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Abstract

Phytoplankton are one of the key players in the ocean and 
contribute approximately 50% to global primary produc-
tion. They serve as the basis for marine food webs, drive 
chemical composition of the global atmosphere and 
thereby climate. Seasonal environmental changes and 
nutrient availability naturally influence phytoplankton 
species composition. Since the industrial era, anthropo-
genic climatic influences have increased noticeably – also 
within the ocean. Our changing climate, however, affects 
the composition of phytoplankton species composition on 
a long-term basis and requires the organisms to adapt to 
this changing environment, influencing micronutrient 
bioavailability and other biogeochemical parameters. At 
the same time, phytoplankton themselves can influence 
the climate with their responses to environmental changes. 
Due to its key role, phytoplankton has been of interest in 
marine sciences for quite some time and there are several 
methodical approaches implemented in oceanographic 
sciences. There are ongoing attempts to improve predic-
tions and to close gaps in the understanding of this sensi-
tive ecological system and its responses.

�Introduction

Phytoplankton are some of the smallest marine organisms. 
Still, they are one of the most important players in the marine 
environment. They are the basis of many marine food webs 
and, at the same time, sequester as much carbon dioxide as 
all terrestrial plants together. As such, they are important 
players when it comes to ocean climate change.

In this chapter, the nature of phytoplankton will be inves-
tigated. Their different taxa will be explored and their eco-
logical roles in food webs, carbon cycles, and nutrient uptake 
will be examined. A short introduction on the range of meth-
odology available for phytoplankton studies is presented. 
Furthermore, the concept of ocean-related climate change is 
introduced. Examples of seasonal plankton variability are 
given, followed by an introduction to time series, an impor-
tant tool to obtain long-term data. Finally, some predictions 
of phytoplankton community shifts related to climate change 
will be presented.

This review aims to give an introduction of phytoplank-
ton, climate models and the interaction of phytoplankton 
with the environment. We want to point out small scale 
changes caused by seasonality as well as examples of whole 
ecosystem changes.

�What Is Phytoplankton?

Plankton play a key role in the ocean as they provide the 
foundation of marine food webs. In general, the term plank-
ton (“planktos” = wandering or drifting) indicates that these 
organisms dwell in water as they are not able to move against 
the currents (Hensen 1887). Nekton, on the contrary, can 
move freely and include mostly organisms bigger than 
around 2  cm. The broad range of planktonic organisms 
divides into several trophic levels and size classes as pro-
posed by Sieburth et al. (1978). They belong to all different 
types of taxonomic groups such as viruses, archaea, bacteria, 
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fungi, algae, protozoa, and animals. Viruses and bacteria 
(virio- and bacterioplankton) as well as archaea belong to 
femto- and picoplankton, which range from 0.02 to 0.2 μm 
and 0.2 to 2.0 μm in size, respectively. Mycoplankton (fungi) 
can mostly be found within nanoplankton (2.0–20  μm). 
Phytoplankton spans from picoplankton up to microplankton 
(2–200 μm), whereas zooplankton, in rare cases, can reach 
up to 200 cm (megaplankton).

The high diversity of phytoplankton extends from pro-
karyotes (cyanobacteria) to several groups of eukaryotes. 
Classification of phytoplankton groups constantly changes 
due to the increasing amount of molecular phylogenetic 
studies and is under constant flux of opinion (e.g., Parfrey 
et al. 2006). Cyanobacteria have been traditionally classified 
using morphological features. However, due to the different 
scientific communities, the bacterial classification is not eas-
ily comparable with the phycological taxonomy. In the last 
decades, several new concepts have been introduced (see 
e.g., Hoffmann et al. 2005; Komárek 2010; Komárek et al. 
2014). With new approaches that are based on molecular 
techniques and the arising problems to integrate this new 
information into the classification, there have been several 
approaches for reaching a consensus in both communities 
(e.g., Komárek 2006; Palinska and Surosz 2014). So far, all 
major cyanobacterial groups, even cyanobacteria that have 
been categorized as freshwater species, can be found in the 
marine environment (Burja et al. 2001; Paerl 2012).

Adl et  al. (2005) revised the classification of protozoa 
from Levine et al. (1980) and expanded it to other protists in 
the name of the International Society of Protistologists. They 
compared modern morphological approaches, biochemical 
pathways and molecular phylogenetics data to create a new 
classification. Only 7 years later Adl et al. (2012) revised this 
classification. This new revision proposes a division into six 
super-groups: Archaeplastida, Amoebozoa, Opisthokonta, 
Excavata, and SAR (Stramenopila, Alveolata, and Rhizaria). 
Throughout the last years, the concept of different super-

groups has been applied for the eukaryotic phytoplankton. 
Changes and uncertainties are still present in the super-
groups that are named here. Additionally, several groups of 
organisms exist, which do not belong to any of the super-
groups, for example some groups of flagellates.

�Phytoplankton Taxonomy and Morphology

Depending on area, season, and size class, different groups 
can act as dominating organisms in the food web and, there-
fore, regulate the seasonality of the predators as well. The 
most frequent dominating eukaryotic phytoplankton belong 
to diatoms (Stramenopila), dinoflagellates (Alveolata) or 
haptophytes (also called prymnesiophytes, no super-group) 
(Fig. 1). Other groups include Chlorophyta (Archaeplastida), 
Cryptophyta, Centrohelida and Telonemia, with the last three 
not belonging to any of the super-groups (e.g., Paerl 1988; 
Arrigo et al. 1999; Adl et al. 2012).

Diatoms (Bacillariophyta) possess a so-called frustule of 
silica that consists of two overlapping valves (hypotheca and 
epitheca) and a girdle (cingulum). Reproduction is mostly 
asexual. The old cell divides and each daughter cell builds up 
a new smaller theca inside the parent wall. If the theca gets 
too small for further reproduction the cell dies. Prior to death, 
the cell releases auxospores, which grow into new cells. 
Another characteristic feature is the symmetry of diatoms. 
They are either centric or pennate symmetric. They occur as 
single cells or more often in colonies (Gross 1937). Diatoms 
are mainly autotrophs, with several heterotrophic strategies 
to survive during darkness (e.g., Tuchman et  al. 2006; 
McMinn and Martin 2013).

