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Abstract. The ongoing digitalization trend has given rise to the concept
of smart cities, targeting the interconnection of city infrastructure and
services over a digital layer for innovative technological solutions as well
as improvements on existing facilities in cities. This article investigates
the critical information system constituents of smart cities that facilitate
the holistic integration of its ecosystem and resources with the aim to
foster dynamic and adaptive software. We identify three main enablers
in this direction: (i) semantic functional description of city objects, rep-
resenting physical devices or abstract services, (ii) a distributed service
directory that embodies available city services for service lookup and
discovery, (iii) planning tools for selecting and chaining basic services
to compose new complex services. We provide an overview of the app-
roach adopted in our ongoing smart city project for each of these three
dimensions.
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1 Introduction

The perennial trend of urbanization has been transforming human life for many
decades, whereby the city infrastructure and services become integral parts of
our lives in the form of transportation systems, energy systems, and many more.
More recently, the rising trend of digitalization brings new dimensions to urban-
ization; a concept typically captured by the term “smart cities”. Advancements
in information and communication technologies (ICT), such as the Internet of
Things (IoT) and cloud computing provides a foundation for the digitalization
of city systems [1]. This often results in better resource utilization among infras-
tructure providers and more flexible interaction between citizens, authorities and
other stakeholders through ubiquitous access to information. However, the abun-
dance of city data makes information management one of the central challenges
in enabling cross-domain collaboration. With the lack of unified data and service
integration platforms, the transformation to digital cities often results in specific
applications that represent isolated service and data silos.
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In general, the information systems of a smart city can be in the form of
physical devices with ICT capabilities, entirely virtual online services, or a com-
bination of both, which we commonly refer to as Smart City Objects (SCO) in
this article. A SCO can be as simple as a temperature sensor providing data
to the cloud or as complex as a trip assistance service that stems from a well-
crafted composition of many other SCOs from the transport, environment, and
other city domains. The project “Intelligent Framework for Service Discovery and
Composition” (ISCO)1, presented in this paper, aims to develop an open and
extensible platform together with supporting tools for the creation and holistic
interconnection of SCOs from different sectors and stakeholders. This objective
helps move away from fragmented IoT solutions and isolated data silos in cities
towards a more integrated and harmonized smart city ecosystem. ISCO enables
stakeholders from diverse domains to provide novel, efficient and dynamic ser-
vices, optionally composed of other existing services in the smart city. One of
the main challenges of such a platform is ensuring its scalability while enabling
efficient development, deployment, and discovery of smart city objects.

In the remainder of this paper, we present a high-level overview of the
ISCO solution (Sect. 2), followed by its main architectural components: a uni-
fied semantic model for SCOs based on semantic web technologies (Sect. 3), a
scalable distributed architecture for SCO discovery based on information cen-
tric networking (Sect. 4), and a two-level planning approach for orchestrating
through both generic and application-specific service ontologies (Sect. 5).

2 Background and ISCO Approach

The smart city concept has been attracting strong attention of the research
community from a large variety of research fields, particularly in the computer
science and information systems disciplines [2,3]. On the other hand, a growing
number of smart city initiatives is spawned around the world in recent years [4].
Given the vast breadth and depth of the smart city scope, we do not intend to
provide a comprehensive background here, and refer the readers to the surveys
on the topic, e.g., [2,5], for a detailed coverage of the socio-technical systems
of smart cities. The increasing adoption of digitalization and the existing smart
city applications have pointed out several challenges in building such IoT frame-
works in cities, ranging from security and network reliability to data management
aspects. While there have been many approaches proposed to deal with these
challenges, a suitable collaboration scheme between the existing IoT solutions,
heterogeneous devices and services remains as an open issue [5].

ISCO Project’s approach towards more integrated solutions is to design and
develop open platforms and tools for interconnecting heterogeneous entities in
a city through what we call smart city objects (SCOs). While the project also
covers the networking and security aspects for the interoperability and acces-
sibility of all city objects, our focus in this paper remains on the three core
modules of ISCO – represented in Fig. 1 by the SCO API, Service Directory, and
1 http://www.gt-arc.com/projects/isco/.
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Fig. 1. ISCO architecture: overall interaction of main components

Agent Domain components. In the high-level service workflow of ISCO depicted
in Fig. 1, service providers can introduce their service descriptions using our rel-
evant domain models, after which a software agent representation of the service
is automatically created under the ISCO agent domain. The description is also
saved within the Service Directory (SD) in the Web Ontology Language (OWL)
format. The SD is structured as a dynamic collection of distributed nodes and
serves as the repositories and request points for registered services. Every ser-
vice agent contains an instance of the ISCO Planner to request and orchestrate
services. Once a user makes a request, the agent looks up domain-related SCO
descriptions distributed in SD infrastructure using an Information-Centric Net-
work (ICN) overlay, as described in Sect. 4. When a set of matching services
is returned, the access control module filters out services that are not autho-
rized for the requester. ISCO Planner can now process the services first to filter
based on their qualities then to find an applicable orchestration of the services
based on the user request. We present the details on the inner-workings and the
interactions of these components in the remainder of the paper.

