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Abstract. Sparx is a family of ARX-based block ciphers designed
according to the long-trail strategy (LTS) that were both introduced by
Dinu et al. at ASIACRYPT’16. Similar to the wide-trail strategy, the
LTS allows provable upper bounds on the length of differential charac-
teristics and linear paths. Thus, the cipher is a highly interesting tar-
get for third-party cryptanalysis. However, the only third-party crypt-
analysis on Sparx-64/128 to date was given by Abdelkhalek et al. at
AFRICACRYPT’17 who proposed impossible-differential attacks on 15
and 16 (out of 24) rounds.

In this paper, we present chosen-ciphertext differential attacks on 16
rounds of Sparx-64/128. First, we show a truncated-differential analy-
sis that requires 232 chosen ciphertexts and approximately 293 encryp-
tions. Second, we illustrate the effectiveness of boomerangs on Sparx by
a rectangle attack that requires approximately 259.6 chosen ciphertexts
and about 2122.2 encryption equivalents. Finally, we also considered a
yoyo attack on 16 rounds that, however, requires the full codebook and
approximately 2126 encryption equivalents.

Keywords: Symmetric-key cryptography · Cryptanalysis
Boomerang · Truncated differential · Yoyo · ARX

1 Introduction

ARX Ciphers. The design and cryptanalysis of block ciphers is a heuristic com-
petition between designers and analysts. With the introduction of the wide- trail
design strategy in Rijndael, designers could finally provide provable bounds for
the expected probabilities and therefore for the maximal length of differential
characteristics and linear trails of block ciphers. Rijndael and similar designs are
substitution-permutation networks (SPNs), which left the earlier path of using
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only the omnipresent modular addition, XOR, rotation, and shift operations
that most processors support out-of-the-box. Thus, SPNs demand an expertised
tailoring of their implementations to the operating platform to be comparably
efficient as bit-based designs. However, in resource-constrained environments, the
most efficient software implementations are still ciphers that employ only logical
operations and/or addition, e.g., ciphers based on modular additions, rotations,
and XOR (ARX). Hence, until recently, there has been a gap between the prov-
able bounds of wide-trail designs, and the efficiency of ARX-based constructions.

Sparx. At ASIACRYPT’16, Dinu et al. introduced Sparx [7], the first ARX-
based family of block ciphers that provides provable bounds on the maximal
length of differential characteristics and linear trails. Alongside Sparx, the
authors developed the long-trail design strategy, a general approach for ARX-
based symmetric-key primitives to obtain provable bounds. Both the long-trail
strategy in general, and Sparx in particular, are interesting targets of crypt-
analysis as they try to bridge the gap between efficiency and providing security
bounds. The question arises if it is also secure against (truncated) differential
and boomerang attacks that can exploit clustering effects of many differential
characteristics.

Research Gap and Related Work. In the specification of Sparx, the
designers reported on their results of a first automated analysis that no dif-
ferential characteristic with probability higher than 2−n nor any linear charac-
teristic with bias higher than 2−n/2 exists over five or more steps. Moreover, they
described integral attacks on up to five out of eight steps of Sparx-64/128, and
six out of ten steps of Sparx-128. Though, those initial attacks are naturally lim-
ited due to time constraints when designing a new cipher, and therefore demand
a deeper analysis by the cryptographic community. At AFRICACRYPT’17,
Abdelkhalek et al. [1] proposed 12- and 13-round impossible-differential distin-
guishers on Sparx-64/128, using the four-step distinguisher for balanced Type-
1 Feistel networks. They extended their attacks by three rounds, respectively,
where they exploited dependencies between the key words from the key-schedule.
Recently, Tolba et. al. proposed multi-dimensional zero-correlation linear attacks
on up to 26 rounds of Sparx-128/128, and on up to 29 rounds of Sparx-
128/256 [13].

Contribution and Outline. This work adds two chosen-ciphertext attacks
on Sparx-64/128 in the single-key model: (1) a truncated-differential attack
on 16 rounds and (2) a rectangle attack on 16 rounds; moreover, we further
considered yoyo attacks on the same number of rounds, which, however, requires
the full codebook. Due to space constraints, that attacks will be available in
a full version alongside this work [2]. Table 1 compares their parameters with
the previous attacks on Sparx-64/128 from the literature. In the remainder, we
briefly revisit the necessary notions as well as the details of Sparx-64 in Sect. 2.
We describe our truncated-differential attack in Sect. 5. We continue with an
informal introduction to boomerang and rectangle attacks in Sect. 3. In Sect. 4,
we describe our search of differential trails before we detail our rectangle attack
on Sparx-64/128 in Sect. 6. Finally, Sect. 7 concludes this work.
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Table 1. Previous and proposed attacks on Sparx-64/128. KP/CP/CC = known plain-
text/chosen plaintext/chosen ciphertext. ID = Impossible differential, TD = Truncated
differentials.

Rounds Attack type Time Data Memory Ref.