Dinoflagellates consist of thecate and athecate groups. 
Thecate dinoflagellates possess a cover of cellulose plates in 
contrast to athecate dinoflagellates, which are more variable 
in shape. Both groups possess two characteristic parts: epi-
some and hyposome. The cells also feature two grooves. A 

a) b) c)

Fig. 1  Exemplary schematic drawings of three important phytoplank-
ton groups. (a) Triangular diatom Trigonium sp., (b) dinoflagellate 
Pyrodinium bahamense and (c) coccolithophorid Emiliania huxleyi 

(prymnesiophytes). (Adapted from the open source Plankton*Net Data 
Provider at the Alfred Wegener Insitute for Polar and Marine Research 
(a) and (c), and from Landsberg et al. (2006) (b))
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cingulum divides the cells into two parts and houses one 
transverse flagellum and the sulcus houses a second longitu-
dinal flagellum. Dinoflagellates can be auto-, mixo-, and het-
erotrophs (e.g., Carvalho et  al. 2008; McMinn and Martin 
2013). Several species can cause so-called “red-tides” and 
harmful algae blooms (Loeblich 1976; Taylor et al. 2008).

Haptophytes belong to flagellates and consist of different 
groups and genera. They include, for example, coccolitho-
phorids and the potentially toxic algae genus Prymnesium, 
which includes some cytotoxin, ichthyotoxin, neurotoxin, 
and haemolytic toxin producing species (Seoane et al. 2017). 
Motile haptophytes possess two flagella and a haptonema. 
The haptonema is a characteristic cell organelle and resem-
bles a third flagellum. In contrast to the other two flagella, it 
is not used for swimming but to capture particles and to 
attach to surfaces (Hibberd 1976; Kawachi et  al. 1991; 
Jordan and Chamberlain 1997; Andersen 2004).

�Primary Production and Essential Elements

Due to its broad distribution and abundance in the ocean, 
phytoplankton is the fundamental primary producer and 
serves as a food source at the base of oceanic food webs. It is 
part of the microbial loop due to its interaction with bacteria 
and its decomposition by viral lysis and bacteria.

In general, phytoplankton is dependent on the availability 
of nutrients, light, and other prevalent conditions such as 
regional and seasonal changes both physically (temperature, 
salinity, currents, mixing of water layers, precipitation) as 
well as biologically (e.g., parasites, grazing of potential 
predators) (Falkowski and Oliver 2007; Racault et al. 2012, 
further reading: Mackas et  al. 1985; Fenchel 1988; Reid 
et al. 1990).

Phytoplankton uses photosynthesis as energy source and, 
doing so, contributes with 48% noticeably to global carbon 
fixation by taking up and incorporating carbon from carbon 
dioxide. Another important environmental function of phyto-
plankton is the production of oxygen during photosynthesis 
(Field et al. 1998). Since photosynthesis requires light, active 
phytoplankton can only be found in the euphotic zone of the 
ocean (Fig. 2). Depth of the euphotic zone may differ enor-
mously depending on the presence of biological and non-
biological substances absorbing and scattering light within 
the water column. However, phytoplankton itself often nar-
rows the euphotic zone (Lorenzen 1972).

Phytoplankton as primary producers are part of the bio-
logical carbon pump, since they take up carbon dioxide 
(CO2) from the atmosphere and bind the carbon in their cells, 
which are then taken up by higher trophic levels or become 
part of sinking particles and remineralisation. Time scales 
for the carbon to re-enter the cycle and to be reused can vary 
from days, over weeks and years up to several millennia, 

especially for carbon reaching the sediment surface (Emerson 
and Hedges 1988; Shen and Benner 2018). Sinking particles 
that originate from fragmentation, aggregation or egestion 
after consumption by higher trophic levels such as zooplank-
ton can either be consumed again or be decomposed by 
microbial processes. At the same time, active vertical migra-
tion by the organisms distributes the carbon further within 
different water layers and therefore has a significant impact 
on the oceanic carbon cycle and productivity (Azam 1998; 
Buesseler et  al. 2007). As consequence, phytoplankton are 
subject to high fluctuations and show seasonality as well as a 
spatial heterogeneity.

To produce biomass, phytoplankton need certain nutri-
ents, the most important being carbon (C), nitrogen (N) and 
phosphorous (P). For marine primary production, Redfield 
(1958) calculated the ratio in which these essential nutrients 
are required as C:N:P = 106:16:1.

Important sources of nitrogen are nitrate and ammonium. 
Ammonium can be taken up effectively by phytoplankton 
and provides up to 35% of nitrogen assimilated depending 
on species and location (Eppley et al. 1971, 1979). Nitrate 
uptake as nitrogen source requires a higher amount of energy. 
Thus, ammonium uptake is generally preferred (Thompson 
et  al. 1989). Furthermore, nitrate uptake is relatively slow. 
Phytoplankton show a great metabolic diversity. For example 
some phytoplankton species are incapable of nitrate uptake, 
whereas other species even prefer the uptake of nitrate to 
ammonium. Ammonium can, in high concentrations, even 
suppress growth (Glibert et  al. 2016; Van Oostende et  al. 
2017). Nitrogen can be taken up faster by amino acids and 
fastest via ammonium (Dortch 1982), though only some 
phytoplankton species are able to take up amino acids 
(Wheeler et al. 1974).

In competitive environments, however, organic nitrogen 
such as urea can serve as valuable source to phytoplankton 
(Bradley et al. 2010). The availability of nitrogen in different 
forms can also have an influence on the respective species 
composition (Glibert et al. 2016; Van Oostende et al. 2017).

Phosphorus is also essential for phytoplankton and is usu-
ally taken up via phosphate, which frequently acts as limiting 
nutrient (Perry 1976). Both nitrogen and phosphorus can act 
as limiting nutrients for primary production (Smith 2006). 
Some phytoplankton species are capable of reducing their 
phosphorus demand by producing substitute lipids instead of 
phospholipids (Van Mooy et  al. 2009). Marine diatoms, 
which can make up large fractions of phytoplankton com-
munities, are furthermore dependent on silicate to form their 
characteristic external shell (Harvey 1939; Paasche 1973a, b; 
Treguer et al. 1995; Turner et al. 1998).

Apart from these crucial elements, a range of trace metals 
is required for phytoplankton growth. Morel and Price (2003) 
made a first attempt to calculate a stoichiometry for essential 
trace metals including iron, manganese, zinc, copper, cobalt, 

Phytoplankton Responses to Marine Climate Change – An Introduction



58

and cadmium. Particularly iron is a crucial trace metal that is 
strongly affecting the productivity of phytoplankton in vast 
areas of the ocean (Martin and Gordon 1988; Morel et  al. 
1991). To facilitate trace metal uptake, phytoplankton can 
make use of ligands, which are organic molecules that are 
able to complex metals and help to keep them in solution. 
Especially ligands complexing iron, so called siderophores, 
are beneficial for phytoplankton (Hassler et al. 2011; Boiteau 
et al. 2016).

