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Abstract. Process mining helps organizations to investigate how their
operational processes are executed and how these can be improved. Pro-
cess mining requires event logs extracted from information systems sup-
porting these processes. The eXtensible Event Stream (XES) format is
the current standard which requires a case notion to correlate events.
However, it has problems to deal with object-centric data (e.g., database
tables) due to the existence of one-to-many and many-to-many relations.
In this paper, we propose an approach to extract, transform and store
object-centric data, resulting in eXtensible Object-Centric (XOC) event
logs. The XOC format does not require a case notion to avoid flatten-
ing multi-dimensional data. Besides, based on so-called object models
which represent the states of a database, a XOC log can reveal the evo-
lution of the database along with corresponding events. Dealing with
object-centric data enables new process mining techniques that are able
to capture the real processes much better.

1 Introduction

Process mining represents a set of techniques which are widely used to extract
insights from event data generated by information systems. The starting point
for process mining techniques is formed by event logs. The XES log format [1]
is widely employed to generate event logs. In general, a XES log consists of a
collection of traces. A trace describes the life-cycle of a particular case (i.e., a
process instance) in terms of the activities executed. Process-aware information
systems (e.g., BPM/WFM systems) which assume an explicit case notion to
correlate events, provide such logs directly.

However, the information systems one encounters in most organizations are
object-centric. Some examples of these systems are Customer Relationship Man-
agement (CRM) and/or Enterprise Resource Planning (ERP) which provide
business functions such as procurement, production, sales, delivery, finance, etc.
Examples are the ERP/CRM suites from vendors such as SAP (S/4HANA), Ora-
cle (E-Business Suite), Microsoft (Dynamics 365), and Salesforce (CRM). There
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are also some free and open source alternatives such as Dolibarr and Odoo. A
common feature of these systems is that they are built on top of database technol-
ogy, i.e., they contain hundreds of tables covering customers, orders, deliveries,
etc. Figure 1 shows a fragment of data generated by the Dolibarr ERP system.
This is an example of object-centric data since object instances are explicitly
recorded (e.g., orders, which can be abstracted as objects) while events related
to the underlying process are implicitly recorded by other means, e.g., through
redo logs (cf. Table 1). Approaches to extract XES logs from databases with the
aid of ontology [3] or redo logs [5] have been previously proposed.

Fig. 1. A fragment of data generated by a real ERP system.

Although there exist approaches to extract XES logs from object-centric
data, the constraints set by this format do not match the nature of the data
at hand. The following challenges have been identified when applying the XES
format to object-centric data:

– It is required to identify the case id for the whole process. Database object-
centric data lacks a single explicit definition of case notion. On the contrary,
because of the existence of multiple classes of objects (tables) and relations
(foreign keys), object-centric data can be correlated in many ways. Each of
these correlations may correspond to different processes affecting the same
data, or different views on the same process (customer vs. provider point
of view). In the case of XES, a case notion has to be defined beforehand
to proceed with the extraction, requiring one dedicated event log for each
perspective to be analyzed.

– The quality of the input data gets compromised. If we straightjacket object-
centric data into XES logs, the input data with one-to-many and many-to-
many relations is flattened into separate traces, in which events referred to by
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multiple cases are duplicated. This forced transformation introduces unneces-
sary redundancy and leads to problems such as data convergence and diver-
gence [9].1

– Interactions between process instances get lost. Traces in XES logs only
describe the evolution (i.e., lifecycle) of one type of process instance and they
are typically considered in isolation. Due to the lack of interactions between
process instances, XES logs cannot provide a whole view to indicate the state
of a system.

– The data perspective is only secondary.2 The XES format focuses on the
behavioral perspective, considering any additional information as trace or
event attributes. In this sense, the information not directly related to the
events is discarded (records, data objects, etc.), which weakens the data per-
spective of the original system.

To face the problems mentioned above, we propose a novel log format to orga-
nize object-centric data from databases, resulting in eXtensible Object-Centric
(XOC 3) logs. This log format provides an evolutionary view on databases based
on the idea that a log is a list of events and each event refers to an object model
(cf. Sect. 2.1) representing the state of the database just updated by the event.
Process mining takes logs as input, and this log format transforms the raw data
from databases into event logs, which paves a road to analyze databases in a
process mining approach.

Compared with XES, the XOC format has the following contributions. It
correlates events based on objects rather than a case notion, which solves the
challenge of identifying a case id. Besides, without the constraints set by the case
notion, XOC logs can better deal with one-to-many and many-to-many relations.
Additionally, more powerful concepts such as object models are employed to pro-
vide a whole view of the state of the database as well as the interactions between
instances. Moreover, all columns in a record can be abstracted as attributes of
an object (denoting the record) to enrich the data perspective. To validate the
log format, we present an approach to automatically transform object-centric
data into XOC logs. In resulting logs, an event type is defined on the infor-
mation system level (e.g., “create order”) rather than the database level (e.g.,
“insert an order record” and “insert an order line record”) [5], which makes
extracted events more intuitive for users. Besides these contributions, XOC logs
enable new process mining techniques to further solve the problems mentioned
above. Discovering data-aware process models like the object-centric behavioral
constraint (OCBC) models [8], to better reveal the complex interactions between
the behavioral and data perspectives (see footnote 2) (cf. Fig. 5), checking con-

1 Data Convergence means the same event is related to multiple process instances at
once. Data divergence means that multiple events of the same activity are related
to one process instance, i.e., the same activity is performed multiple times for the
same process instance (cf. Fig. 4).

