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Abstract. Business process variants are common in many enterprises
and properly managing them is indispensable. Some process manage-
ment suites already offer features to tackle the challenges of creating and
updating multiple variants of a process. As opposed to the widespread
activity-centric process modeling paradigm, however, there is little to no
support for process variants in other process support paradigms, such
as the recently proposed artifact-centric or object-aware process support
paradigm. This paper presents concepts for supporting process variants
in the object-aware process management paradigm. We offer insights into
the distributed object-aware process management framework PHILhar-
monicFlows as well as the concepts it provides for implementing variants
and versioning support based on log propagation and log replay. Finally,
we examine the challenges that arise from the support of process vari-
ants and show how we solved these, thereby enabling future research
into related fundamental aspects to further raise the maturity level of
data-centric process support paradigms.

Keywords: Business processes · Process variants
Object-aware processes

1 Introduction

Business process models are a popular method for companies to document their
processes and the collaboration of the involved humans and IT resources. How-
ever, through globalization and the shift towards offering a growing number
of products in a large number of countries, many companies are face a sharp
increase of complexity in their business processes [4,5,11]. For example, auto-
motive manufacturers that, years ago, only had to ensure that they had stable
processes for building a few car models, now have to adhere to many regulations
for different countries, the increasing customization wishes of customers, and far
faster development and time-to-market cycles. With the addition of Industry
4.0 demands, such as process automation and data-driven manufacturing, it is
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becoming more important for companies to establish maintainable business pro-
cesses that can be updated and rolled out across the entire enterprise as fast as
possible.

However, the increase of possible process variants poses a challenge, as each
additional constraint derived from regulations or product specifics either leads to
larger process models or more process models showing different variants of oth-
erwise identical processes. Both scenarios are not ideal, which is why there has
been research over the past years into creating more maintainable process vari-
ants [5,7,11,13]. As previous research on process variant support has focused
on activity-centric processes, our contribution provides a novel approach sup-
porting process variants in object-aware processes. Similar to case handling or
artifact-centric processes, object-aware processes are inherently more flexible
than activity-centric ones, as they are less strictly structured, allowing for more
freedom during process execution [1,3,6,10,12]. This allows object-aware pro-
cesses to support processes that are very dynamic by nature and challenging to
formulate in a sequence of activities in a traditional process model.

In addition to the conceptual challenges process variants pose in a centralized
process server scenario, we examine how our approach contributes to managing
the challenges of modeling and executing process variants on an architecture that
can support scenarios with high scalability requirements. Finally, we explain how
our approach can be used to enable updatable versioned process models, which
will be essential for supporting schema evolution and ad-hoc changes in object-
aware processes.

To help understand the notions presented in the contribution we provide
the fundamentals of object-aware process management and process variants in
Sect. 2. Section 3 examines the requirements identified for process variants. In
Sect. 4 we present the concept for variants in object-aware processes as the main
contribution of this paper. In Sect. 5 we evaluate whether our approach meets the
identified requirements and discuss threats to validity as well as persisting chal-
lenges. Section 6 discusses related work, whereas Sect. 7 provides a summary and
outlook on our plans to provide support for migrating running process instances
to newer process model versions in object-aware processes.

2 Fundamentals

2.1 Object-Aware Process Management

PHILharmonicFlows, the object-aware process management framework we are
using as a test-bed for the concepts presented in this paper, has been under
development for many years at Ulm University [2,8,9,16,17]. This section gives
an overview on the PHILharmonicFlows concepts necessary to understand the
remainder of the paper. PHILharmonicFlows takes the basic idea of a data-driven
and data-centric process management system and improves it by introducing
the concept of objects. One such object exists for each business object present in
a real-world business process. As can be seen in Fig. 1, a PHILharmonicFlows
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object consists of data, in the form of attributes, and a state-based process model
describing the object lifecycle.

Amount: IntegerAmount: IntegerAmount: Integer Date: DateDate: DateDate: Date Approved: BoolApproved: BoolApproved: Bool

Initialized Decision Pending

Approved

Rejected

AmountAmount DateDate
ApprovedApproved

Comment: StringComment: StringComment: String

Approved == true

Approved == false

Transfer

Lifecycle

Attributes

Assignment: Customer Assignment: Checking Account Manager

Fig. 1. Example object including lifecycle process

The attributes of the Transfer object (cf. Fig. 1) include Amount, Date,
Approval, and Comment. Thelifecycle process, in turn, describes the different
states (Initialized, Decision Pending, Approved, and Rejected), an instance of a
Transfer object may have during process execution. Each state contains one or
more steps, each referencing exactly one of the object attributes, thereby forcing
that attribute to be written at run-time. The steps are connected by transitions,
allowing them to be arranged in a sequence. The state of the object changes
when all steps in a state are completed. Finally, alternative paths are supported
in the form of decision steps, an example of which is the Approved decision step.