Due to the strong effect iron has on the productivity of 
phytoplankton, its role was assessed in large scale experi-
ments. After the first successful iron fertilization experi-
ments, which tested the importance of iron in situ on a large 
scale (e.g., Martin et al. 1994; Coale et al. 1996), the possi-
bility to reduce inorganic carbon with iron fertilization was 
defined, yielding in sequestering of carbon dioxide during 

blooms (Bakker et al. 2001, 2005; Boyd et al. 2007). While 
Buesseler et al. (2004) showed that the “Southern Ocean Iron 
Experiment” caused a small increase in carbon flux in the 
region, the “Kerguelen Ocean and Plateau compared Study” 
could prove an even higher carbon sequestration efficiency 
(Blain et al. 2007).

Other, more complex molecules are even more important 
for phytoplankton growth. Some species require exogenous 
vitamins to grow. Especially vitamin-B depletion can nega-
tively influence phytoplankton productivity (Gobler et  al. 
2007).

Oceanic dissolved organic carbon (DOC) is one of the 
largest marine carbon reservoirs. Kirchman et al. (1991) cal-
culated turnover rates of DOC using its bacterial uptake. 
DOC and dissolved organic nitrogen (DON) cycle differ-
ently from each other. During phytoplankton blooms, more 

Fig. 2  Cycling of marine phytoplankton. Phytoplankton live in the 
photic zone of the ocean, where photosynthesis is possible. During pho-
tosynthesis, they assimilate carbon dioxide and release oxygen. If solar 
radiation is too high, phytoplankton may fall victim to photodegrada-
tion. For growth, phytoplankton cells depend on nutrients, which enter 
the ocean by rivers, continental weathering, and glacial ice meltwater 
on the poles. Phytoplankton release dissolved organic carbon (DOC) 

into the ocean. Since phytoplankton are the basis of marine food webs, 
they serve as prey for zooplankton, fish larvae and other heterotrophic 
organisms. They can also be degraded by bacteria or by viral lysis. 
Although some phytoplankton cells, such as dinoflagellates, are able to 
migrate vertically, they are still incapable of actively moving against 
currents, so they slowly sink and ultimately fertilize the seafloor with 
dead cells and detritus
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DOC than DON is produced, presumably by phytoplankton 
(Kirchman et  al. 1991). The amount of DOC bacteria can 
assimilate depends on the phytoplankton species releasing it 
(Malinsky-Rushansky and Legrand 1996). Phytoplankton 
release of DOC alone cannot meet bacterial needs and thus 
allochthonous DOC sources as well as sloppy feeding, viral 
lysis, hydrolysis by exoenzymes, and zooplankton excretion 
play a role in releasing additional DOC into the ocean 
(Fig. 2) (Mopper and Lindroth 1982; Baines and Pace 1991; 
Jiao and Azam 2011). DOC produced by phytoplankton con-
tains both high and low molecular weight substances. 
Bacteria assimilate these low molecular weight substances, 
such as amino acids, peptides, and carbohydrates rather 
quickly. High molecular weight substances are only slowly 
or not at all assimilated and can contribute to refractory DOC 
(Sundh 1992). During phytoplankton blooms, polysaccha-
ride particle formation can transform DOC to particulate 
organic matter. Such polysaccharides can provide binding 
sites for trace metals and could participate in controlling 
their residence time in the ocean (Engel et  al. 2004). 
Therefore, a variety of potentially relevant bioactive mole-
cules exists within the complex DOC pool produced by phy-
toplankton that influences the ecological interplay of 
phytoplankton with its environment.

�Methods for Studying Phytoplankton Species 
Composition

Several comprehensive reviews providing good overviews 
over a variety of methods are available for plankton research. 
Techniques to assess phytoplankton diversity were collected 
by Johnson and Martiny (2015). Applications of flow cytom-
etry have been reviewed by Dubelaar and Jonker (2000). A 
revision of case studies for molecular methods to estimate 
diversity is available from Medlin and Kooistra (2010). 
Reviews for nutrient quantification, pigment analysis and 
remote sensing are also available (Cloern 1996; Jeffrey et al. 
1999; Roy et al. 2011; Blondeau-Patissier et al. 2014).

Methods that yield useful approaches to help understand-
ing phytoplankton species composition and its interconnec-
tion to environmental conditions are summarized in Fig. 3.

�Climate Influences on Phytoplankton

Since the beginning of the industrial era, anthropogenic 
influences on the climate have steadily increased. Covering 
more than two thirds of the Earth’s surface, the area for 
exchange between the atmosphere and sea surface is large. 
Apart from that, the ocean is subject to several effects trig-
gered by climate change.

�Climate Change in the Ocean

The two most prominent changes to the ocean triggered by 
climate change are ocean warming and acidification. Both 
aspects affect the ocean globally. Increasing anthropogenic 
carbon dioxide emissions have increased partial pressure of 
carbon dioxide, both, in the atmosphere and the ocean. The 
ocean acts as sink for anthropogenic carbon dioxide and is, 
by increasingly taking up carbon dioxide, gradually acidi-
fied. It is estimated that surface water pH decreased by 0.1 
since the beginning of the industrial era. With increasing 
acidification, ocean surface water becomes gradually corro-
sive to calcium carbonate minerals, of which many seashells 
are composed (Fig. 4) (Ciais et al. 2013; Rhein et al. 2013).

The ocean has a high heat capacity and absorbs solar radi-
ation more readily than ice. It is virtually certain that the 
upper ocean has warmed. This warming dominates the global 
energy change inventory and accounts for more than 90% of 
the total energy change inventory, while melting ice, warm-
ing of continents, and the warming of the atmosphere play 
only a minor role. Warming of the upper ocean is an impor-
tant factor that has led to an average sea level rise of 0.19 m 
between 1901 and 2010 and it is likely that the sea level rise 
will accelerate (Fig. 4) (Rhein et al. 2013).