2 The behavioral perspective refers to the control-flow of events while the data per-
spective refers to data attributes.

3 XOC is pronounced as /s6k/.
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formance for deviations which cannot be detected by conventional methods [14]
and predicting future events and objects according to a discovered OCBC model
(cf. Sect. 4) are some examples of enabled techniques.

The remainder is organized as follows. In Sect. 2, we describe the XOC log
format. Section 3 proposes an approach to extract XOC logs from databases,
and Sect. 4 demonstrates an implementation of the approach and a comparison
between XOC logs and XES logs. Section 5 reviews the related work while Sect. 6
concludes the paper.

2 Object-Centric Event Log

Process mining techniques take event logs as input. In order to apply these
techniques to object-centric data, we propose a novel log format to organize
such data in this section.

2.1 Object-Centric Data

Increasingly, organizations are employing object-centric information systems,
such as ERP and CRM, to deal with their transactions. In this paper, we use
the term “object” to abstract data elements (e.g., records in database tables)
generated by information systems. In this sense, object-centric systems refer to
systems which record the transactions of the same category (e.g., orders) in the
same table (e.g., the “order” table) based on the relational database technology.
Accordingly, the data generated by such systems are called object-centric data.
Figure 1 shows an example of object-centric data.

Objects are grouped in classes and have some attributes. For example, a
record in the “order” table (e.g., the first row) can be considered as an object
of class “order”. Each value (e.g., “c1”) in the record can be considered as an
attribute of the object. Besides, there exist class relationships between classes,
which corresponds to dependency relations between tables. For instance, there
is a class relationship between class “order” and class “order line”, indicated by
one of foreign keys of table “order line”, which refers to the primary key of table
“order”.

Definition 1 (Object Model). Let UO be the universe of objects, UC be the
universe of classes, URT be the universe of class relationships, UAttr be the
universe of attribute names and UVal be the universe of attribute values. C ⊆
UC is a set of classes and RT ⊆ URT is a set of class relationships. An object
model is a tuple OM = (Obj ,Rel , class, objectAttr), where

– Obj ⊆ UO is a set of objects,
– Rel ⊆ RT × Obj × Obj is a set of object relations,
– class ∈ Obj → C maps objects onto classes, and
– objectAttr ∈ Obj → (UAttr �→ UVal) maps objects onto a partial function

assigning values to some attributes.

UOM is the universe of object models.
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Fig. 2. An example of an object model.

An object model consists of objects, object relations and two functions indi-
cating the class and attributes of each object. In the database context, an object
model represents the state of a database at some moment, where objects cor-
respond to records in tables and relations correspond to dependencies between
records.

Figure 2 shows an object model OM = (Obj ,Rel , class, objectAttr) which
represents the state of the database indicated in Fig. 1. The 28 objects are
depicted as grey dots. There are two objects o1 and o2 belonging to class
“order”, i.e., class(o1 ) = class(o2 ) = order . There are three object relations cor-
responding to class relationship r1 , i.e., (r1 , c1 , i1 ) ∈ Rel , (r1 , c1 , i2 ) ∈ Rel and
(r1 , c1 , i3 ) ∈ Rel . The object i1 has an attribute named “creation date” with a
value “2017-08-15 09:13:27”, i.e., objectAttr(i1)(“creation date”) = “2017-08-15
09:13:27”. Note that, the attributes of objects are not shown in the graph.

2.2 Database Changes

Unlike process-aware information systems (e.g., BPM/WFM systems), object-
centric information systems keep transactions in “regular tables” in databases.
A record in a table indicates the current state of an instance. It is difficult to
reveal all the events impacting this record, e.g., the first record in “order line”
table tells nothing about events.

Fortunately, database technology often provides so-called redo logs (as shown
in Table 1) that record the history of database changes. Similarly, most SAP
systems provide two change tables, i.e., CDHDR (recording all database changes)
and CDPOS (recording details of each change in CDHDR) as shown in Table 2. If
redo logs and change tables are not available, then domain knowledge is needed to
obtain changes, i.e., timestamps/dates in particular columns refer to the creation
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of the row or to changes of values. Using domain knowledge, these timestamps
can reconstruct database changes.

Table 1. A fragment of a redo log in which each line corresponds to a change in the
database.

# Time Redo

1 2017-08-11 10:33:37 Insert into “order” (“id”, “creation date”, “customer”)
values (“o1”, “2017-08-11 10:33:37”, “c1”)

2 2017-08-11 10:33:37 Insert into “order line” (“id”, “order”, “product”,
“quantity”, “price”) values (“ol1”, “o1”, “computer”,
“2”, “1190”)

3 2017-08-11 10:33:37 Insert into “order line” (“id”, “order”, “product”,
“quantity”, “price”) values (“ol2”, “o1”, “phone”, “3”,
“476”)

Table 2. A fragment of the CDHDR table (left) and CDPOS table (right).