15/24 Integral 2101.0 237.0 CP 264.0 [7]

15/24 ID 294.1 251.0 CP 243.5 [1]

16/24 ID 294.0 261.5 KP 261.5 [1]

16/24 TD 293.0 232.0 CC 261.0 Sect. 5

16/24 Rectangle 2122.2 259.6 CC 261.6 Sect. 6

16/24 Yoyo 2126.0 264.0 CP 264.0 Full version [2]

2 Preliminaries

General Notations. We denote by F2 the finite field of two elements x ∈
{0, 1}. For positive integer n, we denote by F

n
2 the space of n-element vectors

from F2. We represent functions by upper case letters and indices by lowercase
letters. {0, 1}n is the set of all n-bit strings and {0, 1}∗ the set of bit strings of
arbitrary length. Let x, y ∈ {0, 1}n for some positive integer n in the following.
Then, we denote by x ‖ y the concatenation of x and y, by x ⊕ y their bitwise
XOR, by x ≪ r a rotation by r bit to the left and by x ≫ r rotation by r bit to
the right; moreover, we denote by x � y = (x + y) mod 2n modular addition, and
by x � y = (x − y) mod 2n modular subtraction. For all bit strings x ∈ {0, 1}n,
we index the bits x = (xn−1 . . . x1x0) where xn−1 is the most significant and x0

the least significant bit of x. Given a bit string x = (x1 ‖ . . . ‖xm) ∈ ({0, 1}mn)
consisting of m words of n bit each, we denote by

x ≪n r
def= (x1 ≪ r) ‖ . . . ‖ (xm ≪ r)

the word-wise independent rotated value. We overload the notation for tuples of
bit strings x ∈ ({0, 1}n)m: x = (x1, . . . , xm), to still mean wordwise independent
rotation x ≪n r

def= (x1 ≪ r), . . . , (xm ≪ r). We use typewriter font to
represent hexadecimal values, e.g., 0110 = 272. We use the same font but with
annotation to represent bit strings, e.g., (0110)2 = 6; moreover, we will use
the symbol * at the position of that certain bits to indicate that they can take
arbitrary values, e.g., (0 * 10)2 ∈ {2, 6}. As a shorthand notation for probabilities
p, we often write hw = − log2(p) when the meaning of p is clear from the context.

2.1 The Sparx Family of Ciphers

The Sparx-n/k family comprises three versions, Sparx-64/128, Sparx-128/128,
and Sparx-128/256, where n indicates the block size, and k the key length k.
The cipher is based on a Feistel network with two state words for Sparx-64
and four state words for Sparx-128, consisting of ns Feistel steps. Each step



462 R. Ankele and E. List

Fig. 1. High-level view of Sparx-64. Top left: The step function. Top center: The
A3 layer in Sparx-64. Top right: The linear layer L. Bottom left: The A function
Speckey. Bottom right: One iteration of the key schedule of Sparx-64/128.

consists of ra rounds of an ARX-based round function; plain- and ciphertexts
consist of w = n/32 words X0, . . . , Xw−1 of 32 bit each; the key is divided into
32-bit words (κ0, . . . , κv−1). The values for the individual versions of Sparx are
summarized in Table 2, the components of the cipher are also depicted in Fig. 1.

Sparx-64/128. The structure of Sparx-64 is reminiscent of a Feistel network
of eight steps. Each step consists of ra = 3 rounds of the ARX-box A, (i.e. three
rounds of Speckey) on each branch. The Feistel function L is a linear involutive
permutation L : F32

2 → F
32
2 inspired by [8]. Given the left 32-bit state word x ‖ y,

the input is split into 16-bit parts x, y, and is mapped to

L(x ‖ y) def= (x ⊕ ((x ⊕ y) ≪ 8)) ‖ (y ⊕ ((x ⊕ y) ≪ 8)).

We denote the 64-bit state after Round r interchangeably as (Lr, Rr) = (X0
r ‖

X1
r ,X2

r ‖ X3
r ) = (XL

r ‖ Y L
r ,XR

r ‖ Y R
r ), and the round key used in Round r

interchangeably as (KL
r , KR

r ) = (K0
r ‖K1

r , K2
r ‖K3

r ).

The Key Schedule of Sparx-64. The 128-bit secret key of Sparx-64/128
is divided into four initial 32-bit words (κ0

0, κ
1
0, κ

2
0, κ

3
0). In each step, the key

schedule transforms the leftmost 32-bit word κ0
s in one iteration of the ARX-box

A, adds the output to the right neighboring word κ1
s, adds a round constant RCi
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Table 2. Parameters of the individual versions of Sparx.

Cipher #state-words w #key-words v #rounds/step ra #steps ns

Sparx-64/128 2 2 3 8

Sparx-128/128 4 4 4 8

Sparx-128/256 4 8 4 10

to the rightmost 16-bit half of κ3
2s to prevent slide attacks, and finally rotates

the four words by one position to the right. The ra = 3 leftmost words κ0
2s,

κ1
2s, κ2

2s are used as round keys for the first, second, and third round of the
left branch of Step s + 1; the ra = 3 left-most words κ0

2s+1, κ1
2s+1, κ2

2s+1 are
used for the first, second, and third round of the right branch of Step s + 1. For
example, (κ0

0, κ
1
0, κ

2
0) are used as round keys for the left branch in the first step,

and (κ0
1, κ

1
1, κ

2
1) are used as round keys for the right branch in the first step.

2.2 Properties

As observed by Abdelkhalek et al. [1], one can obtain the rounds keys for 2.5
consecutive rounds by guessing only 64 bit of key material. More precisely, one
obtains the round keys for Round 3r + 1 and the round key for the right 32-bit
branch in Round 3r + 2 by guessing the 64 bit of the key material of Round 3r:

Property 1. Given κ2
s+1 and κ3

s+1, one can directly derive the key words κ2
s =

κ3
s+1, κ0

s+2 = κ3
s+1, κ1

2s+3 = A(κ0
s+2), and κ0

s+3 = κ2
s+1.

We learnt Property 2 from Leurent [10].

Property 2. Assume, Δ ∈ F
n
2 is a fixed difference, and x0, . . . , xm ∈ F

n
2 represent

m values for which the goal is to find pairs (xi, xj) that result in xi ⊕ xj = Δ.
Then, one can define a linear function F : F

n
2 → F

n
2 with rank n − 1, s.t.

