery 1 3 · 264
OCB [30] 6, [15] Univ. forgery &

CCA decryp.

1 2 (one w/ 264

blocks)

Yes

AES-OTR [34] 3, 7 Univ. forgery &

CPA decryp.

1 2 (one w/ 264

blocks)

Yes

B CLOC [24] 8 Univ. forgery &

CPA decryp.

1 280 Yes

C AES-GCM [32] 3, 4, [28] Univ. forgery &

CPA decryp.

2 2 Yes

Deoxys-I [26] 3 Univ. forgery &

CCA decryp.

3 3 Yes (A)

OCB [30] 3 Univ. forgery &

CCA decryp.

2 2 Yes (A)

Tiaoxin [35] 10 Key recovery 30 30

AEGIS-128 [47] 11 Univ. forgery &

CPA decryp.

15 15 Yes (N, A)

ACORN-128 [44] 12 Univ. forgery &

CPA decryp.

586 586 Yes (N, A)

Ketje Sr [9] 13 Key recovery 50 50

MORUS 640 [45] 14 Univ. forgery &

CPA decryp.

8 8 Yes (N)

D AES-CCM [43] 3 CPA decryp. 2 1

CLOC & SILC [24] 3 CPA decryp 2 1 No

JAMBU [46] 3 CPA decryp. 1 + |C|/64 |C|/64 No

NORX32-4-1 [2] 3 CPA decryp. 1 + |C|/384 |C|/384 No

Ascon-128 [14] 3 CPA decryp. 1 + |C|/64 |C|/64 No

Lake Keyak [10] 3 CPA decryp. 1 + |C|/1344 |C|/1344 No

E COLM [1] 3 Semi-univ.

forgery

1 + q 264 Yes (N, A)

F Deoxys-II [26] 9 Semi-univ.

forgery & CCA

decryp.

2m 2128−m Yes (A)

these attacks can also be viewed as disturbingly powerful (e.g. low-complexity
key recoveries). Taking into consideration the circumstances that led to the start
of CAESAR competition, we do not think that schemes that succumb to such
attacks should be recommended as CAESAR finalists (in this sense, not every
candidate for CAESAR can beat Galois).
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The attacks we present also shed more light on the weaknesses and strengths
of different constructions. For example, many designs in cat. (C) use aggressively
optimized state update functions which give up the key (or secret state) with the
slightest nonce reuse, which we find worrisome. The collection of generic attacks
in Sect. 3 is especially helpful to identify common security phenomena related to
certain construction principles, such as the decryption attacks for streamciphers,
or easy nonce-reusing forgeries on ciphertext-translation based schemes.

We found it interesting that the state recovery on AEGIS and Tiaoxin works
thanks to the differential properties of the AES Sbox. The “EK oracle” attack
on CLOC is nonce respecting because CLOC processes the nonce in a place that
is usual for the last associated data block. COLM, in turn, resists to nonce-
respecting collision attacks thanks to having the nonce restricted to 64 bits.
Finally, we have not seen the trade-off between the degree of nonce-reuse and
the attack complexity used for Deoxys-II in the literature before.

Disclaimer and Open Problems. We understand that none of the attacks
we present violates the security claims of any of the CAESAR candidates. That
is not the goal of our work. Our goal is to determine to what degree will the
security of respective candidates deteriorate after the guarantees become void.

We leave the investigation of security of CAESAR candidates within other
adversarial models (such as related-key security, release of unverified plaintext
or multi-user security) as open problems.

Related Work. The (in)security of GCM mode was treated by a number of
works [20,25,36,40], in particular Joux authored the “forbidden” nonce misusing
attack [28]. Collision attack similar to ours, or inspiring ours, were described for
previous versions of AEZ by Fuhr et al. [19], and Chaigneau and Gilbert [12]. Col-
lision attack on OCB were given by Ferguson [15] and Sun et al. [41]. Reusable
forgery attacks on OCB, OTR and COLM were described by Forler et al. [18].
Collision-based attacks on COPA and ELmD (the predecessors of COPA) were
described by Bay et al. [3] and Lu [31]. Bost and Sanders found a flaw in the
masking scheme of an earlier version of OTR [11], Huang and Wu described
a collision based forgery [23]. Mileva et al. describe a nonce misusing distin-
guisher attack for MORUS [33]. The collision-based forgeries on NORX, Ascon
and Keyak are matching Lemma 2 of the work on provable generic security of
full-state keyed duplex by Daemen et al. [13].

Organization of the Paper. In Sect. 2 we introduce notations, AE syntax
and the attack model. In Sect. 3 we give generic attacks that apply to several
schemes that share a particular structure. Then in Sects. 4 to 14, we address
attacks specific to GCM and several CAESAR candidates, each in a separate
section. For descriptions of CCM, GCM, and the CAESAR candidates in, we
refer the reader either to the full version of this paper [42], or to the respective
submission documents [5].
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2 Preliminaries

When presenting the CAESAR candidates, we try to respect the original nota-
tions but deviate a bit to unify the notation of the common input/output values.
Hence, the secret key is denoted by K, the nonce (or IV) is denoted by N , the
associated data (AD) is denoted by A, the plaintext is denoted by M , the cipher-
text is denoted by C, and the tag (if any) is denoted by T . We further use τ to
denote the ciphertext expansion/stretch, which is in most cases the same as the
tag length.