Furthermore, there are plenty of regional changes con-
nected to climate change such as patterns of salinity trends. 
The IPCC report defines a region as a territory characterized 
by specific geographical and climatological features, whose 
climate is affected by scale features (e.g., topography, land 
use characteristics, and lakes) and remote influences from 
other regions (IPCC 2013). Local changes in salinity are 
expected (Fig. 4). In general, a higher contrast between fresh 
and salty regions is expected with salty regions becoming 
saltier and vice versa. Sea level rise in combination with 
wind stress is expected to result in high waves in some 
regions. Intermediate and deep water changes are yet diffi-
cult to assess, since long-term data are lacking. Generally, 
changes in salinity, density, and temperature appear to occur 
regionally. Anthropogenic influences on coastal runoff and 
atmospheric deposition of nutrients are another important 
regional factor. Changing nutrients, such as the input of 
nitrogen fertilizers, can influence the biological carbon pump 
and ultimately lead to an increasing eutrophication of waters 
(Fig. 4) (Ciais et al. 2013; Rhein et al. 2013).

�Seasonality and Future Changes 
in Phytoplankton Communities

Phytoplankton communities undergo seasonal changes. 
Depending on regional properties like climatic or biogeo-
graphic conditions, the changes can differ  greatly. While 
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regions near the equator undergo relatively small changes in 
temperature during the year, the poles are influenced by large 
changes caused by severe differences in sunshine intensity 
and daylight duration. As the environmental factors are 
already highly influenced by these changes, phytoplankton 
communities need to adapt to these different conditions as 
well. Specifically useful study sites are the poles, since sea-
sonal climate variability is very distinct. Other sites that are 
under continuous and alternating changes are shelf and 
coastal systems, which are for example influenced by fresh-
water inflow from the mainland as well as tides and wave 
actions. The following examples of different regional sea-
sonal changes over the globe and the corresponding phyto-
plankton community successions shall give a small overview 
about the vast influence of climate conditions on phytoplank-
ton communities.

In the Arctic summer, glacial ice melt water adds iron and 
other nutrients into the Labrador Sea (Fig. 2). Apart from the 
coastal summer blooms resulting from that input, glacial 
meltwater nutrients travel distances of up to 300 km on the 
ocean’s surface (Arrigo et al. 2017). In the western Arctic, 
even at closely located sites, different stages of seasonal 
development could be observed for local phytoplankton 
communities. The considerable variability in quantitative 
abundances and biomass values of local phytoplankton spe-
cies is highly dependent on the irregularity of seasonal pro-
cesses in the physical environment, ice melting, heating, and 

the dynamics of stratification (Sukhanova et  al. 2009). 
Furthermore, massive and widespread phytoplankton blooms 
could occur under the Arctic sea ice, given regional nitrogen 
concentrations higher than 10 μmol L−1 in 50% of the ice 
covered continental shelf. Those under-ice blooms are also 
an important factor to be taken into account when estimating 
changes in the arctic environment (Arrigo et al. 2012).

In the Antarctic, species abundance and composition are 
largely influenced by seasons in the distinct regions subjected to 
differences in environmental factors and processes (Deppeler 
and Davidson 2017). Tréguer and Jacques (1992) divided the 
Southern Ocean into four different zones, without considering 
the Permanent Ice Zone, with regard to their different nutrient 
regimes, physical parameters, and extents of primary produc-
tion. While diatom-dominated blooms and severe nutrient 
decreases can be observed in the Coastal and Continental Shelf 
Zone, the Seasonal Ice Zone is characterized by a very variable 
hydrological system depending on the ice cover retreat and 
growth. The Permanently Open Ocean Zone is a nutrient rich 
region, while the northern part is characterized by a silicate limi-
tation and the Polar Front Zone can harbor high amounts of 
phytoplankton. There are, however, vast regions, which are suf-
fering under iron limitations. In general, nanoplankton domi-
nates within sea ice and open water unless diatom blooms occur, 
which happens in May, November and December at the bottom 
of the ice as well as in January and February in open water (e.g., 
Perrin et al. 1987; Swart et al. 2015).

Water body
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phytoplankton

Sampling

Remote Sensing

Raw
sample Fixation Filtration

Microscopy

Light

Fluorescence Electron

Flow
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Pigment
Analysis

Nutrients

DNA/RNA
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Molecular
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Fig. 3  Schematic overview of the methods used for phytoplankton 
studies. Three different possibilities to process the sample are using raw 
samples, fixation or preservation, and filtration.  For microscopy and 
flow cytometry raw samples either are measured immediately or have to 
be fixed for later measurements. Since molecular methods, pigment 

analysis and detection of molecular tracers usually require concentrated 
cells, filter residues serve for phytoplankton measurements. Molecular 
characterization and quantification of trace molecules is performed 
using chromatography, mass spectrometry (MS), and nuclear magnetic 
resonance (NMR) spectroscopy
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In the Cooperation Sea, which is located in the Seasonal 
Ice Zone as defined by Tréguer and Jacques (1992), nutrient 
concentrations increase throughout the year until December, 
where nitrate and silicate drop notably followed by a phos-
phate decrease. Here, the largest species diversity occurs 
during summer, while plenty of dead diatoms are observable 
in winter (Perrin et al. 1987).

On the Weddell Sea ice edge, huge differences between 
spring and autumn can be observed. During spring, long 
chains of vegetative cells form and diatoms as well as hapto-
phytes build up gelatinous colonies in the open water, while 
only short chains and few single cells occur under the ice. 
The same conditions hold true for autumn, where short 
chains and single cells dominate. Furthermore, diatom spores 

with storage products and enlarged cells are produced then, 
as results of their sexual reproduction cycle. Thus, the ice 
edge serves as boundary of different life stages (Fryxell 
1989).

One of the most productive regions in the Southern Ocean 
is the Western Antarctic Peninsula, where phytoplankton 
blooms occur around November to December, after the sea 
ice retreats in October. In 2012, the bloom was dominated by 
diatoms and Phaeocystis sp., with diatoms being the most 
dominant group at the peak of the bloom. Mixing events can 
cause a crash in the phytoplankton population, which hap-
pened in mid-December in this region. Afterwards, the popu-
lation consisted of large groups of cryptophytes and 
Phaeocystis sp. In March, a second, smaller bloom, 

Fig. 4  Overview about climatic changes and their effects on the ocean 
after Ciais et al. (2013) and Rhein et al. (2013). Regional effects are 
displayed in italics. Excess solar radiation enters the atmosphere. Ice 
reflects this radiation, but it is taken up by the surface ocean, leading to 
its warming. Ocean warming results in land ice melt and thermal 
expansion, which both result in a sea level rise. Heating of vast areas 
of the surface ocean also slowly heats up the intermediate water layer 
which, among others, can ultimately lead to regional changes of deep 
water. Regional freshening occurs on sites with melting land ice. 
Regional salinification on the contrary happens in areas of vast evapo-

ration. Surface ocean warming also decreases the solubility of gases, 
leading to a reduced oxygen concentration and thus changes in the 
sea-oxygen flux. Excess anthropogenic carbon dioxide enhances its 
uptake by the ocean and leads to a gradual acidification of the ocean. A 
decreasing pH results in bicarbonate undersaturation, which causes 
dissolving of shells and other minerals. Regional input of reactive 
nitrogen can lead to fertilization and eutrophication. Another regional 
effect is the occurrence of high waves. Heating, reduced oxygen con-
centrations and eutrophication lead to higher stratification of water 
masses
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dominated by diatoms and Phaeocystis sp., could be observed 
(Goldman et al. 2015).