F (Δ) = 0n; thus, all pairs (xi, xj) with xi⊕xj = Δ will collide in F (xi) = F (xj).

It finds pairs with some difference without studying all combinations of pairs
but by comparing their outputs from F . One can reduce the rank of F to n − d
so that outputs of F collide if and only if their inputs have one of 2d differences.

3 Boomerang and Rectangle Attacks

Boomerang attacks, as proposed by Wagner [15], allow an attacker to concate-
nate two short differentials with high probability when long differentials with
sufficient probability are absent or hard to find. In the basic setting, an adver-
sary splits an encryption function E : {0, 1}k × {0, 1}n → {0, 1}n into two
subciphers E = E2 ◦ E1, s.t. E(P ) def= E2(E1(P )). Then, it considers a first dif-
ferential α → β with probability p over E1 and a second differential γ → δ with
probability q over E2. These are often called upper and lower differentials or
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trails, respectively. They can then be combined in a chosen-plaintext and adap-
tive chosen-ciphertext attack to construct a boomerang distinguisher consisting
of the following steps:

1. Choose a plaintext pair (P, P ′) with difference α = P ⊕ P ′ and encrypt it
through E to obtain its ciphertext pair (C,C ′) with difference β.

2. Derive D = C ⊕ δ and D′ = C ′ ⊕ δ (the δ-shift) and decrypt D and D′

through E−1 to obtain the corresponding plaintext pair (Q,Q′).
3. If the plaintext pair (Q,Q′) has difference α = Q ⊕ Q′, then (P, P ′, Q,Q′)

form a correct quartet.

Proposition 1. For a quartet (P, P ′, Q,Q′), there exists a differential with an
input difference α for P ′ = P ⊕ α, Q′ = Q ⊕ α, and a corresponding output
difference β for U ′ = U ⊕ β, V ′ = V ⊕ β with probability p. If we consider
a differential δ → γ with input difference D = C ⊕ δ, D′ = C ′ ⊕ δ and a
corresponding output difference γ for V = U ⊕γ, it holds with probability q that
V ′ = U ′ ⊕ γ. Then, we can connect both differentials if we consider V = U ⊕ γ,
it follows that V ′ = V ⊕ β = (U ⊕ γ) ⊕ β = (U ⊕ β) ⊕ γ = U ′ ⊕ γ.

Calculating the probabilities for a correct quartet requires to consider both
plaintext pairs (P, P ′) and (Q,Q′) and results in a probability of (pq)2. For the
differentials to exist, the resulting probability has to satisfy (pq)2 ≥ 2−n/2.

The probability of a correct quartet can be increased if one fixes input differ-
ences α and δ but allows all possible differences for β and γ, requiring only that
β �= γ. A boomerang distinguisher would then consider all trails of the form
α → β′ for the upper trail and δ → γ′ for the lower trail. This increases the
probability to (p̂q̂)2 where p̂ =

√

∑

β′ Pr2 [α → β′] and q̂ =
√

∑

γ′ Pr2 [δ → γ′]

where p̂ is evaluated over E1 and q̂ over E−1
2 , respectively.

The Rectangle Attack. In boomerang attacks, the adversary needs to query
its oracles with chosen plaintexts and adaptively chosen ciphertexts. Since our
boomerang attack will have to guess a considerable amount of key bits, which
would require an oracle query for every obtained text and key guess, we will
employ a rectangle attack instead. Rectangle attacks [3] have been derived from
the amplified boomerang [9], both of which transform the boomerang into a
purely chosen-plaintext attack (or chosen-ciphertext if the adversary starts from
the opposite direction). The core idea is to encrypt many pairs (P, P ′) with
difference P ′ ⊕ P = α in the hope that some of those will form a quartet with
the desired differences in the middle with probability 2−n. Given N plaintext
pairs, the number of correct quartets is reduced to N2 · 2−n · (p̂q̂)2. Note that
two pairs (U,U ′) and (V, V ′) can be combined in two distinct ways to a quartet
in the middle: U ⊕ V = U ′ ⊕ V ′ = β or U ⊕ U ′ = V ⊕ V ′ = β. [4] presented
further improvements to the technique. The disadvantages of rectangle compared
to boomerang attacks are the increased data complexity and the large number
of potential quartets that have to be filtered to find correct quartets.

Ladder Switch. There exist a few approaches for increasing the transitional
probability of boomerang trails in the middle. Two well-known approaches are
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Table 3. An optimal six-
round differential trail.

Rd. ΔLi ΔRi hw

0 00000000 02110a04 – –

1 00000000 28000010 0 4

2 00000000 00400000 0 2

3 00000000 80008000 0 0

L 80008000 00000000 0 0

4 81008102 00000000 1 0

5 8000840a 00000000 2 0

6 850a9520 00000000 4 0

L af1abf30 850a9520 0 0

Table 4. Optimal differentials through up to ten rounds of
Sparx-64; t is the run time of each search.