HeadID Date Time Op
100 2017-08-11 10:33:37 I
101 2017-08-11 10:33:37 I
102 2017-08-11 10:33:37 I
103 2017-08-13 16:28:15 I
104 2017-08-14 11:36:35 I

ItemID HeadID TabName Key FieldName Op NewValue OldValue
1 100 order o1 id I o1 none
2 100 order o1 creation date I 2017-08-11 10:33:37 none
3 100 order o1 customer I c1 none
4 101 order line ol1 id I ol1 none
5 101 order line ol1 order I o1 none

Each change corresponds to one execution of an SQL sentence, i.e., one event
on the database level. In this paper, the extracted logs cater to people who
operate information systems and may be unfamiliar with databases. Therefore,
the extracted events are on the information system level rather than the database
level. In other words, an example of an event is a “create order” operation rather
than an execution of “insert an order record”, which makes extracted logs more
intuitive and understandable. Note that, an event may correspond to multiple
changes, e.g., the three changes in Table 1 correspond to one “create order” event,
and these changes may have the same timestamp (i.e., it is not necessary that
each change has a unique timestamp). In real applications, the derived changes
may cover multiple processes. For a given process, we can scope the changes
using tricks such as based on a time window or classes involved [13].

2.3 eXtensible Object-Centric (XOC) Log Format

Based on database changes and the current state of a database, it is possible to
restore all previous states of the database. The idea of the XOC format is that
one event represents one operation on the information system and corresponds
to an object model providing a snapshot of the system just after this operation.
Besides, each event has an event type to indicate the executed activity (e.g.,
“create order”), and refers to some objects modified by the event.



188 G. Li et al.

Table 3. A fragment of the XOC log extracted from the motivating example data in
Fig. 1.

Index Event Event type References Object model

Objects Relations

1 co1 create

order (co)

{o1 , ol1 , ol2} {c1 , c2 , o1 , ol1 , ol2} {(r5 , c1 , o1), (r10 , o1 , ol1), (r10 , o1 , ol2)}

2 co2 create

order (co)

{o2 , ol3 , ol4} {c1 , c2 , o1 , ol1 , ol2 ,
o2 , ol3 , ol4}

{(r5 , c1 , o1), (r10 , o1 , ol1), (r10 , o1 , ol2),
(r5 , c1 , o2), (r10 , o2 , ol3), (r10 , o2 , ol4)

3 cs1 create

shipment

(cs)

{s1 , sl1} {c1 , c2 , o1 , ol1 , ol2 ,
o2 , ol3 , ol4 , s1 , sl1}

{(r5 , c1 , o1), (r10 , o1 , ol1), (r10 , o1 , ol2),
(r5 , c1 , o2), (r10 , o2 , ol3), (r10 , o2 , ol4),

(r4 , c1 , s1), (r6 , s1 , sl1), (r9 , ol1 , sl1)}
4 ci1 create

invoice

(ci)

{i1 , er1} {c1 , c2 , o1 , ol1 , ol2 ,
o2 , ol3 , ol4 , s1 , sl1 ,

i1 , er1}

{(r5 , c1 , o1), (r10 , o1 , ol1), (r10 , o1 , ol2),
(r5 , c1 , o2), (r10 , o2 , ol3), (r10 , o2 , ol4),

(r4 , c1 , s1), (r6 , s1 , sl1), (r9 , ol1 , sl1),

(r1 , c1 , i1), (r3 , i1 , er1), (r8 , o1 , er1)}
5 cs2 create

shipment

(cs)

{s2 , sl2 , sl3} {c1 , c2 , o1 , ol1 , ol2 ,
o2 , ol3 , ol4 , s1 , sl1 ,

i1 , er1 , s2 , sl2 , sl3}

{(r5 , c1 , o1), (r10 , o1 , ol1), (r10 , o1 , ol2),
(r5 , c1 , o2), (r10 , o2 , ol3), (r10 , o2 , ol4),

(r4 , c1 , s1), (r6 , s1 , sl1), (r9 , ol1 , sl1),

(r1 , c1 , i1), (r3 , i1 , er1), (r8 , o1 , er1),

(r4 , c1 , s2), (r6 , s2 , sl2), (r9 , ol1 , sl2),

(r6 , s2 , sl3), (r9 , ol2 , sl3)}

Definition 2 (eXtensible Object-Centric Event Log). Let UE be the uni-
verse of events and UET be the universe of event types. An eXtensible Object-
Centric (XOC) event log is a tuple L = (E, act , refer , om,≺), where

– E ⊆ UE is a set of events,
– act ∈ E → UET maps events onto event types,
– refer ∈ E → P(UO) relates events to sets of objects,
– om ∈ E → UOM maps an event to the object model just after the event

occurred,
– ≺ ⊆ E × E defines a total order on events.

UL is the universe of XOC event logs.