3 Semantic Description of Smart City Objects

For sharing knowledge and modeling SCOs in a huge heterogeneous and dynamic
environment, the usage of ontologies is the de-facto approach; domain and data
models described in an ontology provide a sophisticated semantic description
that can be parsed by an application. Existing approaches that model the IoT
domain in a descriptive way commonly adopt the IoT-Lite ontology [6] utilized in
FIESTA-IoT2. However, this lightweight approach lacks a functional description
that can be called by a requester.
2 http://fiesta-iot.eu/.

http://fiesta-iot.eu/
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Fig. 2. Centralized overview of the ISCO Smart City Object ontology

On the other hand, for the service-oriented computing community devel-
oped well-established standards to describe and invoke functionalities, such as
WSDL/SOAP and REST services, but these do not suffice a smart city. Seman-
tic descriptions of software services provide the needed additional information
layer, for which several approaches, such as OWL-S [7], WSMO and SAWSDL,
have been proposed in recent years, which extend typical service information
by preconditions and effects, and define input and output information in a more
expressive ontology language, such as OWL. However, these semantic approaches
only address web services and not the smart city domain in particular. Our app-
roach extends the OWL-S ontology for smart cities by concepts of IoT-Lite
with focus on orchestration. The central class is the abstract SmartCityObject
class, which is a subclass of the main OWL-S classes; SCO instances are either
virtual services or devices, which are further classified into Actuators and Sen-
sors. The non-functional attributes such as context [8], QoS [9], associated sub
domains [10] as well as management attributes enable for sophisticated filtering
mechanisms in a smart city with its large amount of functionally overlapping
SCOs. An overview of our ontology can be seen in Fig. 2.

4 Scalable Service Lookup and Discovery

Due to heterogeneity and cross domain requirements, smart city IoT solutions
rely on an object discovery infrastructure to provide descriptions about their
attributes, location, and access methods, among others. Depending on the appli-
cation, discovery can be a stand-alone service or integrated with the entity man-
agement and gateway functions of an IoT middleware. Nevertheless, it aims
at providing scalable services for object registration, mapping, and lookup. As
such, object descriptions can be distributed based on logical domain, geograph-
ical location, or platform specific hierarchy:
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– Domain-specific discovery builds on the Domain Name System (DNS) of the
Internet and is adopted by some projects such as IoT6 by leveraging IPv6
and proposing service discovery (DNS-SD)3 and mDNS4 discovery protocols.
Global object clusters are discovered with DNS-SD based on IPv6 and higher
level protocols CoAP [11]. In local groups, the multicast mDNS is employed
for automatic registration and discovery of devices. The Object Name Service
(ONS) [12] used in SmartAgriFood is a similar service to DNS for discovery
and resolve physical object with EPC code. A local ONS server looks up
product descriptions for scanned code by mapping it to a set of resource
descriptions provided by external services. SmartAgriFood employs ONS for
discovery of entities in production chains in conjunction with a decentralized
semantic storage for object data.

– Geolocation based discovery is common in device centric and location based
applications. The objects are addressed based on their notation of geographic
points, areas, or network cluster. While the indexing and geo-discovery are
straightforward, additional resolution infrastructure is still required to pro-
vide operational details of the resources, as in IoT-A and BUTLER projects.

– Service Directory (SD) Whether domain or geographical discovery are used, a
directory structure holding rich descriptions of IoT entities is often required in
addition to previous distribution approaches. Beside accessibility description,
attributes about the entities and their relationships provide data needed for,
among others, management, service composition logic of the applications.
Semantic web approach is adopted by the projects and is referred as semantic
discovery. OWL-based ontologies capture models of physical, logical entities
and their relationships, e.g., device capabilities, clustering, QoS requirements.
The semantic descriptions allow discovery and matching of services or devices
at runtime using SPARQL queries. To meet the required scalability, directory
services consist of distributed servers (nodes), which are organized as a multi-
level hierarchy or peer-to-peer topology. In contrast, we propose a scalable
service directory infrastructure, which features a flat, self-organized topology
of distributed service directory nodes.