Notations. All strings are binary strings. We let ε denote the empty string
and |X| the length of a string X in bits. For two strings X,Y with |X| =
|Y |, we let X&Y denote the bitwise AND of X and Y and X ⊕ Y the bitwise
xor. We let {0, 1}n denote the set of all strings of n bits, and let {0, 1}∗ =⋃

n∈{0,1,2,...}{0, 1}n. Each of the candidates internally partitions the inputs into
blocks of constant size. We use several symbols to denote the length of the
blocks, e.g. n, r or ν, in order to respect the notation of each candidate as much
as possible. We use subscript to index blocks in a query and superscript to index
queries, e.g. M j

i is the ith message block in jth query. We let M1, . . . ,M�
n← M

denote the partitioning of a string M into blocks of n bits, except for 1 ≤
|M�| ≤ n, such that � = �|M |/n�. We let |M |n = �|M |/n�. With a slight abuse
of notation, we let X0∗1 denote extending a string X with the smallest number
of zero bits followed by a “1” that will yield a string whose length is a multiple
of a block size, when a block size is implicit from the context. We let msba(X)
denote the a most significant bits of a string X, and similar applies to lsba. We
let encn(a) denote the n-bit canonical encoding of an integer 0 ≤ a ≤ 255. For
blockcipher-based schemes, we let E denote the underlying blockcipher.

Syntax. A scheme for authenticated encryption (AE) Π consists of a key space
K ⊂ {0, 1}∗ (for most candidates K = {0, 1}k for a positive k), and two determin-
istic algorithms E and D. The encryption algorithm maps a key, a nonce, associ-
ated data (AD) and a message (K,N,A,M) to a ciphertext C = E(K,N,A,M),
such that |C| = |M | + τ where the stretch is either a constant parameter, or user-
selectable (only for candidate AEZ). For most candidates, the ciphertext con-
sists of a core ciphertext and a tag, i.e. E(K,N,A,M) = C‖T with |T | = τ . The
decryption algorithm D that maps (K,N,A,C) (or (K,N,A,C‖T )) to a mes-
sage M or to an error symbol ⊥, if the authentication fails. It is required that for
every valid input tuple (K,N,A,M), we have M = D(K,N,A, E(K,N,A,M)).
We denote the sets of nonces, AD and messages valid for Π by N , A and M
respectively.

Attack Model. We focus on three types of attacks: decryption attacks, (semi)
universal forgeries and key recovery attacks. To make the results comparable, for
each candidate we attack an instance that uses 128-bit keys (i.e. K = {0, 1}128),
and we define our attacks models to correspond to the 128-bit security level.

In each type of attack on a scheme Π, an attacker A has blackbox oracle
access to an instance of the encryption and the decryption algorithms EK ,DK
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of Π that use a secret key K unknown to A . We call A nonce respecting if
each encryption query it makes uses a distinct nonce. We say that A mounts a
chosen plaintext attack (CPA) if it never makes a decryption query, otherwise
we say A mounts a chosen ciphertext attack (CCA).3 A is free to make any
queries beyond the explicit restrictions.

For each attack, we keep track of the data complexity (in blocks of some con-
stant size) and/or the query complexity, the maximal number (over the values
of the nonce) of encryption queries made with the same nonce. We call a forgery
(resp. decryption) attack reusable if, after having forged (resp. decrypted) for
the first time, the query and computational complexity of the consequent forg-
eries (resp. decryptions) are significantly lower than the complexity of the initial
forgery (resp. decryption).

(Semi)-universal Forgery. A EK ,DK (N,A,M) receives an a nonce, AD and
a message and tries to produce a decryption query (N,A,C) that will correctly
decrypt to M , such that C was not an output of a previous encryption query
made with N,A. We call the forgery semi-universal if A only gets target AD
and message (i.e. A EK ,DK (A,M)) or target message only (i.e. A EK ,DK (M)) and
is allowed to use arbitrary values for the remaining inputs.

Decryption Attack. A EK ,DK (N,A,C) receives a nonce, AD and ciphertext-
tuple that is an encryption of a secret random message M of fixed length μ ≥ 128,
and tries to produce M .

Key Recovery. A EK ,DK () tries to compute K.

3 Generic Attacks

In this section, we list attacks that trivially apply to certain construction prin-
ciples, rather than being construction-specific. Nevertheless, these attacks are
relevant for the comparison of “robustness” of CAESAR candidates.

CPA Decryption: Streamciphers (Nonce Reuse, Constant Complex-
ity). AE schemes that produce a core ciphertext C and a tag T such that
C = M ⊕ f(K,N, |M |) (or C = M ⊕ f(K,N,A, |M |)), i.e. the message is
xored with a sequence of masking bits derived as a function of the nonce and
the secret key (or the nonce, secret key and AD) will necessarily succumb
to this attack. To decrypt (N,A,C‖T ), we make a single encryption query
f(K,N,A, |M |)‖T ′ = EK(N,A, 0|C|) that reveals the key stream and compute
M = C ⊕ f(K,N,A, |M |). This attack applies to CCM, GCM.