Table 3 shows a XOC log example. The “Event” column specifies the set
of events while the “Index” column indicates the total order on events. The
last four columns show the corresponding event type, object references (i.e.,
modified objects) and object model (i.e., objects and relations) of each event,
respectively. Note that, the information of objects (e.g., attribute values) is left
out in Table 3. In some cases, object models may increase dramatically since an
object model contains unchanged contents of the previous one and new contents.
This problem can be solved by some storage tricks, e.g., only storing updated
information, which falls out of the scope of this paper.

3 Extracting Object-Centric Event Logs from Databases

In this section, we propose an approach to extract XOC logs from databases
based on object-centric data (i.e., database tables) and database changes.
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3.1 Formalizations of Object-Centric Data

This subsection provides a formal definition to describe object-centric data (i.e.,
database tables), which refers to the notations in [5,13].

Definition 3 (Data Model). Let V ⊆ UVal be a set of values. A data model is
a tuple DM = (C,A, classAttr , val,PK ,FK , classPK , classFK , keyRel , keyAttr ,
refAttr) such that

– C ⊆ UC is a set of classes,
– A ⊆ UAttr is a set of attribute names,
– classAttr ∈ C → P (A) maps each class onto a set of attribute names,4
– val ∈ A → P (V ) maps each attribute onto a set of values,
– PK is a set of primary keys and FK is a set of foreign keys, where PK

and FK are assumed to be disjoint in this paper (i.e., PK ∩ FK = ∅) and
K = PK ∪ FK,

– classPK ∈ C → PK maps each class onto a primary key,
– classFK ∈ C → P (FK ) maps each class onto a set of foreign keys,
– keyRel ∈ FK → PK maps each foreign key onto a primary key,
– keyAttr ∈ K → P (A) maps each key onto a set of attributes, and
– refAttr ∈ FK × A �→ A maps each pair of a foreign key and an attribute

onto an attribute from the corresponding primary key. That is, ∀k ∈ FK :
∀a, a′ ∈ keyAttr (k) : (refAttr(k, a) ∈ keyAttr(keyRel(k)) ∧ (refAttr(k, a) =
refAttr(k, a′)=⇒a = a′).

UDM is the universe of data models.

A data model describes the structure of the object-centric data. More pre-
cisely, a class represents a table while an attribute represents a column in a table.
Function classAttr specifies the attributes of a class and function val indicates
possible values for an attribute. classPK and classFK define the primary key
(PK) and foreign keys (FKs) for each table, respectively. Given a FK, keyRel
indicates its referred PK.

Take the tables in Fig. 1 as an example. C = {p, o, s, er, ol, sl, pl, i, c} and A =
{id, creation date, amount, . . . , address}. classAttr(p) = {id, creation date,
amount} and val(amount) = IN where p ∈ C (i.e., the “payment” table).

Definition 4 (Records). Let DM = (C,A, classAttr , val,PK ,FK , classPK ,
classFK , keyRel , keyAttr , refAttr) be a data model and MDM = {map ∈ A �→
V | ∀a ∈ dom(map) : map (a) ∈ val(a)} be the set of mappings of DM .
RDM = {(c,map) ∈ C × MDM | dom(map) = classAttr(c)} is the set of all
records of DM if ∀(c,map), (c,map′) ∈ RDM : (∀a ∈ keyAttr(classPK (c)) :
map(a) = map′(a)) ⇒ map = map′.

Given a data model, Definition 4 formalizes the possible records of the model.
For instance, the first record in the “payment line” table can be formalized
as (c,map) where c = pl, dom(map) = {id, payment, invoice, amount}, and
map(id) = pl1, map(payment) = p1, map(invoice) = i1, map(amount) = 2380.
4 P(X) is the power set of X, i.e., Y ∈ P(X) if Y ⊆ X.
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Definition 5 (Data Set). An object-centric data set is a tuple DS = (DM ,RS )
where DM ∈ UDM is a data model and RS ⊆ RDM is a set of records of DM .
UDS is the universe of data sets.

3.2 Formalizations of Database Changes

After formalizing the data perspective (i.e., data model and records), this sub-
section formalizes the changes (i.e., adding, updating, or deleting records) in
databases.

Definition 6 (Change Types). Let DM = (C,A, classAttr , val,PK ,FK ,
classPK , classFK , keyRel , keyAttr , refAttr) be a data model. CTDM = CTDM

add ∪
CTDM

upd ∪ CTDM
del is the set of change types composed of the following pairwise

disjoint sets:

– CTDM
add = {(⊕, c, A′) | c ∈ C ∧A′ ⊆ classAttr(c)∧ keyAttr(classPK (c)) ⊆ A′}

are the change types for adding records of DM ,
– CTDM

upd = {(�, c, A′) | c ∈ C ∧A′ ⊆ classAttr(c)∧keyAttr(classPK (c))∩A′ =
∅} are the change types for updating records of DM , and

– CTDM
del = {(�, c, A′) | c ∈ C ∧ A′ = classAttr(c)} are the change types for

deleting records of DM .

UCT is the universe of change types.