ISCO Service Directory Based on an ICN Overlay. We propose an IoT
service directory (SD) in ISCO that self-organizes the distributed storage and
retrieval of smart object descriptions. Its flat architecture makes the directory
eligible for universal service discovery for IoT by removing the dependency on
discovery mechanism from specific applications and domains.

The underlying principle of ICN is that a communication network should
allow a content consumer to focus on the data it needs, named content, rather
than having to reference a specific, physical location where that data is to be
retrieved from, i.e., named hosts, as in current Internet architecture. Both types
of packets carry a name that identifies a piece of data. The consumer sends an
INT with the name of the data it needs. When an intermediate node receives the

3 http://www.dns-sd.org/.
4 http://www.multicastdns.org/.

http://www.dns-sd.org/
http://www.multicastdns.org/
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INT, it looks for the data in its content store (CS). If the data is not found, it
forwards the INT to the next nodes and keeps track of the incoming and outgoing
network interfaces for this data in pending interest table (PIT). A series of such
forwarding actions creates a breadcrumb path the INT has passed. When the
INT arrives at the source node, the requested data is put into DATA and sent
back the path towards the consumer. A previous forwarding node receives the
DATA, it removes the data name entry in PIT table and adds an entry with the
name and network interfaces to forward the data to consumers in the FIT table.
Intermediary nodes on the path cache the DATA in their CSs for subsequent
INTs. ICN offers a wide range of benefits, e.g, content caching, simpler configura-
tion of network devices, and security at the data level. The distributed directory
solution takes advantage of the ICN features to design refined SD functionali-
ties, i.e., developing attribute-based object query methods and content caching
strategies for reduced storage overhead as well as increased responsiveness and
accuracy.

ICN Based Naming Scheme for City Objects. Each SD-Node acts as an
ICN router, which serves the requests for SCO’s description by its name, or
forwards the requests towards other nodes holding the description. Therefore,
the design of a naming scheme affects the performance of objects discovery. ICN
naming adopts the semantics of Universal Resource Identifier (URI) scheme.
However, the host part does not imply location of the resource, but rather iden-
tifies its owner or search domain. The parameters part enables the expression of
SCO attributes that can be used to look up and discover the SCOs regardless of
where they are stored. As shown in Fig. 3, an ICN name of a sensor contains rich
semantics describing its domain, location, type, etc. Matching of query attributes
and the descriptions is handled by a semantic matcher component in each SD-
Node. Depending on the use-case, a strategy to store descriptions and to forward
the requests based on object attributes can be dynamically configured. Addition-
ally, various caching and forwarding strategies can be designed to best serve the
query demands and SD infrastructure performance.

Fig. 3. IoT resource naming scheme in ICN based service directory

Service Directory Node Architecture. The ISCO service directory is con-
stituted by a distributed collection of SD nodes as depicted in Fig. 4. The design
of an individual SD-Node, which contains semantic descriptions of SCOs, is
shown in Fig. 5. Each functionality is implemented as a modular component:
(1) Triple Store (TDB) is a component of the Jena5 project, which serves as a

5 https://jena.apache.org/documentation/tdb/index.html.
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high performance RDF store and query of SCO attributes. (2) Matcher com-
ponent implements mapping methods between requested search attributes and
suitable SCO descriptions, which are potential search results. (3) ICN Router
enables connectivity between SD-Nodes with ICN transport protocol to form a
distributed SD infrastructure. Discovery of SCO descriptions is realized by the
exchange of interest messages with SCO names. (4) Query Interfaces provide dis-
tributed application protocols, which allow higher level services to access SCO
descriptions and ontologies. It employs various application transport protocols,
such as CoAP, MQTT and Rest.

Fig. 4. ICN-based service directory Fig. 5. SD-Node architecture

Scalability. An ICN architecture, in contrast to a host-centric one, does not
dictate a predefined hierarchy, e.g., conformance with IP routing or a specific
discovery protocol (DNS), among others. This results in a flat network with
self-organized topologies. The attribute-based discovery only depends on how
an approach describes the devices and services, specifically, their semantic mod-
els, matching approaches, and strategies for information organization. Figure 4
illustrates a distributed SD infrastructure utilized by the ISCO platform based
on a multi-agent system architecture. Forwarding and caching strategies can be
adapted; e.g., the choice of lifetime of the replicas implies a trade-off between
the dissemination of descriptions closer to requesting agents, and timeliness,
consistency of the information. Moreover, the self-organizing topology allows
additional SD-nodes to be added or removed on-demand by applying cloud com-
puting or container technologies (e.g., Docker).