CPA Decryption: Self-synchronizing Streamciphers (Nonce Reuse,
Tiny Complexity). The previous attack can be adapted to AE schemes
that produce the core ciphertext C block by block, by xoring the cur-
rent message block with masking bits dependent on the key, the nonce,
AD and the previous message blocks. I.e. M1, . . . ,M�

n← and then Ci =

3 Note that a forgery is always a CCA, due to the final decryption query.
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Mi ⊕ f(K,N,A,M1‖ . . . Mi−1, |Mi|), where the value of n depends on the
scheme. To decrypt (N,A,C‖T ), we make |C|n = �|C|/n� encryption queries
as follows:
1: Compute C1, . . . , C�

n← C.
2: for i ← 1 to � do
3: Query C′‖T ′ ← EK(N, A, M1‖ . . . ‖Mi−1‖0|Ci|).
4: Compute C′

1, . . . , C
′
i

n← C′ and then Mi ← C′
i ⊕ Ci.

5: end for

This attack applies to CLOC, SILC, AEGIS, ACORN, MORUS, Ketje,
NORX, Ascon, Keyak and JAMBU.

Semi-universal Forgery: AD Preprocessing (Nonce-Reuse, Varying
Complexity). Several candidates internally process an encryption query
(K,N,A,M) by first computing a value V = f(K,N,A) dependent on the key,
nonce and the AD, and then compute the (tagged) ciphertext as a function of the
secret key, the message and the value V as C = g(K,V,M), such that |V | = v
for constant v. If |N | ≥ 2v/2, then it is possible to find a pair (N1, A1), (N2, A2)
such that f(K,N1, A1) = f(K,N2, A2) in a nonce-respecting birthday attack,
and then use it to forge for M (hence semi-universal forgery):
1: Initialize empty table T, pick arbitrary M̂ ∈ {0, 1}v.
2: for i ← 1 to 2v/2 do
3: Pick (N ′, A′) with a fresh N ′ randomly.
4: Query C ′ ← EK(N ′, A′, M̂), then insert (C ′, (N ′, A′)) to T.
5: end for
6: Find entries (C ′, (N1, A1)), (C ′, (N2, A2)) (with collision on C ′) in T.
7: Query C ← EK(N1, A1,M) and forge with (N2, A2, C).

The attack succeeds with a probability close to 1/2, in particular choosing
M̂ ∈ {0, 1}2v ensures that a C ′ collision implies a V collision with overwhelming
probability (thanks to the ciphertext expansion). It is reusable with the same
(N1, A1), (N2, A2), and uses every nonce no more than 1 + q times, with q the
number of desired forgeries.

The attack applies with 64-bit-bound complexity (as v = 128) to, AEZ,
CLOC, SILC, COLM and with some care to CCM.4 This attack applies with
complexity above 64-bit-bound (as v = 192) to JAMBU.

Semi-universal Forgery: Sponges (Nonce Reuse, Varying Complexity).
In sponge-based modes, the processing can again be expressed with two functions
f and g but nonce reuse allows the attacker to force arbitrary values to the outer
r bits of the sponge state after processing the first message block. Using this,
the previous attack can be adapted to work with complexity 2c/2 (where c is the
capacity of the sponge-based scheme) to forge for arbitrary (A,M):
1: Initialize empty tables T, pick arbitrary M̂ ∈ {0, 1}c.
2: for i ← 1 to 2c/2 do
3: Pick a fresh N ′ randomly.

4 With τ = 128, we must use A′ of 240 bits to make sure that the encoding of the
nonce and AD for the CBC MAC is block-aligned.
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4: Query C ′‖T ′ ← EK(N ′, A, 0r), then query C ′′‖T ′′ ← E(N
′, A,C ′‖M̂).

5: Compute C ′′
1 , . . . , C ′′

�
r← C ′′, then insert (C ′′

2 ‖ . . . ‖C ′′
� ‖T ′′, N ′) to T.

6: end for
7: Find entries (C ′′‖T ′′, N1), (C ′′‖T ′′, N2) (with collision on C ′′‖T ′′) in T.
8: Query C‖T ← EK(N1, A,M) and forge with (N2, A,C‖T ).

The success probability is close to 1/2. The second query in the attacks forces
the internal state of the sponge to become 0r‖S for some S ∈ {0, 1}c, hence the
birthday complexity in c. The attack is reusable with the same (N1, A), (N2, A),5

and uses every nonce no more than 2+q times, with q the number of desired forg-
eries. The attack applies with 64-bit-bound complexity (as c = 128) to NORX
and with above-64-bit-bound complexity (as c = 256) to Keyak and Ascon. We
note that for Keyak and Ascon, the exhaustive key search has the same time
complexity as this attack, but needs only a single query.

Universal Forgery and CCA Decryption: Ciphertext Translation
(Nonce Misuse, Tiny Complexity). Some candidates use so called cipher-
text translation [37] to incorporate the authentication of AD with a message-
only encryption core Ē . These schemes compute the tagged ciphertext as
EK(N,A,M) = ĒK(N,M)⊕ 0|M |‖HK(A) where ĒK(N,M) returns a core-
ciphertext and a τ -bit tag and H is an AXU hash with τ -bit output. To forge
for (N,A,M), we pick arbitrary N̂ �= N , M̂ �= M and A′ �= A and we do:
1: Query C1‖T 1 ← EK(N̂ , A, M̂) and C2‖T 2 ← EK(N̂ , A′, M̂).
2: Compute Δ ← T 1 ⊕ T 2.
3: Query C′‖T ′ ← EK(N, A′, M) and forge with (N, A, C′‖(T ′ ⊕ Δ)).