Definition 7 (Changes). Let DM be a data model, RDM be the set of records
of DM , CTDM = CTDM

add ∪ CTDM
upd ∪ CTDM

del be the set of change types and
mapnull ∈ ∅ → V be a function with the empty set as domain. CHDM =
CHDM

add ∪CHDM
upd ∪CHDM

del is the set of changes composed of the following pair-
wise disjoint sets:

– CHDM
add = {(⊕, c, A′,mapold,mapnew) | (⊕, c, A′) ∈ CTDM

add ∧ mapold =
mapnull ∧ (c,mapnew) ∈ RDM},

– CHDM
upd = {(�, c, A′,mapold,mapnew) | (�, c, A′) ∈ CTDM

upd ∧ (c,mapold) ∈
RDM ∧ (c,mapnew) ∈ RDM}, and

– CHDM
del = {(�, c, A′,mapold,mapnew) | (�, c, A′) ∈ CTDM

del ∧ (c,mapold) ∈
RDM ∧ mapnew = mapnull}.
A change (op, c, A′,mapold,mapnew) corresponds to an SQL sentence, i.e.,

adding, updating or deleting a record in a table. Its change type (op, c, A′) indi-
cates which table (i.e., c) the record is in, which columns (i.e., A′) of the record
are impacted and how the record is impacted (indicated by op, i.e., adding,
updating or deleting), while its old and new mappings (i.e., mapold and mapnew)
specify the contents of the record before and after the change, respectively. Note
that, A′ provides more power to produce different change types, i.e., changes
impacting different attributes in the same table can be clarified into different
change types, which is not considered in [5].
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Definition 8 (Change Occurrence, Change Log). Let DM be a data model
and CHDM be the set of changes of DM . Let TS be the universe of timestamps.
CODM = CHDM × TS is the set of all possible change occurrences of DM . A
change log CL = 〈co1, co2, . . . , con〉 ∈ (CODM )∗ is a sequence of change occur-
rences such that time is non-decreasing, i.e., tsi � tsj for any coi = (chi, tsi)
and coj = (chj , tsj) with 1 � i < j � n. UCL is the universe of change logs.

A change occurrence co = (ch, ts) represents a change ch happened at ts. It
corresponds to one row in the redo log or CDHDR table. A change log consists
of a list of change occurrences which are sorted by timestamps such that time
is non-decreasing. Note that, change logs record behavior on the database level
(e.g., an execution of “insert an order record”) while XOC logs record behavior
on the information system level (e.g., a “create order” operation) (cf. Sect. 2.2).

Definition 9 (Effect of a Change). Let DM be a data model. CHDM is the
set of changes of DM and ch = (op, c, A′,mapold,mapnew) ∈ CHDM is a change.
DSold = (DM ,RSold ) and DSnew = (DM ,RSnew) are two data sets. DSnew is
generated after the change ch on DSold and denote DSold

ch→ DSnew if and only
if

– RSnew = {(c′,map′) ∈ RSold | (c′,map′) �= (c,mapold)} ∪ {(c,mapnew) | op �=
�} or

– RSold = {(c′,map′) ∈ RSnew | (c′,map′) �= (c,mapnew)} ∪ {(c,mapold) | op �=
⊕}.

Definition 10 (Effect of a Change Log). Let DM be a data model and CL =
〈co1, co2, . . . , con〉 ∈ UCL be a change log. There exist data sets DS0 , DS1 ,. . . ,
DSn ∈ UDS such that DS0

co1→ DS1
co2→ DS2 . . .

con→ DSn . Hence, change log CL
results in data set DSn when starting in DS0 . This is denoted by DS0

CL→ DSn .

Given a data set DSold = (DM ,RSold ), a change results in a new data set
DSnew through adding, updating or deleting a record in the record set RSold
of DSold (cf. Definition 9). Similarly, a change log results in a data set DSn
through orderly accumulating the effects of all changes on the initial data set
DS0 , indicated by Definition 10.

3.3 Formalizations of Extracting Logs

A XOC log (E, act , refer , om,≺) consists of events, event types, object refer-
ences, object models and event ordering. For extracting events, one needs to
specify some event types based on domain knowledge which indicates the rela-
tions between event types (classifying behavior at the information system level)
and change types (classifying behavior at the database level) (cf. Sect. 2.2). An
example of the knowledge is that the “create order” event type consists of two
change types, i.e., “insert one order record” and “insert one or more order line
records”, since a click on the “create order” button inserts one record in the
“order” table and one or more records in the “order line” table.
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Definition 11 (Cardinalities). UCard = {X ∈ P(IN)\{∅}} defines the uni-
verse of all cardinalities. A cardinality (an element of UCard) specifies a non-
empty set of integers.

Definition 12 (Event Types). Let DM be a data model and CTDM be the set
of change types of DM . ETDM = {et ∈ P(UCard × CTDM )\{∅} | ∀(card1 , ct1),
(card2 , ct2) ∈ et : (ct1 = ct2 ⇒ card1 = card2 )} is the set of event types of DM .

An event type is defined as a set of tuples of a cardinality and a change type,
where the cardinality describes the quantitative relation between the event type
and the change type. For example, the “create order” event type is denoted as
{({1}, (⊕, o, A′

1)), ({1..∗}, (⊕, ol, A′
2))} which means a “create order” event adds

precisely one record in the “order” (o) table, and at least one record in the
“order line” (ol) table. Definition 12 specifies a concrete realization for event
types while UET (cf. Definition 2) only abstractly defines the universe.