#Rds. Δin Δout hw t

1 (00408000, 00000000) (00000002, 00000000) 0.00 0.02 s

2 (00102000, 00000000) (80008002, 00000000) 1.00 0.10 s

3 (28000010, 00000000) (83008302, 81008102) 3.00 0.46 s

4 (00000000, 28000010) (8000840a, 00000000) 4.99 2.40 s

5 (00000000, 02110a04) (8000840a, 00000000) 8.99 25.07 s

6 (00000000, 02110a04) (af1abf30, 850a9520) 12.99 0.06 h

7 (00000000, 14881008) (82048e0e, 8000840a) 23.95 47.80 h

8 (00000000, 540a0120) (8000840a, 8000840a) 28.53 15.20 d

9 (28000010, 28000010) (d2609263, d1209123) 32.87 22.30 d

10 (28000010, 28000010) (80818283, 80008002) 38.12 32.50 d

the Feistel switch and the ladder switch; recently, Sasaki et al. [6] observed a
number of more ways. Here, we concentrate on the ladder switch by [5]. It exploits
that start and end of upper and lower trails can be located at different locations
for each part of the state. For Sparx, it is intuitive to consider full steps: e.g.,
assume that the top trail has a nonzero difference in the left branch through the
step in the middle. If the right branch has a zero difference in the left branch,
one can put the switch for the left branch before the step and consider it to be
part of the bottom trail, which has probability one. Clearly, this approach can
be generalized further to probabilities smaller than one. For Sparx, an optimal
switch has one active (e.g., the left) and one inactive (e.g., the right) branch
in the top trail, and mirrored in the bottom trail (e.g., right active and left
inactive), which allows to pass the step in the middle with probability one.

4 Differential Trails and Boomerang Distinguishers

We employed a two-step approach: first, we searched for optimal differential
characteristics for up to ten rounds of Sparx-64. Those formed the base of
the wrapping rounds before and after the boomerang switches. Thereupon, we
considered three interesting types of boomerangs over five steps.

4.1 Searching Optimal Differential Trails

We implemented variants of Sparx in CryptoSMT [12], an open- source tool
based on the SAT/SMT solvers CryptoMiniSat [11] and STP [14] to search for
optimal differential characteristics1. In this case, the problem to find optimal
differential characteristics is modeled as a Boolean satisfiability problem, and
can then be solved by a SAT solver. As the differential model of a cipher can be
rather complex, we modeled the problem as a more general SMT (Satisfiability
Modular Theories) problem. The difference to SAT problems is that SMT prob-
lems can express richer languages where, e.g., sets of variables can be expressed
1 The differential models for Sparx are available at: https://github.com/TheBan

anaMan/sparx-differential-attacks.

https://github.com/TheBananaMan/sparx-differential-attacks
https://github.com/TheBananaMan/sparx-differential-attacks
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Table 5. Top (left to right): best trails found for our differentials of Type 1a, Type 1b,
Type 1c, and Type 1d. Middle: best trails found for our differentials of Type 2a,
Type 2b, Type 2d, and Type 2e. Bottom: Type 2c, Type 3a, Type 3b, and Type 3c.
Σ denotes the sum of hw over all rounds.