Within the Eastern English Channel, diatoms, 
Chrysophyceae, Raphidophyceae and Prymnesiophyceae 
contribute most to carbon biomass. 40 species of diatoms, 
and two species for Chrysophyceae and Raphidophyceae can 
be found, respectively. A yearly occurring Phaeocystis sp. 
spring bloom represents the group Prymnesiophyceae. 
During summer, mostly large diatoms (>100 μm) dominated 
the community, whereas during the rest of the year mostly 
small cells could be found. Furthermore, Cryptophyceae 
(seven genera) could be found in early spring and autumn, 
Dinophyceae (26 genera or species) were found with the 
highest abundance in summer as well as Chlorophyceae and 
Prasinophyceae (Breton et al. 2000).

Not et al. (2004) found that in the eukaryotic picoplank-
ton the Prasinophyceae Micromonas pusilla was the domi-
nating species in the Western English Channel. In contrast to 
bigger size classes, picoplankton shows a high abundance 
throughout the year. The microphytoplankton bloom was 
dominated by a few diatom species like Guinardia delicat-
ula, Chaetoceros socialis, Pseudo-nitzschia spp. and 
Thalassiosira spp. during late spring and had maximum 
abundances during late summer (Ward et al. 2011).

Long-term data from Helgoland in the German Bight sug-
gested interactions of different environmental conditions 
with phytoplankton seasonality. Increase in sunshine hours 
correlates with increasing Secchi depths (measure of water 
transparency) and water temperature. Less turbulence in the 
water body leads to increasing Secchi depths. Higher tem-
peratures improve growth rates of phytoplankton, but cause 
lower abundances in early spring. Increased river discharge 
causes a decrease in salinity in spring, which negatively cor-
relates with Secchi depth. Increasing Secchi depth and thus a 
bigger euphotic zone benefits the growth of phytoplankton. 
Concentrations of nutrients such as nitrate, phosphate, and 
silicate decline rapidly during spring, when the phytoplank-
ton bloom starts and stay at low levels until autumn, when 
another phytoplankton bloom occurs. Depletion of nutrients 
causes inhibition of phytoplankton growth. In autumn and 
winter, new nutrients are released, causing concentrations to 
increase again. High zooplankton abundances cause belated 
phytoplankton blooms during spring. Higher grazing pres-
sure during winter decreases phytoplankton abundances, 
which then need a longer recovery time (Wiltshire et  al. 
2015). The phytoplankton community is dominated by dia-
toms in spring and early summer according to daily counts 
(Wiltshire et al. 2008). Dinoflagellate abundance rose from 
spring and reached maximum values during summer, where 
Noctiluca scintillans, Gyrodinium spp., and Protoperidinium 

spp. dominated. Mixotrophic dinoflagellates occurred in 
lower abundances than heterotrophs, which correlate with 
phytoplankton availability. However, during summer 2007, a 
bloom could be observed, in which several dinoflagellates 
such as Lepidodinium chlorophorum, Scrippsiella/
Pentapharsodinium spp., and Akashiwo sanguinea occurred 
(Löder et al. 2012). Cryptophytes could be found throughout 
the year with decline during diatom dominated times (Metfies 
et al. 2010).

As a sub-tropical region, the estuaries of the Gulf of 
Mexico are representing a warmer temperate region with 
long periods of warm temperatures as well as tropical storms 
(Georgiou et al. 2005; D’sa et al. 2011; Turner et al. 2017). 
In a study in the Pensacola Bay (Florida, USA) from 1999 to 
2001, Murrell and Lores (2004) investigated the role of cya-
nobacteria on the seasonal dynamics. The three most abun-
dant taxa were belonging to diatoms (Thalassiosira sp., 
Pennales, and Cyclotella sp.), and diatoms represented over 
50% of total abundance of phytoplankton counts. During 
December and January, dinoflagellates had high abundances 
(Prorocentrum minimum, Gymnodinium sp.), whereas high 
abundances of chlorophytes and cryptophytes were found 
during the spring and summer months. Cyanobacteria 
showed a strong correlation with high water temperatures 
and had highest abundances in summer. Further character-
ization indicated that the cyanobacteria belonged to the 
Synechococcus genus. In total, cyanobacteria made up of a 
large percentage of total chlorophyll (on average 43%) and 
dominated the chlorophyll biomass during their summer 
peak (Murrell and Lores 2004).

Another study showing similar results was conducted by 
Dorado et  al. (2015) in Galveston Bay (Texas, USA) from 
February 2008 to December 2009. North of Galveston Bay 
high phytoplankton biomass could be observed, with diatoms 
being the dominating phytoplankton group, followed by 
dinoflagellates, cryptophytes, and green algae. In compari-
son, the phytoplankton biomass was lower in the southern 
part of the bay and dominated by cyanobacteria. Cyanobacteria 
and green algae correlated inter alia to temperature and chlo-
rophyll a. Results of a multivariate analysis also showed that 
dinoflagellates and cyanobacteria are more abundant in areas 
where vertical mixing is limited (mid- and lower region of the 
bay). Seasonal patterns showed that diatoms, dinoflagellates, 
and cryptophyte abundances were highest during winter and 
spring, whereas cyanobacteria were most abundant in sum-
mer. It was found that high freshwater discharge correlated 
with diatom growth, indicating that a decrease of freshwater 
is accompanied with lower nutrient concentrations. These 
conditions coupled with the temperature changes are then 
more favorable for cyanobacteria growth.
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�Time Series Monitoring of Phytoplankton 
Diversity

Due to the importance of phytoplankton for the environment 
and their large seasonal variability, long-term studies dealing 
with phytoplankton diversity are a very important feature to 
monitor changes and to yield predictions for the future 
(Zingone et al. 2015).