Definition 13 (Events). Let DM be a data model, CODM be the set of change
occurrences of DM and ETDM be the set of event types of DM . EDM =
{e ∈ (CODM )∗\{∅} | ∀(chi, tsi), (chj , tsj) ∈ e : (i < j ⇒ tsi � tsj)} is
the set of events of DM . Function possibleE ∈ ETDM → P(EDM ) returns
possible events of an event type such that possibleE (et) = {e ∈ EDM |
∀((op, c, A′,mapold,mapnew), ts) ∈ e : (∃card ∈ Ucard : (card , (op, c, A′)) ∈ et) ∧
∀(card ′, (op′, c′, A′′)) ∈ et : |{((op′, c′, A′′,map′

old,map′
new), ts′) ∈ e}| ∈ card ′}.

An event is a non-empty sequence of change occurrences such that time
is non-decreasing. Function possibleE gives all possible events correspond-
ing to one event type. For instance, e = 〈((⊕, o, A,mapold,mapnew), ts),
((⊕, ol, A′,map′

old,map′
new), ts)〉 is a possible event of the event type “create

order” (co), i.e., e ∈ possibleE (co). Definition 13 specifies a concrete realization
for events.

Definition 14 (Extracting Event Types). Let DM be a data model. E ⊆
EDM is a set of events. ET ⊆ ETDM is a predefined set of event types where
∀et1, et2 ∈ ET : possibleE (et1) ∩ possibleE (et2) = ∅. Function extractET ∈
E → ET maps an event to an event type such that extractET (e) = et where
e ∈ possibleE (et).

Given a predefined set of event types whose possible events are disjoint,
function extractET maps an event to an event type in the set. In this paper, we
assume there exists exactly one possible type in the predefined set for the event.

Definition 15 (Mapping Record into Object). Let DM = (C,A, classAttr ,
val,PK ,FK , classPK , classFK , keyRel , keyAttr , refAttr) be a data model and
RDM be the set of records of DM . Function extractO ∈ RDM → UO maps
a record (c,map) to an object such that extractO((c,map)) = (c,mapk) ∈
C × MDM where
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– dom(mapk ) = keyAttr(classPK (c)), and
– ∀a ∈ dom(mapk ) : mapk(a) = map(a).

Function extractO filters in the mapping for attributes corresponding to the
primary key of a record, resulting in an object. This function specifies a concrete
realization, i.e., a tuple (c,mapk), for each object in UO (cf. Definition 1).

Definition 16 (Mapping Data Set into Object Model). Let DS =
(DM ,RS ) be a data set where DM = (C,A, classAttr , val,PK ,FK , classPK ,
classFK , keyRel , keyAttr , refAttr) is a data model and RS is a set of records.
Function extractOM ∈ UDS → UOM maps a data set to an object model such
that extractOM (DS ) = (Obj ,Rel , class, objectAttr) where

– Obj = {extractO(r) | r ∈ RS},
– Rel = {(rt, extractO((c,map)), extractO((c′,map′)) | rt = (c, pk, c′, fk) ∈

C × PK × C × FK ∧ (c,map) ∈ RS ∧ (c′,map′) ∈ RS ∧ pk = classPK (c) ∧
fk ∈ classFK (c′) ∧ keyRel(fk) = pk ∧ ∀a ∈ keyAttr(fk) : map′(a) =
map(refAttr(fk , a))},

– ∀(c,mapk) ∈ Obj : class((c,mapk)) = c, and
– ∀(c,mapk) ∈ Obj : objectAttr((c,mapk )) = map where (c,map) ∈ RS and

extractO((c,map)) = (c,mapk).

Function extractOM maps a data set into an object model. More precisely, if
each attribute value corresponding to a foreign key of a record r is equal to the
value of the attribute identified by function refAttr in another record r′, there
exists an object relation between extractO(r) and extractO(r ′).

Definition 17 (Transforming Change Log Into Event Sequence). Func-
tion extractES ∈ UCL → (UE )∗ extracts an event sequence from a change log
such that ∀CL = 〈co1, co2, . . . , con〉 ∈ UCL : extractES (CL) = 〈e1, e2, . . . , em〉
where

– {co ∈ CL} = {co′ | co′ ∈ ei ∧ ei ∈ 〈e1, e2, . . . , em〉}, and
– ∀ei, ej ∈ 〈e1, e2, . . . , em〉 : (∀(ch, ts) ∈ ei, (ch′, ts′) ∈ ej : i < j ⇒ ts < ts′).

A reverse function restoreES ∈ (UE )∗ → UCL which restores an
event sequence to a change log such that restoreES (〈e1 , e2 , . . . , em〉) =
〈co1, co2, . . . , con〉.