It is easily verified that the forgery is correct. This attack can be modified to
decrypt a ciphertext N,A,C‖T ; knowing Δ, we query N,A′, C‖(T ⊕Δ) and
learn the message M . This attack applies to OCB, AES-OTR and Deoxys-I.

4 AES-GCM

Universal Forgery (Nonce Misuse, Tiny Complexity). This attack has
been first described by Joux as the “forbidden attack” [28]. The main idea is that
recovering the derived key L makes forging very easy. We assume that τ = 128.
To forge for N,A,M , we pick random N̄ and M1 �= M2 ∈ {0, 1}128 and do:
1: Query C1‖T 1 ← EK(N, ε, M1) and C2‖T 2 ← EK(N, ε, M2).
2: Compute L as root of P (Λ) = (C1

1 ⊕ C2
1 ) · Λ2 ⊕(T 1 ⊕ T 2) over GF(2128).

3: Query C′‖T ′ ← EK(N, A′, M ′) with arbitrary A′ and M ′ s.t. |M ′| = |M |.
4: Forge with (N, A, (C′ ⊕ M ′ ⊕ M)‖(T ′ ⊕ GHASHL(A′, C′) ⊕ GHASHL(A, C))).

We note that L will be the only root of P (Λ) as squaring yields a bijection over
GF(2128). Once L is computed, forgeries become easy.

Universal Forgery (Nonce Respecting, 64-bit-Bound, |N | > 128). If
nonces longer than 128 bits are allowed, it is possible to recover L in a nonce-
respecting birthday attack. We note, however, that the use of nonce length other
5 For Keyak, the attack attack can be reused with arbitrary AD, because AD and

message are being processed simultaneously.
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than 96 bits is uncommon and discouraged [25]. Assuming that τ = 128, for each
i we use distinct N i of 256 bits and M i = B‖M i

2 for a fixed B ∈ {0, 1}128 and
distinct M i

2 ∈ {0, 1}128, and do:
1: for i ← 1 to 264 do query Ci‖T i ← EK(N i, ε, M i).
2: For i �= j s.t. Ci

1 = Cj
1 find L as root of P (Λ) = (Ci

2 ⊕ Cj
2) · Λ2 ⊕(T 1 ⊕ T 2).

3: Forge using L.

Note that the collision in line 2 must imply GHASHL(ε,N i) = GHASHL(ε,N i′
),

so if it occurs, the attack succeeds. We note that a forgery allows to mount a
CCA decryption attack (by changing AD).

5 AEZ v5

We present three nonce-respecting attacks that respectively recover the subkeys
I, J and L, each at the 64-bit-bound complexity.

J -Recovery Attack. The Chaigneau-Gilbert attack [12] on AEZ v4.1 can be
applied to AEZ v5 to extract J by a nonce-respecting chosen message attack at
the birthday bound. When N and A are single blocks, then based on the AEZ v5
specification [22] H becomes

hk(τ, N, A) = E3,1
K (τ) ⊕ E4,1

K (N) ⊕ E5,1
K (A)

= E3,1
K (τ) ⊕ AES4k(N ⊕ 4J ⊕ 2I ⊕ L) ⊕ AES4k(A ⊕ 5J ⊕ 2I ⊕ L).

If we limit ourselves to queries with A = N ⊕ c for a fixed block c and
variable nonces, a ciphertext collision with the pair (N,N ′) will mean that N ′ =
N ⊕ c ⊕ J . The attack runs as follows:
1: Initialize an empty table T.
2: Pick an arbitrary block c ∈ {0, 1}128 and message M ∈ {0, 1}2·128.
3: for i ← 1 to 264 do
4: Pick a fresh N randomly, set A ← N ⊕ c.
5: Query C ← EK(N,A, τ,M), store (C,N) in T.
6: end for
7: Find (C,N), (C ′, N ′) in T with C = C ′, compute J = N ⊕ N ′ ⊕ c.

The Chaigneau-Gilbert attack requires a little effort to be adapted to AEZ v5
but it can recover I and L with nonce-misuse. A nonce respecting recovery of I
and L is possible if we can use nonces of several blocks (a feature of AEZ [22]),
to have a similar attack as the one above.

L-Recovery Attack. If |N |128 = 2 and A = ε, then following the AEZ v5
specifications H becomes

hk(τ, (N1, N2)) = E3,1
K (τ) ⊕ E4,1

K (N1) ⊕ E4,2
K (N2)

= E3,1
K (τ) ⊕ AES4k(N1 ⊕ 4J ⊕ 2I ⊕ L) ⊕ AES4k(N2 ⊕ 4J ⊕ 2I ⊕ 2L).

We modify the J-recovery attack to use 2-block nonces with N2 = N1 ⊕ c for a
fixed block c. A ciphertext collision with N and N ′ will then
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I -Recovery Attack. Next, we see that when |N |128 = 9, the hash function H
becomes

hk(τ, (N1, . . . , N9)) = E3,1
K (τ) ⊕ E4,1

K (N1) ⊕ · · · ⊕ E4,9
K (N9)

= E3,1
K (τ) ⊕ AES4k(N1 ⊕ 4J ⊕ 2I ⊕ L) ⊕ · · · ⊕

AES4k(N7 ⊕ 4J ⊕ 2I ⊕ 7L) ⊕ AES4k(N8 ⊕ 4J ⊕ 2I) ⊕
AES4k(N9 ⊕ 4J ⊕ 4I ⊕ L).