Examples for European time series are Plymouth Station 
L4 (Harris 2010) in the western English Channel, Helgoland 
Roads in the south-eastern North Sea (Wiltshire et al. 2010) 
or the HELCOM surveys in the Baltic Sea (Wasmund et al. 
2011). One example for an automated system is the 
Continuous Plankton Recorder survey, which collects infor-
mation about plankton communities in the North Atlantic 
basin (Reid et al. 2003; McQuatters-Gollop et al. 2015).

In general, time series use different time scales and sam-
pling intervals, depending on the methods chosen, the 
amount and variety of parameters and sampling area. 
Therefore, sampling can range from daily sampling (e.g., 
Helgoland Roads) over monthly sampling to sampling dur-
ing certain periods like phytoplankton spring blooms. A dis-
tinction can be made between manual sampling and 
automatic systems like ferry boxes, floats, gliders, and moor-
ings for measurements in the open ocean or other places that 
are difficult to access. The latter are being implemented more 
and more, especially during the last decades (Wiltshire et al. 
2010; Church et al. 2013).

The responses monitored  depend on the focus of the 
respective phytoplankton studies. Short-term responses 
caused by nutrient changes can be tested in lab experiments 
as well as in situ during short time cruises. The observation of 
responses to habitat changes, regime shifts, climate change 
and other permanent adaptions require studies that cover one 
or more stations over a longer time period, which for climate 
change related studies is at least 30 years (e.g., Walther et al. 
2002). Therefore, plankton time series are an important com-
ponent in the study of long-term changes in marine biodiver-
sity and the obtained data serve as a first indicator for changes 
in the ecosystem. They can help understanding changes in 
species distributions and, if explicit enough, provide working 
hypotheses, which can be tested in the laboratory. Applied 
benefits in using time series are a better understanding and 
prediction of the occurrence of possible toxic as well as inva-
sive organisms. For these reasons, time series serve as impor-
tant tool in marine ecological research (Boero et al. 2015).

A good example for using time series for predictions is 
the Continuous Plankton Recorder (CPR) survey of 50 years 
of monitoring dinoflagellate and diatom compositions in the 
northeast Atlantic Ocean and the North Sea, which could 
help to predict the following compositional changes. In this 
area, the ratio is shifting towards a larger diatom proportion. 
Increasing winds and resulting turbulences yielding better 

conditions for diatoms compared to dinoflagellates reinforce 
this assumption (Hinder et  al. 2012). These composition 
shifts of the past and trends in combination with modelling 
approaches can therefore be used as a forecasting system.

However, the complexity of phytoplankton communities 
and a high analogy in their morphology make it difficult to 
identify in particular small sized nano- and picoplankton and 
to distinguish potentially toxic from non-toxic species. Most 
conventional time series still use traditional microscopy 
techniques. Due to their size, small protists are usually 
underreported or cannot be resolved to species level in these 
time series. During the last years scientists tried to imple-
ment new methods into these long-term studies to include 
yet underreported organisms. Whereas pigment analyses 
using HPLC or chlorophyll analyses are already part of many 
long-term studies (e.g., Karl et  al. 2001; Harding Jr. et  al. 
2015), molecular methods such as DNA microarrays and 
next-generation sequencing have only been implemented in 
short-termed studies so far (e.g., Gescher et  al. 2008; 
Medinger et al. 2010; Charvet et al. 2012).

�Predictions of Phytoplankton Community 
Changes in Response to Climate Change

Phytoplankton can serve as indicator for climate or environ-
mental change-induced shifts in the plankton community. 
Early studies showed that climate change does have an 
observable influence on the ocean (Madden and Ramanathan 
1980; Manabe and Wetherald 1980; Cess and Goldenberg 
1981; Hansen et  al. 1981; Ramanathan 1981; Etkins and 
Epstein 1982). Enhanced carbon dioxide levels result in a 
climatic change all over the globe, influencing precipitation 
and temperature. Higher global temperatures ultimately lead 
to higher ocean temperatures and thus a reduction of sea ice 
in both coverage and thickness (Manabe and Stouffer 1980; 
Rhein et al. 2013). This results in a local desalination of the 
ocean, to which phytoplankton cells have to respond. Higher 
carbon dioxide saturation in the atmosphere will furthermore 
lead to a shift in equilibrium between air and water and result 
in elevated carbon dioxide concentrations in the ocean. As a 
result, the marine environment will become more acidic, 
potentially influencing sensitive molecular interactions 
(Kuma et al. 1996).

Physical and biological changes concerning the oceanic 
carbon sink have been predicted by Sarmiento et al. (1998). 
They predicted a possible reduction of carbon downward 
flux in the Southern Ocean due to increasing rainfall and 
stratification. Their simulations hinted at already occurring 
physical and biological changes due to climate change and 
atmosphere-ocean interactions. More recent studies and 
models show that already small changes in the Southern 
Ocean can induce feedbacks in the climate system due to 
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extensive changes in the net atmosphere-ocean balance of 
carbon dioxide (Gruber et al. 2009). The authors also noted 
the possibly important role of other oceanic regions that 
could be large contributors to feedbacks in the climate 
system.

Primary production in the ocean has declined in the last 
decades and corresponds with increasing sea surface tem-
perature and decreasing iron input. Since especially in high 
latitudes the ocean acts as important carbon sink, a climate 
change related further decline in primary production sug-
gests major implications for the carbon cycle (Gregg et al. 
2003). The same trend was predicted for many regions using 
a global model due to increasing stratification and nutrient 
limiting conditions in the ocean, with exception of the poles 
(Henson et al. 2018). Reduced sea ice and longer bloom peri-
ods in the Arctic have already lead to an increase in net pri-
mary production (Arrigo and van Dijken 2015). In contrast, 
net primary production decreases were also predicted with 
simulations from nine Earth system models within the frame-
work of the fifth phase of the Coupled Model Intercomparison 
Project (CMIP5) (Fu et al. 2016).