Function extractES transforms a change log (i.e., a change occurrence
sequence) into an event sequence by grouping change occurrences at the same time
into an event without modifying the order of these change occurrences. Note that,
it is possible to group change occurrences based on domain knowledge instead of
time, which provides more freedom for extracting events (e.g., overlapping events).
On the contrary, function restoreES transforms an event sequence into a change
occurrence sequence, i.e., restoreES (〈e1 , e2 , . . . , em〉) = 〈co1 , co2 , . . . , con〉 if and
only if extractES (〈co1 , co2 , . . . , con〉) = 〈e1 , e2 , ..., em〉.
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Definition 18 (Extracting XOC Event Log). Function extractL ∈ UDS ×
UCL → UL extracts a XOC event log from a data set and a change log such that
∀DS ∈ UDS ,CL ∈ UCL : extractL(DS ,CL) = (E, act , refer , om,≺) where

– E = {e ∈ 〈e1, e2, . . . , em〉} where 〈e1, e2, . . . , em〉 = extractES (CL),
– act = extractET,
– ∀ei ∈ E : refer(ei) = {o | ∃((op, c, A′,mapold,mapnew), ts) ∈ ei : o =

extractO(c,mapnew ) ∧ op �= �} ∪ {o | ∃((�, c, A′,mapold,mapnew), ts) ∈ ei :
o = extractO(c,mapold)},

– ∀ei ∈ E : om(ei) = OMi such that OMi
CL′
→ extractOM (DS ) where CL′ =

restoreES (tlm−i(〈e1 , e2 , . . . , em〉)) and 〈e1, e2, . . . , em〉 = extractES (CL),5

and
– ≺= {(ei, ej) | ei ∈ E ∧ ej ∈ tlm−i(〈e1 , e2 , . . . , em〉) where 〈e1, e2, . . . , em〉 =

extractES (CL).

Function refer is obtained through identifying the impacted (added, updated
or deleted) objects by each event. The data set indicates the object model (i.e.,
extractOM (DS )) corresponding to the last event (i.e., em). In order to obtain the
object model corresponding to one event ei, we get (i) its suffix event sequence
tlm−i(〈e1, e2, . . . , em〉) (i.e., 〈ei+1, ei+2, . . . , em〉), (ii) the corresponding change
sequence CL′ through extractES and (iii) the object model OMi through →.

4 Implementation

Our approach has been implemented in the “XOC Log Generator” Plugin in
ProM 6 Nightly builds, which takes tables (from a database or csv files) as input
and automatically generates a XOC log. For instance, taking the motivating data
as input, this plugin generates an event log with 10 events, the first five ones of
which are shown in Table 3.6

A XOC log reveals the evolution of a database along with the events from
its corresponding information system. As shown in Fig. 3, after the occurrence
of an event (denoted by a black dot), its corresponding object model (denoted
by a cylinder) is updated by adding, updating or deleting objects (highlighted
in red). Besides, XOC logs provide methods to correlate events by objects. For
instance, two events are correlated if they refer to (indicated by dotted lines)
two related objects, e.g., co1 and cs1 are correlated since co1 refers to ol1, cs1
refers to sl1 and ol1 is related to sl1.

Figure 4 shows the comparison between the XES log and the XOC log derived
from the motivating data in Fig. 1. More precisely, Fig. 4(a) reveals the behav-
ioral perspective of the XOC log after correlating events and Fig. 4(b) shows two
cases o1 and o2. Our log is able to represent one-to-many and many-to-many
relations by removing the case notion, while the XES log splits events based on
5 tlk(σ) means to get the last k elements of a sequence σ.
6 The involved data and more real life examples can be found at http://www.win.tue.

nl/ocbc/.

http://www.win.tue.nl/ocbc/
http://www.win.tue.nl/ocbc/
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Fig. 3. A XOC log (in Table 3) revealing the evolution of a database. (Color figure
online)

a straightjacket case id. The split performed in the XES log results in two sep-
arated cases without interactions in between as well as leading to convergence
(e.g., cp1 appears in two cases) and divergence (e.g., multiple instances of the
activity cp appear in o2) problems.
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time(a) The behavioral perspective of the generated XOC log. (b) The generated XES log.
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cs3
(cs)

Fig. 4. A comparison which indicates XOC logs can avoid data convergence and diver-
gence.

Besides the advantages over the existing log format, XOC logs open a door
for other techniques. Based on XOC logs, we can discover object-centric behav-
ioral constraint (OCBC) models [8], as shown in Fig. 5. Figure 6 shows parts
of three example models discovered from the generated XES log in Fig. 4(b),
which displays the problems caused by data convergence and divergence. In (a)
we see that the negative relation denoted by d5 with a dotted line cannot be
discovered in the declare model, since in case o2, the “create payment” event cp1
is wrongly related to its subsequent “create invoice” event ci3. The discovered
directly follow graph (DFG) in (b) indicates that “create invoice” happens 4
times, violating the real frequency of 3 times due to the duplication of ci2. In
(c) we observe that, since the multiple instance of activities “create invoice” and
“create payment” cannot be distinguished, two loops with two implicit tran-
sitions are discovered, resulting in an imprecise Petri net. In contrast, since
XOC logs are not affected by convergence and divergence, the discovered OCBC
model (cf. Fig. 5) can show the correct frequencies (i.e., numbers in red) and the
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Fig. 5. The OCBC model discovered from the generated XOC log. (Color figure online)

missing negative relation (i.e., c1)7, avoiding the problems confronted by these
three models. Besides, compared with existing modeling notations, such as the
models in Fig. 6, OCBC models can show the data perspective, the behavioral
perspective and the interactions in between in a single diagram. Moreover, since
XOC logs can correlate events by objects and have a richer data perspective,
they can be used to check conformance for more implicit deviations by consid-
ering multiple instances and data objects [14]. Additionally,since the discovered
OCBC model indicates constraints in/between objects and events, it is possible
to predict future events and objects based on observed ones.