As PHILharmonicFlows is data-driven, the lifecycle process for the Transfer
object can be understood as follows: The initial state of a Transfer object is Ini-
tialized. Once a Customer has entered data for the Amount and Date attributes,
the state changes to Decision Pending, which allows an Account Manager to
input data for Approved. Based on the value for Approved, the state of the
Transfer object changes to Approved or Rejected. Obviously, this fine-grained
approach to modeling a business process increases complexity when compared
to the activity-centric paradigm, where the minimum granularity of a user action
is one atomic activity or task, instead of an individual data attribute.

Bank Transfer – DecisionBank Transfer – Decision
27.000 €

03.06.2017

true

Amount

Date
Approved*

Submit

Comment

Fig. 2. Example form

However, as an advantage, the object-aware
approach allows for automated form generation at
run-time. This is facilitated by the lifecycle pro-
cess of an object, which dictates the attributes to
be filled out before the object may switch to the
next state, resulting in a personalized and dynam-
ically created form. An example of such a form,
derived from the lifecycle process in Fig. 1, is shown
in Fig. 2.
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Note that a single object and its resulting form only constitutes one part of
a complete PHILharmonicFlows process. To allow for complex executable busi-
ness processes, many different objects and users may have to be involved [17].
It is noteworthy that users are simply special objects in the object-aware pro-
cess management concept. The entire set of objects (including those representing
users) present in a PHILharmonicFlows process is denoted as the data model,
an example of which can be seen in Fig. 3a. At run-time, each of the objects
can be instantiated to so-called object instances, of which each represents a con-
crete instance of an object. The lifecycle processes present in the various object
instances are executable concurrently at run-time, thereby improving perfor-
mance. Figure 3b shows a simplified example of an instantiated data model at
run-time.

Checking 
Account Stock Depot

Transfer

Customer

Employee

Savings 
Account

Customer 1

Checking
Account 1

Employee 1

Customer 2

Checking
Account 2

Checking
Account 3

Transfer 2 Transfer 1 Transfer 3

(a) Design-time (b) Run-time

Fig. 3. Data model

In addition to the objects, the data model contains information about the
relations existing between them. A relation constitutes a logical association
between two objects, e.g., a relation between a Transfer and a Checking Account.
Such a relation can be instantiated at run-time between two concrete object
instances of a Transfer and a Checking Account, thereby associating the two
object instances with each other. The resulting meta information, i.e., the infor-
mation that the Transfer in question belongs to a certain Checking Account, can
be used to coordinate the processing of the two objects with each other.

Finally, complex object coordination, which becomes necessary as most pro-
cesses consist of numerous interacting business objects, is possible in PHILhar-
monicFlows as well [17]. As objects publicly advertise their state information,
the current state of an object can be utilized as an abstraction to coordinate
with other objects corresponding to the same business process through a set of
constraints, defined in a separate coordination process. As an example, consider a
constraint stating that a Transfer may only change its state to Approved if there
are less than 4 other Transfers already in the Approved state for one specific
Checking Account.
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The various components of PHILharmonicFlows, i.e., objects, relations, and
coordination processes, are implemented as microservices, turning PHILharmon-
icFlows into a fully distributed process management system for object-aware
processes. For each object instance, relation instance, or coordination process
instance one microservice is present at run-time. Each microservice only holds
data representing the attributes of its object. Furthermore, the microservice only
executes the lifecycle process of the object it is assigned to. The only information
visible outside the individual microservices is the current “state” of the object,
which, in turn, is used by the microservice representing the coordination process
to properly coordinate the objects’ interactions with each other.

2.2 Process Variants

Simply speaking, a process variant is one specific path through the activities of
a process model, i.e., if there are three distinct paths to completing a business
goal, three process variants exist. As an example, take the process of transferring
money from one bank account to another, for which there might be three alter-
nate execution paths. For instance, if the amount to be transferred is greater
than $10,000, a manager must approve the transfer, if the amount is less than
$10,000, a mere clerk may approve said transfer. Finally, if the amount is less
than $1,000, no one needs to approve the transfer. This simple decision on who
has to approve the transfer implicitly creates three variants of the process.

As previously stated, modeling such variants is mostly done by incorporat-
ing them into one process model as alternate paths via choices (cf. Fig. 4a). As
demonstrated in the bank transfer example, this is often the only viable option,
because the amount to be transferred is not known when the process starts.
Clearly, for more complex processes, each additional choice increases the com-
plexity of the process model, making it harder to maintain and update.

To demonstrate this, we extend our previous example of a bank transfer with
the addition of country-specific legal requirements for money transfers between
accounts. Assuming the bank operates in three countries, A, B, and C, country
A imposes the additional legal requirement of having to report transfers over
$20,000 to a government agency. On the other hand, Country B could require
the reporting of all transfers to a government agency, while country C has no
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Fig. 4. Bank transfer process



6 K. Andrews et al.

such requirements. The resulting process model would now have to reflect all
these additional constraints, making it substantially larger (cf. Fig. 4b).