Useful tools are one-dimensional biogeochemical models 
such as MEDUSA (Model of Ecosystem Dynamics, nutrient 
Utilisation, Sequestration and Acidification) that can glob-
ally simulate multi-decadal plankton ecosystem scenarios 
(Yool et al. 2011). In a global approach, the model was used 
to investigate spring bloom timing related to climate change 
in a high resolution. The change in bloom initiation timing 
was substantial, which could lead to food shortages for pred-
ators. Additionally, increasing ocean stratification and nutri-
ent limiting conditions will likely result in less total primary 
production (Henson et al. 2018). Detailed future predictions 
using this one-dimensional biogeochemical model exist for 
the Ross Sea in the Antarctic. Primary production for the 
twenty-first century was estimated and presumably increases 
5% in the early and 14% in the late twenty-first century. 
Melting ice, increased radiance, and decreasing mixed layer 
depths influence primary production during the first half, 
diatom mass likely stays constant while Phaeocystis antarc-
tica multiplies, which then switches for the second half. 
Shallower mixed layer depths will change phytoplankton 
composition and carbon export (Kaufman et al. 2017).

On the Patagonian coast, average primary production will 
likely increase and phytoplankton communities sequester 
significant carbon amounts important for secondary produc-
tion. However, these predictions cannot be made for open 
ocean areas without restrictions (Villafañe et  al. 2015). 
Furthermore, changes will vastly differ regionally, showing 
increasing primary production in some areas and decreasing 
primary production in others. Another critical value influenc-
ing phytoplankton variability and competition is the increase 
of stratified conditions within the water column (Yoshiyama 
et al. 2009).

Many studies have been conducted to gather more infor-
mation about phytoplankton community changes and their 
effects on the food web (e.g., Edwards and Richardson 2004; 
Schlüter et al. 2012; Harding Jr. et al. 2015). Fu et al. (2016) 
used a model to simulate climate change impacts on net pri-
mary production and export production. Using an intense 
warming scenario, the net primary production was critically 
dependent on the phytoplankton community structure. This 
model gives a good insight in the importance of community-
based studies in order to monitor changes in this sensitive 
system. Changes in phytoplankton communities have, for 
example, already been observed under changing environ-
mental conditions in the Arctic regions. Shifts in certain pro-
tist abundances indicate an enhanced presence of potentially 
toxic Alexandrium dinoflagellate species (Elferink et  al. 
2017).

Changes in the phytoplankton composition also cause the 
whole food web to change since predators might have to 
adapt to new food sources. Alternating environmental factors 
can facilitate the invasion of new species, which can migrate 
naturally inside the water masses or might be introduced via 
ballast water. These atypical range expansions cause struc-
tural changes in the food web, especially if the invasive spe-
cies can adapt well or even better than indigenous species 
and may even become dominating (Walther et  al. 2002; 
Olenina et al. 2010).

Other effects include the shifts of bloom events, mainly 
due to temporal and long-term climatic changes, or the tim-
ing of phyto- and zooplankton growth. These changes in tim-
ing could result in drastic consequences of ecosystem 
functionality. Existing studies on trophic mismatching in the 
plankton community are mostly focused on interactions 
between spring blooms (e.g., Edwards and Richardson 2004; 
Wiltshire et al. 2008). Therefore, not much is known about 
the ecological impacts and the functioning of the marine eco-
system (Thackeray 2012).

The floral composition of Chesapeake Bay at the US coast 
of the Atlantic Ocean revealed a shift in phytoplankton com-
munity. With nitrogen being the limiting nutrient but diatoms 
requiring relatively large amounts, the local community will 
likely shift to a smaller diatom proportion. Anthropogenic 
nutrient input might trigger changes as well as climate-
related shifts in phytoplankton composition (Harding Jr. 
et al. 2015). Seasonal variability studies can provide useful 
insights into future climate changes, as they can give an 
impression about the mechanisms leading to changes. 
Studies at the coast of Patagonia in Argentina exposed sea-
sonally different phytoplankton communities to possible 
future conditions, like enhanced temperatures and solar radi-
ance, nutrient enrichment, and ocean acidification. Increasing 
ocean temperature has little effect on pre-bloom communities. 
However, ultraviolet radiance during blooms leads to photo-
chemical inhibition of phytoplankton. Increasing tempera-
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tures might lead to a decreasing mixed layer depth, which 
would expose the community to higher radiations (Villafañe 
et al. 2013). Shallower mixed layers combined with stronger 
solar radiance as future condition might also result in cellular 
stress. Chlorophyll a can decline in phytoplankton cells as 
response to light stress. The cells can contract and move their 
chloroplasts, which leads to a temporary photoinhibition of 
photosynthesis (Kiefer 1973). Diatoms are more prone to 
ozone-related negative solar UV-B radiation, which can 
affect aquatic systems, thus generally likely dominating 
future communities (Häder et al. 2007).

Ocean acidification might lead to a shift in nutrient 
requirements and C:N:P stoichiometry, thus influencing bio-
geochemical cycles (Bellerby et  al. 2008). In addition, 
decreasing pH influences micronutrient bioavailability such 
as leading to decreased concentrations of iron bioavailability 
and increase phytoplankton iron stress (Shi et al. 2010).

Besides phytoplankton being influenced by nutrients and 
other environmental factors, they themselves influence the 
climate and environment they are living in. One example is 
the role of phytoplankton in the formation of former ice ages. 
Iron-rich dust was transported to the Southern Ocean, where 
water masses were rich of nutrients such as nitrate and phos-
phate but lacked iron. This natural iron fertilization of phyto-
plankton in the Subantarctic could partly explain atmospheric 
carbon dioxide changes over the last 1.1 million years. 
Measurements of foraminifera-bound nitrogen isotopes from 
sediment cores taken in the Subantarctic Atlantic indicated 
dust flux, productivity and the degree of nitrate consumption 
as characterizing factors for peak glacial times and millen-
nial cold events. Triggering blooms and changes in the 
Southern Ocean’s food web and biological pump can be seen 
as the cause of the full emergence of ice age conditions. 
However, the main drivers for the initial carbon dioxide 
decrease were most likely physical processes, such as sur-
face water stratification, wind changes and changes in sea ice 
extent (Martínez-Garcia et  al. 2009, 2014; Jaccard et  al. 
2013).

Another example for phytoplankton impacts on the cli-
mate is dimethylsulfide (DMS). DMS is the degradation 
product of dimethylsulfoniopropionate (DMSP), which is 
produced by phytoplankton as an osmoprotectant and 
degraded by marine bacteria (Yoch 2002). The main DMSP 
producing phytoplankton belong to the groups of dinoflagel-
lates and prymnesiophytes, but also include some diatoms 
and Chrysophyceae species (Keller et  al. 1989). Important 
phytoplankton include Phaeocystis sp., Emiliania huxleyi, 
Prorocentrum sp. and Gymnodinium sp. (Yoch 2002). Since 
atmospheric DMS is an important sulfur source for the global 
environment and its oxidation causes reflection of solar radi-
ation, it can have a cooling effect on the Earth’s temperature 
(for further reading, see Yoch 2002; Stefels et al. 2007; Lana 
et al. 2012).