We again modify the J-recovery attack to use 9-block nonces with N2, . . . , N8

constant and N9 = N1 ⊕ c for a fixed block c. A ciphertext collision with N and
N ′ yields 6I = N1⊕N ′

1⊕c. So, we recover I, J, L with a nonce-respecting chosen
message attack 64-bit-bound.

6 OCB3 (OCB v1.1)

L-Recovery Attack. An attack by Ferguson [15] allows to recover the derived
key L at 64-bit-bound using a single huge query. In the nonce-misuse setting, we
can make many queries with empty message and two-block AD:
1: for i ← 1 to 264 do query T i ← EK(N, Ai‖Ai, ε) with fresh Ai ∈ {0, 1}128.
2: Find i �= j with T i = T j , compute L = (Ai ⊕ Aj) · (γ1 ⊕ γ2)

−1.

If tag collision occurs, we must have Ai
1 = Aj

1 ⊕ (γ1 ⊕ γ2) · L. We need to reuse
the nonce 264 times.

Universal Forgery (Tiny Complexity, Using L). Using L, we can make a
universal forgery for (N,A,M ′). If |M ′|128 = � > 1, we do:
1: Define a permutation π : {1, . . . , �} → {1, . . . , �} as π(i) = (i + 1 mod �) + 1.
2: for i ← 1 to � do Mi ← M ′

π(i) ⊕ γi · L ⊕ γπ(i) · L.
3: Query C‖T ← EK(N, A, M).
4: for i ← 1 to � do C′

i = Cπ−1(i) ⊕ (γi ⊕ γπ−1(i)) · L.
5: Forge with (N, A, C′‖T ).

If |M ′|128 = 1, we construct M = M ′‖(γ1 ⊕ γ2) ·L, make a query with (N,A,M)
to get C‖T , and take C ′ = C1, which again gives a valid encryption C ′‖T of
(N,A,M ′).

EK Oracle (Tiny Complexity, Using L). We can also implement an EK

oracle. To compute yi = EK(xi) for arbitrary x1, . . . , xs ∈ {0, 1}128 set � = 214,
and do:
1: Pick M ∈ {0, 1}�·128 with

⊕
i>1 Mi = (2−1 ⊕ γ1 ⊕ γ�) · L randomly.

2: Query C‖T ← EK(N, ε, M), compute R ← C1 ⊕ T ⊕ γ1 · L.
3: Find i s.t. Mi ⊕ R ⊕ γi · L = 07‖1‖N ′′‖06 for N ′ ∈ {0, 1}114.
4: Set N ′ ← N ′′‖06, compute R′ = Ci ⊕ R ⊕ γi · L.
5: for i ← 1 to s do set M ′

i ← xi ⊕ R′ ⊕ γi · L.
6: Query C′‖T ′ ← EK(N ′, ε, M ′).
7: for i ← 1 to s do compute yi ← C′

i ⊕ R′ ⊕ γi · L.

The R computed on line 2 is correct as T = EK(M1⊕R⊕γ1 ·L) = C1⊕R⊕γ1 ·L.
We can also add an unused nonce to the list of xi-s to avoid making the 214 ·
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128bit= 256 KB query more than once. Then the attack uses a single encryption
query per list of blocks x1, . . . , xs, of size s + 1 blocks.

CCA Decryption Attack For Messages Of Odd Length (Tiny Com-
plexity, Using L). Assume that we want to decrypt (N,A,C, T ) (let M be
its decryption). We can first compute R associated with N with the above EK

oracle, as well as some fresh N ′ and its associated R′ with tiny complexity. The
message M ′ defined by M ′

i = Mi ⊕ R ⊕ R′ encrypts into (C ′, T ′) such that
C ′

i = Ci ⊕ R ⊕ R′ and T ′ = T when � is odd. So, a CCA decryption query
with (N ′, A,C ′, T ) gives M ′ from which we deduce M .

7 AES-OTR v3.1

L-Recovery Attack. If we use the same nonce N 264 times, we can recover L:
1: for i ← 1 to 264 do query C‖T ← EK(N, ε, M i) with fresh M i ∈ {0, 1}4·128.
2: Find i �= j s.t. Ci

1 ⊕ M i
2 = Cj

3 ⊕ M j
4 , compute L = (M i

1 ⊕ M j
3 ) · (1 ⊕ 2)−1.

In a nonce respecting attack, we can encrypt a huge random message (with
|M |128 ≈ 264) with a nonce N and look for an internal collision with i �= j

C2i ⊕ M2i−1 = C2j ⊕ M2j−1 implying C2i−1 ⊕ 2i−1 · 2 · L = C2j−1 ⊕ 2j−1 · 2 · L,

revealing L for this N . We further expect to find many values of 1 ≤ i ≤
|M |128/2 for which 2i−1 · L⊕ M2i−1 (or 2i−1 · 3 · L⊕ C2i−1) will be a string of
the form ε(τ)‖1‖N ′. For any such N ′ we can use L′ = C2i−1 (or L′ = C2i) to
bootstrap the following attack.

EK Oracle (Using (N,L) Pair). Assuming that we know an (N,L) pair
EK(x1), . . . , EK(xr) for a list x1, . . . , xr as follows:
1: for i ← 1 to r do set M2i−1 ← xi ⊕ 22i−1 · L and pick Mi arbitrarily.
2: Query C‖T ← EK(N, ε, M).
3: for i ← 1 to r do compute EK(xi) = M2i ⊕ C2i−1.