Rd. ΔLi ΔRi hw

0 00000000 28000010 – –

1 00000000 00400000 0 2

2 00000000 80008000 0 0

3 00000000 81008102 0 1

L 81008102 00000000 0 0

Σ 3

Rd. ΔLi ΔRi hw

0 28000010 28000010 – –

1 00400000 00400000 2 2

2 80008000 80008000 0 0

3 81008102 83008302 1 2

L 00000000 81008102 0 0

Σ 7

Rd. ΔLi ΔRi hw

0 40404000 00400000 – –

1 40804081 80008000 2 0

2 40004205 81008102 3 1

3 42854a90 8000840a 5 2

L d78ddb92 42854a90 0 0

Σ 13

Rd. ΔLi ΔRi hw

0 80008000 80008000 – –

1 81008102 81008102 1 1

2 8004840e 8004840e 3 3

3 bd1aad20 870a9730 7 8

L 00000000 bd1aad20 0 0

Σ 23

Rd. ΔLi ΔRi hw

0 02110a04 02110a04 – –

1 28000010 28000010 4 4

2 00400000 00400000 2 2

3 80008000 80008000 0 0

L 00000000 80008000 0 0

4 00000000 81008102 0 1

5 00000000 8000840a 0 2

6 00000000 850a9520 0 4

L 850a9520 00000000 0 0

Σ 19

Rd. ΔLi ΔRi hw

0 02110a04 00000000 – –

1 28000010 00000000 4 0

2 00400000 00000000 2 0

3 80008000 80008000 0 0

L 00000000 80008000 0 0

3 81008102 81008102 1 1

4 8000840a 8000840a 2 2

5 850a9520 2a102a10 4 4

L 2a102a10 850a9520 0 0

Σ 20

Rd. ΔLi ΔRi hw

0 28000010 –

1 00400000 00400000 2 –

2 80008000 80008000 0 0

L 00000000 80008000 0 0

3 00000000 81008102 0 1

4 00000000 8000840a 0 2

5 00000000 850a9520 0 4

L 850a9520 00000000 0 0

Σ 9

Rd. ΔLi ΔRi hw

0 28000010 –

1 00400000 00000000 2 –

2 80008000 00000000 0 0

L 00000000 80008000 0 0

3 81008102 81008102 1 1

4 8000840a 8000840a 2 2

5 850a9520 850a9520 4 4

L 2a102a10 850a9520 0 0

Σ 16

Rd. ΔLi ΔRi hw

0 00000000 02110a04 – –

1 00000000 28000010 0 4

2 00000000 00400000 0 2

3 00000000 80008000 0 0

L 80008000 00000000 0 0

4 81008102 00000000 1 0

5 8000840a 00000000 2 0

6 850a9520 00000000 4 0

L af1abf30 850a9520 0 0

Σ 13

Rd. ΔLi ΔRi hw

0 28000010 28000010 – –

1 00400000 00400000 2 2

2 80008000 80008000 0 0

3 83008302 81008102 2 1

L 00000000 83008302 0 0

4 00000000 80088c02 0 5

5 00000000 8502b508 0 5

6 00000000 d0020420 0 7

L d0020420 00000000 0 0

7 00801000 00000000 4 0

8 10015001 00000000 2 0

9 52211224 00000000 5 0

L 57611764 52211224 0 0

Σ 35

Rd. ΔLi ΔRi hw

0 00000000 00508402 – –

1 00000000 24023408 0 4

2 00000000 50c080e0 0 7

3 00000000 01810203 0 5

L 01810203 00000000 0 0

4 000c0800 00000000 5 0

5 20000000 00000000 3 0

6 00400040 00000000 1 0

L 00400040 00400040 0 0

7 80408140 80408140 2 2

8 00400542 00400542 3 3

9 8542904a 8542904a 4 4

L 08150815 8542904a 0 0

Σ 37

Rd. ΔLi ΔRi hw

0 00000000 –

1 00000000 0a204205 0 –

2 00000000 02110a04 0 5

L 02110a04 00000000 0 0

3 28000010 00000000 4 0

4 00400000 00000000 2 0

5 80008000 80008000 0 0

L 00000000 80008000 0 0

6 81008102 81008102 1 1

7 8000840a 8000840a 2 2

8 850a9520 850a9520 4 4

L 2a102a10 850a9520 0 0

Σ 25

as predicates or the problem can be modeled on word level. We describe the
differential behavior of Sparx using the CVC language. This allows us to define
specific constraints that can be used to limit the search space for the SAT solver.
The solver then tries to find all possible valid differential characteristics for the
given parameters with increasing probability.

Table 3 shows an optimal six-round differential trail. Note that hw denotes
hw = − log2(p), for the differential probability p through a round. One can
observe that optimal differential characteristics for Sparx-64 possess an hour-
glass structure, i.e., the number of active bits is minimal in the middle and
increases outwards. Using the probability of the best characteristic is often
assumed to be an adequate approximation of the probability of the best dif-
ferential. However, this approximation is not always sufficiently accurate for
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ARX-based ciphers. Therefore, we tried to evaluate the probability of differ-
entials where feasible. For the best differentials for Sparx-64, we provide an
overview in Table 4.

Types of Differential Characteristics. After searching differentials
incrementality for a given interval of rounds, we searched for optimal charac-
teristics among the following types. The first category consists of single-step
characteristics:

– Type 1a. Arbitrary single-step characteristics.
– Type 1b. Single-step characteristics with two active branches that have a

single active branch after the step.
– Type 1c. Single-step characteristics with two active branches that have a

single active branch before the step.
– Type 1d. Single-step characteristics with two active branches that have a

single active branch before and afterwards.

The best characteristic for single-steps is a Type 1a characteristic with the left
branch all zeros. Type 1d is especially interesting for our truncated-differential
attack. The second category consists of two-step characteristics, that are also
used in our boomerang/rectangle distinguishers:

– Type 2a. Two-step top characteristics which collide after the XOR in the
right branch after the first step.

– Type 2b. Two-step bottom characteristics with only the left branch active
at the first step.

– Type 2c. Two-step characteristics where only the left branch is active in the
first, and therefore only the right branch is active in the second step.

– Type 2d. 4.5-round versions of Type 2a, but only two rounds before the
collision for the left and one round before for the right branch.

– Type 2e. We further investigated the versions of Type 2a where the first
step covers only one round.

We use the two-step characteristic of Type 2c for the top trail and Type 2b for
the bottom trail of our rectangle distinguisher. We further considered three-step
characteristics for boomerang/rectangle attacks in our third category:

– Type 3a. Three-step characteristics where both branches are active in the
first step, and only one branch is active in the subsequent steps, as is used in
both top and bottom trail of the single- sided bottom type of boomerang.

– Type 3b. Three-step characteristics where the first two steps are of Type 3a,
and both branches are active in the third step.

– Type 3c. 7.5-round versions of Type 3b, where only one round is considered
for the first step.

Our results for the best characteristics found are summarized in Table 5.
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Fig. 2. Types of five-step boomerangs. White A3 boxes are inactive (zero difference);
gray A3-boxes are active (non-zero difference). Hatched A3 boxes indicate active
branches that do not have to be taken into account at the switch.

4.2 Boomerangs

From the combination of the best identified characteristics, we continued to form
boomerangs. We considered three types of boomerangs over five steps.

– Free middle. This type exploits that we can obtain the middle step for free
if we choose our top and bottom trails such that one of them possesses a
zero difference in the left branch, and the other one has a zero difference in
the right branch, which is a direct application of the Ladder switch. We can
obtain a five-step boomerang in this way, but have active differences in both
branches in the first and in the fifth step of the wrapping rounds.

– Single-sided bottom. This type has both branches active at the start of
the top trail, but only one active branch at the end of the bottom trail.

– Single-sided top. This type has both branches active at the end of the
bottom trail, but only one active branch at the beginning of the top trail.

As examples, the former two types are visualized in Fig. 2.
From our experiments, it became clear soon that free-middle boomerangs pos-

sessed higher probabilities. Table 6 summarizes the best boomerang that consist
of a single characteristic that we could find for one up to five steps. Through a
single step, there exist various boomerangs with probability one:

Pr
[

(ΔL0,ΔR0)
1 step−−−−→ (ΔL3,ΔR3)

]

= 1,

for all characteristics with ΔL0 = 0 and ΔL3 = L(ΔR3); alternatively, it also
holds for all characteristics with ΔR0 = ΔR3 = 0.
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Over two steps, there exist two-step boomerangs with

Pr
[

(ΔL0,ΔR0)
2 steps−−−−→ (ΔL6,ΔR6)

]

≥ 2−6,

namely for characteristics of the form

– ΔL0 = 0 and ΔR0 ∈ {28000010, 00400000} and ΔL6 = L(ΔR6), or
– ΔR0 = 0 and ΔR6 ∈ {81008102, 8000840a} and ΔL6 = L(ΔR6).