Effects like these make phytoplankton blooms interesting 
candidates to actively help reversing the effects of climate 
change, for example by trying to trigger carbon sequestering 
blooms (Bakker et  al. 2005). However, large scale blooms 
may have unforeseen ecological effects, such as becoming 
toxic (Silver et al. 2010).

�Harmful Algal Blooms
Harmful algal blooms (HABs) refer to blooms of diatoms, 
dinoflagellates, raphidophytes, haptophytes, cyanobacteria, 
and certain macroalgae perceived as harmful due a negative 
impact on the environment or public health. Some have the 
capability to express toxins under certain circumstances. 
Other blooms are harmful not due to toxins but because the 
build-up of high biomass leads to disruption of food webs 
and development of anoxic zones (Kudela et al. 2017).

Apart from ecological effects, HABs can affect human 
health upon exposure to poisoned seawater, food or marine 
aerosols and can have severe socio-economic impacts 
(Pierce et  al. 2003; Fleming et  al. 2007). Most frequent 
HAB related illness worldwide is Ciguatera Fish Poisoning 
(CFP), which occurs manly in the tropics and subtropics. 
A variety of dinoflagellate species can produce toxins, 
such as the Gambierdiscus toxicus species complex, which 
can produce the toxins maitotoxin and ciguatoxin (Murata 
et al. 1992).

Other illnesses are Paralytic Shellfish Poisoning (PSP) 
and Diarrhetic Shellfish Poisoning (DSP), which can occur 
worldwide (Berdalet et  al. 2016). Prorocentrum lima can 
produce a variety of toxins, i.a. DSP causative okadaic acid 
(Murakami et al. 1982). HABs can have extensive ecological 
effects, such as mass mortality of whales suffering from PSP 
by feeding on mackerels poisoned with saxitoxins from 
dinoflagellates or enhanced fish kills (Geraci et  al. 1989; 
Glibert et al. 2001; Nash et al. 2017).

Furthermore, some diatoms can also express toxins. 
Several species of the genus Pseudo-nitzschia are, for exam-
ple, capable of producing domoic acid (Rao et al. 1988).

HABs can have widespread occurrences. They can occur 
at coastlines all over the world and have been reported 
throughout history from Canada, Japan, Scotland, Australia, 
and many other places (e.g., White 1977; Murakami et  al. 
1982; Bruno et al. 1989; Nash et al. 2017). Although toxic 
blooms are a natural phenomenon, they can also be a reac-
tion to environmental shifts and the production of toxins can 
be connected to environmental conditions (Etheridge and 
Roesler 2005). Experiments with toxin producing 
Alexandrium sp. showed that increasing radiance and tem-
perature significantly enhanced toxin production (Lim et al. 
2006). Nutrient changes in particular can have distinct effects 
in triggering toxin production. Iron fertilization can lead to 
formation of a toxic Pseudo-nitzschia spp. bloom and natural 
iron fertilization might have the same effect (Silver et  al. 
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2010). Also low ammonium concentrations and low salini-
ties that can be found in estuaries can lead to enhanced toxin 
production in Alexandrium sp. (Hamasaki et al. 2001).

Because of the damages HABs may cause, their detection 
and prediction is an on-going scientific challenge, which is 
approached with different techniques, such as molecular 
methods, chromatographic pigment analysis, optical spec-
troscopy, and remote sensing (Millie et al. 1997; John et al. 
2005; Trainer et  al. 2009). Automated monitoring showed 
promising predictions (Campbell et al. 2010). Besides estab-
lishing a monitoring network, Wells et al. (2015) suggested 
parameters for routine measurements, including physical 
parameters, nutrient concentrations, phytoplankton identifi-
cation, and toxin concentrations.

Linking the effects of climate change with changes in 
global HAB occurrence and developing monitoring strate-
gies has been the subject of many studies up to date (e.g., 
Edwards et al. 2006; Moore et al. 2008; Hallegraeff 2010; 
Hinder et al. 2012; Kudela et al. 2017).

�Conclusions

Phytoplankton are a very diverse and important player in the 
ocean due to their many roles in different marine cycles. 
Phytoplankton are highly dependent on a diversity of nutri-
ents and influenced by physical and chemical properties in 
the ocean. Anthropogenic influences on the climate will 
change these conditions. Some of these effects are global, 
some remain regional. As diverse as these effects can be, 
changes to phytoplankton communities will occur as well. 
One of these examples are harmful algae blooms, which are 
a hot topic regarding ecological impacts. Another example 
are possible shifts of ecological niches, which influence the 
whole marine food web. When predicting such changes, a 
solid data base is crucial. A wide range of methods targeting 
different parameters are just as crucial as obtaining data over 
a long time period.

Seasonal variations in community shifts and changes of 
the cell morphology show, that phytoplankton adapt to 
changing environmental conditions regularly. Some of these 
seasonally observed changes can be extrapolated to future 
scenarios.

Climate change related conditions in the ocean will 
change phytoplankton composition and adaption, as they 
will have to deal with differing nutrient and trace metal bio-
availability, physical conditions or temperatures. However, 
blooms triggered by such conditions can have an opposite 
effect by influencing the climate themselves.

Apart from species composition, cell physiology is 
another important aspect that can be changed by climate. 
Chemicals produced by phytoplankton, such as toxins, can 

have vast ecological impacts and are one of the most press-
ing topics when predicting phytoplankton changes.

In conclusion, phytoplankton are an important connecting 
element within the sensitive marine system. Therefore, accu-
rate predictions are difficult to make, but the existing meth-
ods and models are a good way to improve the local 
understanding. In addition, new models and different 
approaches looking at factor interactions shall give new and 
better insights.

�Appendix

This article is related to the YOUMARES 8 conference ses-
sion no. 10: “Phytoplankton in a Changing Environment – 
Adaptation Mechanisms and Ecological Surveys”. The 
original Call for Abstracts and the abstracts of the presenta-
tions within this session can be found in the appendix 
“Conference Sessions and Abstracts”, chapter 
“4 Phytoplankton in a Changing Environment – Adaptation 
Mechanisms and Ecological Surveys”, of this book.
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