In each execution of this attack, we can add one block to the list of xi-s to
prepare a fresh pair N ′, L′ for the next execution of the attack, allowing for its
nonce respecting repetition.

8 CLOC

EK Oracle in CLOC (Nonce-Respecting, Above 64-bit-Bound). In CLOC,
the processing of AD and nonce has the form V = f1(f2(K,A)⊕ozp(param‖N))
where the function f1 is easy to invert. To compute EK(x) for an x ∈ {0, 1}128,
we pick fixed AD A and do:
1: for i ← 1 to 264 do query Ci‖T i ← EK(N i, A, M i) with random M i ∈ {0, 1}2·128.
2: Find i �= j s.t. M i

1⊕Ci
1 = M j

2 ⊕Cj
2 , compute W ← f−1

1 (fix1(Cj
1)) ⊕ ozp(param‖N i).

3: if f−1
1 (x) ⊕ W of the form ozp(param‖N̄) query EK(x)‖T ← EK(N̄ , A, 0128).

4: else abort.
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The attack works as the collision on line 2 implies that V i = fix1(Cj
1) so we

deduce the V i value for a random nonce N i with A. This allows us to recover
W = f2(K,A). If x is not of the correct form, it is bad luck. When using nonces
of 112 bits, which is the maximum, the probability to have the correct form is
2−16. But we can run this attack 216 times to get many W i = f2(K,Ai) with
complexity 280. Then at least one is W i will be such that f−1

1 (x) ⊕ Wi is of the
correct format for any x.

This attack does not work on SILC, in which W depends on both N and A.

Universal Forgery and CPA Decryption Attack in CLOC (Nonce-
Respecting, Above 64-bit-Bound). With the previous EK oracle, we can
simulate the encryption or the decryption process and thus mount universal
forgeries and CPA decryption.

9 Deoxys v1.41

Semi-universal Forgery, CCADecryptionAttack: Deoxys-II (Reusable,
Nonce-Misuse). The encryption algorithm of Deoxys-II can be expressed as
EK(N,A,M) = Ē(K,N, f2(f1(K,A),M),M) where Ē produces a (stretched)
ciphertext and f1 and f2 are keyed functions with constant-size output. The
attacks are based on finding a collision on f1. Assuming each nonce can be used
up to 2m times, to forge for (N,M) we use N1, . . . , N2128−2m �= N all distinct
and M ′ �= M of 2 blocks, and do:
1: for i ← 1 to 2128−2m do
2: for j ← 1 to 2m do query Ci,j‖T i,j ← EK(N i, Ai,j , M ′) with random Ai,j .
3: end for
4: Find i, j �= j′ s.t. Ai,j �= Ai,j′

and T i,j = T i,j′
.

5: Query C‖T ← EK(N, Ai,j , M) and forge with (N, Ai,j′
, C‖T ).

We can modify this attack to decrypt (N,Ai,j , C‖T ) by making a CCA decryp-
tion query on (N,Ai,j′

, C, T ). This can only decrypt messages using Ai,j as
associated data. The total complexity of the attack is 2128−m queries. Note that
if m = 64, the complexity becomes birthday bounded.

10 Tiaoxin-346

Nonce-Misuse Key Recovery. 6 We pick M,M̄, M̃ ∈ {0, 1}4·128 such that
Mi ⊕ M̄i = Δ and Mi ⊕ M̃i = Δ̃ for i = 0, 1, 2, 3 and Δ �= Δ̃. We pick arbitrary
N and A and recover two 128 bit words T ′[4]0 and T ′[3]0 of the internal state
right after processing of N , A and the first two blocks of M by:
1: Query C‖T ← EK(N, A, M), C̄‖T̄ ← EK(N, A, M̄) and C̃‖T̃ ← EK(N, A, M̃).
2: for i ← 2, 3 do set γi ← ShiftRows−1(MixColumns−1(C̄i ⊕ Ci)).
3: for i ← 2, 3 do set γ̃i ← ShiftRows−1(MixColumns−1(C̃i ⊕ Ci)).

6 Note that we change the meaning of subscript and square brackets compared to the
original Tiaoxin description [35].
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4: for byte index j ← 0 to 15 do
5: for i ← 2, 3 do Find Xi,j = {γi,j | γi,j = SubBytes(x) ⊕ SubBytes(x ⊕ Δ)}.
6: for i ← 2, 3 do Find X̃i,j = {γ̃i,j | γ̃i,j = SubBytes(x) ⊕ SubBytes(x ⊕ Δ̃)}.
7: Set T ′[4]0,j ← X2,j ∩ X̃2,j and T ′[3]0,j ← X3,j ∩ X̃3,j .
8: end for

The above works, as we can verify that in the encryption of M we have

1. T ′[3] = R(T [3], M0),
2. T ′[4] = R(T [4], M1),
3. T ′[6] = R(T [6], M0 ⊕ M1),
4. C0 = T ′[3]0 ⊕ T ′[3]2 ⊕ T ′[4]1

⊕(T ′[6]3&T ′[4]3),

5. C1 = T ′[6]0 ⊕ T ′[4]2 ⊕ T ′[3]1
⊕(T ′[6]5&T ′[3]2),

6. T ′′[3] = R(T ′[3], M2),
7. T ′′[4] = R(T ′[4], M3),
8. T ′′[6] = R(T ′[6], M2 ⊕ M3),
9. C2 = T ′′[3]0 ⊕ T ′′[3]2 ⊕ T ′′[4]1