For three steps, the best boomerangs have probability 2−12, using the single-
step characteristic with the highest probability of Type 1a for the top trail,
and a similar characteristic mirrored vertically and starting from the bottom
difference (ΔL9,ΔR9) = (83008302, 81008102). Similarly, we obtain from the
combination of the characteristics of Type 2a (as the top trail) and Type 1a
(horizontally mirrored, as the bottom trail; this is a free-middle boomerang)
boomerangs with probability of 2−44 over four steps. Over five steps, the highest
theoretical probability of a boomerang with fixed characteristics results from
combining a characteristic of Type 2a with the highest probability at the top
with a characteristic of Type 2b with the highest probability at the bottom.

Near-optimal Differential Trails. Boomerangs that employ a single char-
acteristic are of limited expressiveness in practice as we noticed strong differen-
tial clustering effects in Sparx. For boomerangs, they are particularly strong in
the switching rounds. Our purpose was to find good boomerangs of five steps,
where we focused on the free-middle approach. We used the best characteristics
of Type 1b and Type 2a as top and Type 1a and Type 2b as bottom trails as
a base to study their probability empirically over a feasible subset of the three
steps in the middle. Moreover, our automated search for optimal differential
characteristics yielded many near-optimal differentials with probability slightly
smaller than that of the optimal ones; as one could anticipate, this small change
in the probability stemmed from the fact that bits adjacent to the active bits in
the optimal differentials were also active in the near-optimal ones, mainly in the
first or the last round. Hence, we also considered those near-optimal trails in our
investigation of potential start and end differences for boomerangs. The subset
of our results is given in Table 7. We used a variant of them for our rectangle
attack in Sect. 6.

5 Truncated-Differential Attack on Sparx-64/128

High-Level View. This section describes a truncated-differential attack on 16-
round Sparx-64/128. On a high level, the Feistel-like structure allows generic
trails that pass through almost two steps so that only one branch is active.
The core observation of our attack is the existence of differentials of Type 1d,
i.e., trails that have an inactive branch before and after a step with probabil-
ity 	2−32. One such trail is illustrated in Table 8. The trail is truncated after
Round 9; thereupon, its precise differences are irrelevant as long as it will cancel
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Table 6. Best found boomerangs on step-reduced Sparx-64/128; for up to three steps,
we verified them experimentally with 100 random keys and 220 random pairs each.
Values in parentheses are products of the empirical probabilities over the three steps in
the middle from Table 7 with the theoretical probabilities over the remaining step(s).

#Steps Input difference Output difference hw

ΔL0 ΔR0 ΔL3s ΔR3s Theor. Empiric.

1 00000000 00400000 83008302 81008102 0 0

2 00000000 28000010 8000840a 00000000 6 5.11

2 00000000 28000010 81008102 00000000 6 5.16

2 00000000 28000010 850a9520 00000000 6 5.31

3 00000000 28000010 83008302 81008102 12 10.55

3 00000000 28000010 8a048e0e 8000840a 12 11.43

4 28000010 28000010 83008302 81008102 42 (36.78)

5 28000010 28000010 2a102a10 850a9520 78 (68.54)

5 02110a04 02110a04 2a102a10 850a9520 76 (72.18)

Table 7. Relevant experimental probabilities of free-middle boomerangs over three
steps. Values represent − log2(p), where p is the average probability of correct quartets
from 100 test runs of random independent keys with 230 random text pairs each.

(ΔL9, ΔR9) (ΔL0, ΔR0)

(00000000, 80008000) (00000000, 81008102)

(80008000, 80008000) 20.18 26.54

(83008302, 81008102) 16.32 22.78

in the right branch after the linear layer, and the zero-difference branch can
propagate through two further steps (i.e. Rounds 13−18 in Table 8). Thus, an
adversary can observe that only a single branch will be active after five steps; the
final linear layer can then be easily inverted. On the downside, the probability
of truncated trails must exceed 2−32 for a useful distinguisher.

To ensure a sufficient probability of the differential, we employ Property 1 at
the plaintext side to reduce the number of steps to trace through. So, we obtain
the round keys of Round 3, 4, and that for the right branch of Round 5 from
guessing only 64 bits of key material. At the ciphertext side, we choose structures
of 232 texts, such that all texts in a structure have a constant value in the right
branch, and iterate over all values on the left branch through Rounds 16−18. In
the following, we mount a chosen-ciphertext attack on 16-round Sparx-64/128
covering Rounds 3 through 18; the used differential trail is given in Table 8.

Structures and Sets. We choose 2m structures of 232 ciphertexts each from
a base text S0

18 = (L18, R18), and 232 − 1 derived texts Si
18 = (Li

18, R18) from
iterating over all 232 values L18, and derive the 232 ciphertexts Ci ← L(Si) that
form the structure. Since we employ all 232 possible values for the right branch



Differential Cryptanalysis of Round-Reduced Sparx-64/128 471

Table 8. The truncated differential trail through 16 rounds. A * symbol marks a
truncated difference which can take any possible value.

Rd. i ΔLi ΔRi hw

2 ******** ******** – –

3 ******** ******** – –

L 00000000 ******** – –

4 00000000 ******** – –

5 00000000 0a204205 0 –

6 00000000 02110a04 0 5

L 02110a04 00000000 0 0

Rd. i ΔLi ΔRi hw

7 28000010 00000000 4 0

8 00400000 00000000 2 0

9 80008000 00000000 0 0

L 80008000 80008000 0 0

10 ******** ******** ? ?