5 Service Composition and Planning

The ISCO middleware planning layer is responsible for generating a service com-
position, involving different SCOs, that satisfies the specified – functional and
qualitative – application requirements at runtime. The adaptability of this mod-
ule is crucial, as it has to suit different contexts and serves a wide range of
applications with varying goals. We are therefore applying the DYNAMICO [13]
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Fig. 6. An overview of the ISCO planning layer components

design guidelines for adaptive systems. This reference model defines three levels
of dynamics: the Objective Feedback Loop (CO-FL), the Adaption Feedback Loop
(A-FL), and the Monitoring Feedback Loop (M-FL):

Objective Feedback Loop. In dynamic software systems, the adaptation goals
(or objectives) should be defined and monitored. These control objectives can
define functional system requirements or refer to non-functional system prop-
erties (e.g., QoS). The monitoring of these adaptation goals needs an explicit
formalization, which e.g., is accomplished in AI planning through a goal state.
The goal state contains the facts the system should achieve. In ISCO, we are
using an IOPE (input, output, precondition and effect) representation to define
the functional goals (e.g., plan a trip) and QoS to state the non-functional sys-
tem requirements (e.g., trip cost and duration). During the execution of software
systems in dynamic environments, the adaptation might be affected by several
changes (e.g., goal change, goal is no longer reachable, goal order change, etc.).
The system should therefore monitor and evaluate its goals to select the appro-
priate adaptation.

Adaptation Feedback Loop. (A-FL) receives the adaptation goals from the
CO-FL and the monitored context information from the M-FL and selects the
appropriate adaptation mechanism to maintain or reach the system goals. Our
A-FL layer implements different approaches that enable the system to adapt
to system-wide changes. In this loop, the adaptation process might be initiated
due to changing control objectives or context information. The A-FL has four
main components introduced: (1) Planner is responsible for combining SCOs
by connecting their IOPEs to generate new composite services that satisfy the
client application requirements. We extend the traditional QoS-aware WSC to
support IoT devices and sensors. The generated plans should fulfill the func-
tional and qualitative system requirements defined by the CO-LP. (2) Inter-
preter is responsible for the execution of the composite services. The execution
is monitored whereas the current state is forwarded to the analyzer module.
This process may fail or the results may deviate from the specified goals. In
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this case, the adaptation analyzer should trace those deviations and replace
the missing or misbehaving components to maintain the system robustness. (3)
Adaptation Analyzer evaluates the current adaptation goals, selects the most
suitable adaptation mechanism and initiates the adaptation process. It also iden-
tifies and deploys the required monitoring modules. This module stores, for each
new request, the generated service composition along with its global QoS in the
knowledge database (KDB). (4) Adaptation Monitor checks the state of the
adaption mechanism. The selected adaption needs to change if it is no longer
adequate for the current system state. This monitoring is done to observe the
performance of the adaption mechanisms.

Monitoring Feedback Loop. Self-adaptive systems need to maintain their
context-awareness relevance, in order to adapt at runtime to changing context.
The M-FL is the context manager in the DYNAMICO reference model (see
Fig. 6). The M-FL deploys different context gathers, which monitors the current
system context, and reports updates to the A-FL. Our ISCO platform imple-
ments four different monitoring components each of which is targeting a specific
system component or process: QoS Monitor is responsible for monitoring the
QoS parameters of the supported services and devices. The measured QoS at
runtime may deviate from the defined SLA used to generate a service compo-
sition, and should therefore be updated. Services Monitor Service developers
are able to create new services or update the functional requirements of their
services. These updates have to be considered during the planning phase in order
to guarantee the correctness of the final composition. This component observes
the service directory and notifies changes to the adaptation analyzer. Execu-
tion Monitor – During the execution of a composite service several issues may
arise (e.g., timeout exception, network exception, the returned values does not
have the right format). This module reports the tracked issues to the adapta-
tion analyzer, which then initiates the most appropriate recovery process, e.g.,
replacing unavailable services with similar ones or generating a new sub com-
positions. Context Monitor captures changes in the context of the adaption
system. This monitoring is done to be able to adapt to changing conditions in
the environment, e.g., changing legal rules of the planning domain.

6 Summary and Future Work

We presented the concept of our ISCO framework, a holistic approach for service
discovery and composition in smart cities. The current effort focuses on provid-
ing an ecosystem that eases the implementation and deployment of dynamic
and self-adaptive software. Our ongoing work tackles the common challenges
IoT projects face, which are mainly the lack of integrity and interoperability of
cross-domain platforms. The unified SCO, the service directory and the service
composition and planning layers are the main components of this framework.
While our ongoing work focuses on the final stages of development and inte-
gration of these components, our planned future work includes the testing of
adaptation capabilities and scalability of the system in a heterogeneous dynamic
testbed with both physical and simulated entities.
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