⊕(T ′′[6]3&T ′′[4]3),

10. C3 = T ′′[6]0 ⊕ T ′′[4]2 ⊕ T ′′[3]1
⊕(T ′′[6]5&T ′′[3]2).

In the encryption of M̄ we have the following (and similar for M̃ and Δ̃)

1. T̄ ′[3] = R(T [3], M0 ⊕ Δ),
2. T̄ ′[4] = R(T [4], M1 ⊕ Δ),
3. T ′[6] = R(T [6], M0 ⊕ M1),
4. C̄0 = T̄ ′[3]0 ⊕ T̄ ′[3]2 ⊕ T̄ ′[4]1

⊕(T ′[6]3&T̄ ′[4]3),

5. C̄1 = T ′[6]0 ⊕ T̄ ′[4]2 ⊕ T̄ ′[3]10
⊕(T ′[6]5&T̄ ′[3]2),

6. T̄ ′′[3] = R(T̄ ′[3], M2 ⊕ Δ),
7. T̄ ′′[4] = R(T̄ ′[4], M3 ⊕ Δ),
8. T ′′[6] = R(T ′[6], M2 ⊕ M3),
9. C̄2 = T̄ ′′[3]0 ⊕ T̄ ′′[3]2 ⊕ T̄ ′′[4]1

⊕(T ′′[6]3&T̄ ′′[4]3),

10. C̄3 = T ′′[6]0 ⊕ T̄ ′′[4]2 ⊕ T̄ ′′[3]1
⊕(T ′′[6]5&T̄ ′′[3]2).

We can easily see that

T̄ ′[3] ⊕ T ′[3] = (Δ, 0, 0) and T̄ ′′[3] ⊕ T ′′[3] = (0, A(T ′[3]0) ⊕ A(T ′[3]0 ⊕ Δ), 0),

T̄ ′[4] ⊕ T ′[4] = (Δ, 0, 0, 0) and T̄ ′′[4] ⊕ T ′′[4] = (0, A(T ′[4]0) ⊕ A(T ′[4]0 ⊕ Δ), 0, 0).

It follows that the differences of ciphertext blocks used in the lines 5 and 6
are a result of a differential equation for a single round of AES. This can be
reduced to a collection of 16 differential equations for AES Sbox, allowing to
recover the parts of the secret state as intersections of solutions found in the
said lines (we can check that we always have |Si,j ∩ S̃i,j | = 1).

We can then repeat this process with longer messages to obtain T [3] and
T [4] and we recover T ′[4] and T ′[3] with 12 queries (3 queries per 128-bit word
of T [4]). The state T [6] follows in a similar method using 18 queries. Once the
state (T [3], T [4], T [6]) is recovered, we invert the initialization and obtain K.

11 AEGIS v1.1

Universal Forgery, Decryption Attack (Tiny Complexity, Nonce-
Misuse). To forge for (N,A,M) or to decrypt (N,A,C, T ), we only need to
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recover the secret state S after processing A with nonce N , the rest of encryp-
tion/decryption can then be reconstructed.

We pick three messages M ′, M̄ , M̃ ∈ {0, 1}3·128 with the same criteria as for
Tiaoxin (with Δ �= Δ̃). To recover a part S′

0 of the state A′ right after processing
M ′

1 with N and A, we:
1: Query C′‖T ′ ← EK(N, A, M ′), C̄‖T̄ ← EK(N, A, M̄) and C̃‖T̃ ← EK(N, A, M̃).
2: Set γ ← ShiftRows−1(MixColumns−1(C̄3 ⊕ M̄3 ⊕ C′

3 ⊕ M ′
3)).

3: Set γ̃ ← ShiftRows−1(MixColumns−1(C̃3 ⊕ M̃3 ⊕ C′
3 ⊕ M ′

3)).
4: Recover bytes of S′

0 using γ, γ̃, Δ, Δ̃ in differential equations as with Tiaoxin.

The attack works because the difference (C ′
3 ⊕ M ′

3)⊕(C̄3 ⊕ M̄3) (associated to
M ′

1 �= M̄1) is equal to the difference R(R(S4) ⊕ S0 ⊕ M ′
1)⊕ R(R(S4) ⊕ S0 ⊕ M̄1)

(where R(S4) ⊕ S0 = S′
0), with R just a single AES round. We can repeat

this strategy to recover the remaining four 128-bit words of S′
1, . . . , S

′
4 with 3

queries each. Then we can recover S, having done 15 nonce reusing queries.
The possibility of a low-complexity nonce reusing attack is mentioned in the
AEGIS v1.1 specifications [47].

12 ACORN v3

Universal Forgery, Decryption Attack (Tiny Complexity, Nonce-
Misuse). To forge the encryption of (N,A,M) or to decrypt (N,A,C, T ), we
only need to recover the internal state So after processing N,A, which allows to
finish the rest of encryption/decryption. We sketch the main idea of the attack.