11 ******** ******** ? ?

12 ******** ******** ? ?

L 00000000 ******** 0 0

Rd. i ΔLi ΔRi hw

13 00000000 ******** 0 ?

14 00000000 ******** 0 ?

15 00000000 ******** 0 ?

L ******** 00000000 0 0

16 ******** 00000000 ? 0

17 ******** 00000000 ? 0

18 ******** 00000000 ? 0

L ******** ******** 0 0

of Rounds 16 to 18, their 263 pairs will form all possible differences in this branch
about 231 times at any point until the end of Round 12, i.e., Δ12. From exper-
iments, we observed that the truncated differential (80008000, 80008000) leads
to (00000000, ********) with probability 2−17.36. Hence, there is a subset of
good differences Δ12 that can lead to (80008000, 80008000) with this accumu-
lated probability. Since we have 231 pairs for each such Δ12, we expect that
there are about 231−17.36 ≈ 213.64 pairs with Δ9 = (80008000, 80008000), and
213.64−6−5 = 22.64 pairs that follow our trail up to Δ5. We have approximately
263 pairs in a structure that have our desired difference with probability 2−64,
so we expect 2−1 false positive pairs from the structure.

Experimental Verification. We verified a variant of our distinguisher exper-
imentally using 100 random keys and 232 random pairs. For practicality, we
considered it in encryption direction, i.e., we chose random pairs with start dif-
ference (ΔL5, ΔR5) = (00000000, 0a204205), encrypted them to the states after
Round 18 and inverted the final linear layer. On average, we obtained 23.75 pairs
with zero difference in the right branch, which corresponds to a probability of
23.75−32 = 2−28.25, which is close to the expected 2−28.36.

Attack Steps. Using Property 2, we define a linear function F : F32
2 × F

32
2 →

F
64
2 with rank n − 1 = 63, so that F (Δ) = 064 for Δ = (00000000, 0a204205).

The attack consists of the following steps:

1. Construct 2m structures as described above. For each structure, request the
corresponding 232 plaintexts P i from a 16-round decryption oracle.

2. Initialize a list K of 264 key counters.
3. For each of the 264 guesses of K0

2 ,K1
2 ,K2

2 ,K3
2 , i.e., the key of Round 2:

3.1 Re-encrypt all plaintexts over one round until the state after the linear
layer of Round 3 and store them in a list H according to the values of their
left branches. Only consider pairs that collide in L3 after the application
of the linear layer L, and store those in a distinct list H′.
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3.2 For all texts, compute (L3, R5), apply F (Rr), and store the updated states
in H. Discard all pairs that do not collide. For each colliding pair, incre-
ment the counter for the current key candidate in K.

4. Output the keys in descending order of their corresponding counters.

Complexity. The computational complexity results from:

– Step 1 requires 2m+32 16-round decryptions. We assume that the computa-
tional costs for decryption and encryption are equal.

– Step 3.1 requires 264 · 2m+32 · 1/16 · 2 ≈ 2m+92 encryption equivalents since
we consider one out of 16 rounds. From the

(

232

2

) ≈ 263 pairs of one structure,
we expect 263−32 = 231 false positive pairs for each structure at this step.

– We approximate the costs for a call to F by those of a call to two Speckey

rounds since both branches are used. The complexity of Step 3.2 is therefore
given by 264 · 231+m · 4/32 ≈ 2m+92 encryption equivalents on average. We
expect about 263−64 = 2−1 false-positive pairs per structure and key can-
didate, whereas we have 231−28.36 ≈ 22.64 correct pairs for the correct key
candidate, again per structure.

The computational complexity sums to

2m+32 + 2m+92 + 2m+92 ≈ 2m+93 Encryptions.

The memory complexity stems from storing a byte counter for the current key
candidate, i.e., 264 · 8/64 = 261 states, plus 232 texts. The data complexity is
given by 2m+32. A single structure, i.e., m = 1, suffices to obtain at least two
correct pairs for the correct round-key candidate.

6 Rectangle Attack on 16-Round Sparx-64/128

High-Level View. This section describes a rectangle attack on 16-round
Sparx-64/128. Our attack starts after the second round of the cipher, i.e., it
starts with Round 3. Again, we guess 64 key bits to get through Rounds 3 and 4
and the right branch of Round 5. The attack covers then Rounds 3 through 18.

Differential Trails. Table 9 illustrates the employed differential trails. The
top trail covers Rounds 3 through 9 and the right part of Rounds 10 to 12 since
the right part contains a zero difference which propagates for free through the
A3 box of Rounds 10 to 12. The bottom trail covers Rounds 13 through 18, and
the left part of Rounds 10 through 12 in decryption direction. Again, the bottom
trail has a zero difference in that part, which propagates for free through the A3

box backwards through Rounds 12 through Round 10.
Again, we experimentally verified the boomerang switch in the middle. From

100 experiments with random keys and 226 independently at random chosen pairs
(P, P ′) with difference α = (80008000, 80008000), encrypted through three steps
to (C,C ′), applied the δ-shift (80008000, 80008000) to obtain (D,D′), decrypted
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Table 9. Our used differential characteristic through the top (left) and bottom (right)
trail for our 16-round rectangle attack on Sparx-64/128.