Fig. 6. Problems suffered by three kinds of models discovered from the generated XES
log. (Color figure online)

5 Related Work

In this section, we review the existing event log formats and introduce some
researches which extract event logs from databases.

Event Log Formats. Event logs serve as the input for many process mining
techniques. The XES log format [1] which stands for eXtensible Event Stream
(www.xes-standard.org) is the de facto exchange format for process mining. This

7 The notation for the negative relation in OCBC models is different from that in
declare models.

www.xes-standard.org
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format is supported by tools such as ProM and implemented by OpenXES, an
open source java library for reading, storing and writing XES logs. The XES
format cannot deal well with object-centric data. [4] proposes a meta model to
abstract the object-centric data and redo logs into different types of entities
such as attributes, objects, relations and events. The meta model covers both
behavioral and data perspectives and builds a bridge to connect databases with
process mining. This meta model is not a concrete log format, but transforms
the object-centric data into “bricks” which can constitute logs to enable process
mining techniques. Our XOC log format combines the “bricks” from [4] in an
object-centric way, i.e., it focuses more on the data perspective unlike the XES
format. Objects are replacing a case notion to correlate events, which makes
XOC logs able to deal with one-to-many and many-to-many relations. Moreover,
through defining object models, a XOC log reveals the evolution of a database
through time.

Extracting Event Logs. In order to obtain event logs, researches propose
a number of techniques and tools. A popular tool is XESame8, which is used
to convert databases into XES event logs. [13] conceptualizes a database view
over event data based on the idea that events leave footprints by changing the
underlying database, which are captured by redo logs of database systems. Trig-
gered by this idea, [5] proposes a method to extract XES logs from databases
by identifying a specific trace id pattern. [3] proposes an approach to flexibly
extract XES event logs from relational databases, by leveraging the ontology-
based data access paradigm and [2] provides a tool (onprom) to extract event
logs from legacy data based on an ontology. In order to obtain logs from non-
process-aware information systems, [11] correlates events into process instances
using similarity of their attributes. [7] provides an overview of the decisions that
impact the quality of the event logs constructed from database data. [6] pro-
poses an analysis system which allows users to define events, resources and their
inter-relations to extract logs from SAP transactions. [12] addresses merging logs
produced by disintegrated systems that cover parts of the same process by choos-
ing a “main” process. Artifact-centric approaches [9,10] try to extract artifacts
(i.e., business entities) and address the possibility of many-to-many relation-
ships between artifacts. Compared with the existing approaches, our approach
outputs object-centric logs, i.e., XOC logs, rather than process-centric logs, i.e.,
XES logs. The main advantage of object-centric logs is the new kinds of analyses
that they enable. Data-aware process model discovery [8], and new conformance
checking techniques [14] that exploit data relations are examples of approaches
directly applicable to XOC logs. Another important contribution is that our
approach supports the abstraction from low level database events (like the ones
obtained in [5]) to high level events (e.g., from the original information system).

8 http://www.processmining.org/xesame/start.

http://www.processmining.org/xesame/start
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6 Conclusion

In this paper we proposed an approach to extract event logs from object-centric
data (i.e., database tables), using the eXtensible Object-Centric (XOC) log for-
mat. The XOC format provides a process mining view on databases. Compared
with existing log formats, such as XES, it has the following advantages:

– By removing the case notion and correlating events with objects, XOC logs
can perfectly deal with one-to-many and many-to-many relations, avoiding
convergence and divergence problems and displaying interactions between
different instances.

– An object in XOC logs contains as much information as its corresponding
record in the database. By extending the data perspective, XOC logs retain
the data quality.

– The object model of an event represents a snapshot of the database just
after the event occurrence. Based on this idea, the log provides a view of the
evolution of the database, along with the operations which triggered changes
in the database.

Besides, XOC logs serve as a starting point for a new line of future techniques.
Based on experiments implemented on the generated XOC logs, it is possible
to discover OCBC models (cf. Fig. 5) to describe the underlying process in an
object-centric manner [8]. Additionally, taking a XOC log and an OCBC model
as input, many deviations which cannot be detected by existing approaches, can
be revealed by new conformance checking techniques [14]. Moreover, prediction
of future events and objects is also enabled according to the constraints indicated
by the discovered OCBC model. Note that, the OCBC discovery, conformance
checking and prediction are just examples of potential applications of XOC logs.
It is possible to propose more techniques based on XOC logs, e.g., discovering
other types of data-aware process models.
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