We make two encryption queries C1‖T 1 ← EK(N,A, 0‖B) and C2‖T 2 ←
EK(N,A, 1‖B) for any B ∈ {0, 1}58. We can see that ksji+o is constant for j = 1, 2
and i = 0, . . . , 57 and that ks158+o ⊕ ks258+o = S58+o,61 ⊕ S58+o,193, which is a
linear equation in the bits of So. We recover 292 more equations by making 292
pairs of (longer) queries that differ only in a single bit, and solve the system for
So. The knowledge of So allows arbitrary forgeries and decryptions with N,A.

13 Ketje

Key Recovery (Tiny Complexity, Nonce-Misusing). The authors of Ketje
themselves point at the possibility of this attack. Because Ketje uses only a
single round of the Keccak−f function [9], the diffusion between two consecu-
tive sponge states is low. In addition, the algebraic degree of a single round of
Keccak−f is only 2. We use this to recover the internal state S after processing
of N and A, and then the secret key K by inverting the processing of N,A. We
sketch the main idea of the attack.

We make queries Ci‖T i ← EK(N,A,M i) with some fixed (N,A) and M i ∈
{0, 1}2·(r−4) s.t. M i

2 = 0r for i = 1, . . . , θ. For each i we can use M i
1 and Ci

2 to
derive degree-2 polynomial equations with the bits in the inner (capacity) part
of S as unknowns. Each bit in Ci

2 depends on 31 bits of the previous state on
average [8], so we expect an overwhelming majority of the bits of the attacked
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state to be covered by the derived equations. We need the number of nonce
misusing queries θ to be a small multiple of b−r+4

r−4 = 11, 5 in order to fully
determine the system. Moreover, no more than a single unique monomial of
degree 2 per every bit of the state appears in the system, so with θ = 60, we
should be able to linearize the system and solve it for S.

14 Morus

Nonce-Misuse Universal Forgery and CPA Decryption. If we recover the
state S right after the initialization with N , we can forge ciphertexts with this
N and decrypt any ciphertext using this N . We sketch the S recovery attack.

We first recover S2 and S3 by querying Ci‖T i ← EK(N, ε,M i) with M i ∈
{0, 1}256 for i = 1, . . . , 4. Letting δi = M1

0 ⊕M i
0 with i �= 1, we have that

(C1 ⊕ M1) ⊕(Ci ⊕ M i) =(Rotl(δi, b1) <<<(w3 + 96)) ⊕ S2&Rotl(δi ⊕Rotl(δi, b1), b3)

⊕ S3&(Rotl(δi, b2) <<< w4)

⊕(Rotl(δi, b2) <<< w4)&Rotl(δi ⊕Rotl(δi, b1), b3),

where Rotl is a linear function, <<< denotes a circular rotation, and all br-s
and wt-s are constants. Each δi provides 128 linear equations in 256 binary
unknowns, so with δ1, δ2, δ3, we are able to recover the values of S2 and S3 with
high probability. Once S2 and S3 are known, C1

1 ⊕M1
1 can be expressed as a

linear function of S0 and S1 and we learn their xor-difference.
We still need to recover S0, S1, S4, i.e. 384 bits, and have 128 linear equa-

tions (so 256 unknown bits). We query C̄j‖T̄ j ← EK(N, ε, M̄ j) with M̄ j =
M1

0 ‖M̄ j
1‖0128 and M̄ j

1 ∈ {0, 1}128 for j = 1, . . . , θ. Each C̄j
2 will supply 128 poly-

nomial equations in S0, S1, S4 of degree at most 3. By examining the StateUpdate
and the keystream generation functions of Morus, we verify that there will be
no more than 19 · 128 unique monomials of degree higher than 1 present in all
equations in the worst case and only 9.25·128 on average. Thus by taking θ = 16,
we should be able to linearise the system and recover S0, S1 and S4 with high
probability, using 20 queries for the entire attack.
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https://competitions.cr.yp.to/round3/asconv12.pdf

15. Ferguson, N.: Collision attacks on OCB. NIST CSRC website (2002)
16. Ferguson, N.: Authentication weaknesses in GCM (2005)
17. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-

line authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34047-5 12

18. Forler, C., List, E., Lucks, S., Wenzel, J.: Reforgeability of authenticated encryption
schemes. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp.
19–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 2

19. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–532.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 21

20. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–
161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 9

21. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

22. Hoang, V.T., Krovetz, T., Rogaway, P.: AEZ v5: authenticated encryption by enci-
phering (2017). https://competitions.cr.yp.to/round3/aezv5.pdf

https://doi.org/10.1007/978-3-662-53887-6_13
https://doi.org/10.1007/3-540-44448-3_24
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/keyakv22.pdf
https://doi.org/10.1007/978-3-662-53887-6_12
https://doi.org/10.13154/tosc.v2016.i1.114-133
https://doi.org/10.13154/tosc.v2016.i1.114-133
http://eprint.iacr.org/2017/498
http://eprint.iacr.org/2017/498
https://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.1007/978-3-642-34047-5_12
https://doi.org/10.1007/978-3-642-34047-5_12
https://doi.org/10.1007/978-3-319-59870-3_2
https://doi.org/10.1007/978-3-662-48800-3_21
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://competitions.cr.yp.to/round3/aezv5.pdf


Can Caesar Beat Galois? 493

23. Huang, T., Wu, H.: Attack on AES-OTR. https://groups.google.com/forum/#!
topic/crypto-competitions/upaRX2jdVCQ

24. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC and SILC
(2016). https://competitions.cr.yp.to/round3/clocsilcv3.pdf

25. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 3
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