Rd. i ΔLi ΔRi hw

4 28000010 – –
5 00400000 00400000 2 –
6 80008000 80008000 0 0
L 00000000 80008000 0 0

7 00000000 ******** 0 –
8 00000000 ******** 0 –
9 00000000 ******** 0 –
L ******** 00000000 0 –

10 ******** 00000000 – 0
11 ******** 00000000 – 0
12 ******** 00000000 – 0
L ******** ******** – 0

Rd. i ΔLi ΔRi hw

10 00000000 ******** 0 –
11 00000000 ******** 0 –
12 00000000 ******** 0 –
L 02110a04 00000000 0 0

13 ******** 00000000 – 0
14 ******** 00000000 – 0
15 ******** 00000000 – 0
L 80008000 80008000 0 0

16 81008102 81008102 1 1
17 8000840a 8000840a 2 2
18 850a9520 850a9520 4 4
L 2a102a10 850a9520 0 0

those back to (Q,Q′), and counted the number of times that Q ⊕ Q′ = α. We
observed an average probability of approximately 2−20.18. So, for the correct key,
we obtain a probability of approximately (p̂q̂)2 ≈ (

2−2
)2 · 2−20.18 · (

2−14
)2 ≈

2−52.18 for a valid quartet.

Attack Procedure. Choose a linear function F : F64
2 → F

64
2 of rank 63 s.t.

F (ΔL4 ‖ΔR5) = 064. The attack consists of the following steps:

1. Initialize a list of key counters L to zero, for all 264 possible values for the
round keys of Round 2.

2. Initialize two empty hash maps P and Q. Choose 2m ciphertext pairs (C,D)
with difference (2a102a10, 850a9520), and ask for their corresponding plain-
texts (P,Q). Store the pairs into P indexed by P .

3. For each of the 264 guesses of (K0
2 ,K1

2 ,K2
2 ,K3

2 ):
3.1 Partially re-encrypt all plaintext pairs (P,Q) to their corresponding states

(LP
4 , RP

5 ) and (LQ
4 , RQ

5 ).
3.2 Apply F ((L4, R5)) to all states and store the corresponding outputs

(̂LP
4 , ̂RP

5 ) and (̂LQ
4 , ̂RQ

5 ) into a hash table Q. Only consider pairs of pairs
p = (̂LP

4 , ̂RP
5 ), q = (̂LQ

4 , ̂RQ
5 ), p′ = (̂LP ′

4 , ̂RP ′
5 ), q′ = (̂LQ′

4 , ̂RQ′
5 ) that col-

lide in either (p, q) = (p′, q′) or (p, q) = (q′, p′) and discard all further
quartets. We expect 22m · 22·−64 ≈ 22m−128 quartets on average.

3.3 If a quartet survives, increment the counter for the current key guess.
Choose a plaintext pair with our desired difference – w.l.o.g., (p, p′) –
from the current quartet, and check for all remaining key bits if it follows
our path until Round 6. If yes, encrypt it further roundwise until Round 9.
If all roundwise checks pass, check for p if it encrypts to ciphertext C. If
yes, test again for (q, q′) and output the key candidate if it also matches.

4. If no key candidate has been returned, return ⊥.
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For m = 58.6 pairs, we can expect (2mp̂q̂)2/2n ≈ 2117.2 ·2−52.18/264 ≈ 2 valid
quartets for the correct key guess. In contrast, we can expect 2117.2−2·64 = 2−10.8

quartets for a wrong key guess.

Complexity. The computational complexity results from:

– Step 2 requires 2 · 258.6 ≈ 259.6 16-round decryptions. We assume that the
computational costs for a decryption and encryption are equal.

– Steps 3.1 and 3.2 require 264 · 2 · 2m · 6/32 ≈ 2122.2 encryption equivalents
since we consider five out of 32 Speckey rounds in the 16-round cipher for
re-encryption and approximate the costs for computing F by the costs of a
Speckey round.

– Step 3.2 will require 264 · 2 · 2m = 2m+65 memory accesses (MAs) and com-
parisons.

– Step 3.3 will require at most 264 ·22m−128 ·264 ≈ 2117.2 encryption equivalents
to identify the correct key.

Hence, the computations are upper bounded by approximately

259.6 + 2122.2 ≈ 2122.2 encryptions and 259.6 + 2123.6 ≈ 2123.6 MAs.

The data complexity is upper bounded by 259.6 chosen ciphertexts. The memory
complexity is upper bounded by storing at most 4 · 259.6 states at a time, which
is equivalent to storing approximately 261.6 states.

7 Conclusion

This work presents two standard differential attacks using truncated differen-
tials and rectangle attacks on 16-round Sparx-64/128. The former attack builds
upon a nine-round (three-step) differential trail that is extended by a six-round
(two-step) truncated trail. Adopting the observation by Abdelkhalek et al. [1], we
can turn the distinguishers into a 16-round chosen-ciphertext attack and recover
the round keys by just guessing 64-bit of the key material. Our truncated- dif-
ferential attack requires approximately 232 chosen ciphertexts, about 232 states,
and approximately 293 encryption equivalents. Our proposed rectangle attack
exploits the Feistel structure of Sparx using differential trails with inactive
branches over their middle step; similarly, the yoyo attack in the full version of
this paper [2] profits from the structure over the end. It may be interesting for
further studies to investigate yoyo cycles of more iterations of en- and decryption.

We stress that our attacks do not threaten the security of Sparx-64/128, but
provide deeper insights in its security against attacks in the single-key setting.
We can observe a strong clustering effect of many differential characteristics in
our studies and exploit them in our attacks; it remains subject to further studies
to employ them for further rounds. For public verification and future works, our
trails, tests, and implementations of Sparx-64/128 will be published into the
public domain2.
2 https://github.com/TheBananaMan/sparx-differential-attacks.

https://github.com/TheBananaMan/sparx-differential-attacks
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