Obviously, this new process model contains more information than necessary
for its execution in one specific country. Luckily, if the information necessary
to choose the correct process variant is available before starting the execution
of the process, a different approach can be chosen: defining the various pro-
cess variants as separate process models and choosing the right variant before
starting the process execution. In our example this can be done as the coun-
try is known before the transfer process is started. Therefore, it is possible to
create three country-specific process model variants, for countries A, B, and C,
respectively. Consequently, each process model variant would only contain the
additional constraints for that country not present in the base process model.

This reduces the complexity of the process model from the perspective of
each country, but introduces the problem of having three different models to
maintain and update. Specifically, changes that must be made to those parts
of the model common to all variants, in our example the decision on who must
approve the transfer, cause redundant work as there are now multiple process
models that need updating. Minimizing these additional time-consuming work-
loads, while enabling clean variant-specific process models, is a challenge that
many researchers and process management suites aim to solve [5,7,11,14,15].

3 Requirements

The requirements for supporting process variants in object-aware processes are
derived from the requirements for supporting process variants in activity-centric
processes, identified in our previous case studies and a literature review [5,7,11].

Requirement 1 (Maintainability). Enabling maintainability of process vari-
ants is paramount to variant management. Without advanced techniques, such
as propagating changes made to a base process to its variants, optimizing a
process would require changes in all individual variants, which is error-prone
and time-consuming. To enable the features that improve maintainability, the
base process and its variants must be structured as such (cf. Req. 2). Further-
more, process modelers must be informed if changes they apply to a base process
introduce errors in the variants derived from them (cf. Req. 3).

Requirement 2 (Hierarchical structuring). As stated in Req. 1, a hierarchical
structure becomes necessary between variants. Ideally, to further reduce work-
loads when optimizing and updating processes, the process variants of both life-
cycle and coordination processes can be decomposed into further sub-variants.
This allows those parts of the process that are shared among variants, but which
are not part of the base process, to be maintained in an intermediate model.

Requirement 3 (Error resolution). As there could be countless variants, the
system should report errors to process modelers automatically, as manual check-
ing of all variants could be time-consuming. Additionally, to ease error resolution,
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the concept should allow for the generation of resolution suggestions. To be able
to detect which variants would be adversely affected by a change to a base model,
automatically verifiable correctness criteria are needed, leading to Req. 4.

Requirement 4 (Correctness). The correctness of a process model must be
verifiable at both design- and run-time. This includes checking correctness before
a pending change is applied in order to judge its effects. Additionally, the effects
of a change on process model variants must be determinable to support Req. 5.

Requirement 5 (Scalability). Finally, most companies that need process vari-
ant management solutions maintain many process variants and often act globally.
Therefore, the solutions for the above requirements should be scalable, both in
terms of computational complexity as well as in terms of the manpower necessary
to apply them to a large number of variants. Additionally, as the PHILharmon-
icFlows architecture is fully distributed, we have to ensure that the developed
algorithms work correctly in a distributed computing environment.

4 Variants and Versioning of Process Models

This section introduces our concepts for creating and managing different
deployed versions and variants of data models as well as contained objects in an
object-aware process management system. We start with the deployment con-
cept, as the variant concept relies on many of the core notions presented here.

4.1 Versioning and Deployment Using Logs

Versioning of process models is a trivial requirement for any process manage-
ment system. Specifically, one must be able to separate the model currently
being edited by process modelers from the one used to instantiate new process
instances. This ensures that new process instances can always be spawned from
a stable version of the model that no one is currently working on. This process is
referred to as deployment. In the current PHILharmonicFlows implementation,
deployment is achieved by copying an editable data model, thereby creating a
deployed data model. The deployed data model, in turn, can then be instantiated
and executed while process modelers keep updating the editable data model.

As it is necessary to ensure that already running process instances always
have a corresponding deployed model, the deployed models have to be versioned
upon deployment. This means that the deployment operation for an editable data
model labeled “M” automatically creates a deployed data model MT38 (Data
Model M , Timestamp 38 ). Timestamp T38 denotes the logical timestamp of the
version to be deployed, derived from the amount of modeling actions that have
been applied in total. At a later point, when the process modelers have updated
the editable data model M and they deploy the new version, the deployment
operation gets the logical timestamp for the deployment, i.e., T42, and creates
the deployed data model MT42 (Data Model M , Timestamp 42). As MT38 and
MT42 are copies of the editable model M at the moment (i.e., timestamp) of
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deployment, they can be instantiated and executed concurrently at run-time. In
particular, process instances already created from MT38 should not be in conflict
with newer instances created from MT42.

The editable data model M , the two deployed models MT38 and MT42 as well
as some instantiated models can be viewed in Fig. 5. The representation of each
model in Fig. 5 contains the set of objects present in the model. For example,
{X,Y } denotes a model containing the two objects X and Y. Furthermore, the
editable data model has a list of all modeling actions applied to it. For example,
L13:[+X] represents the 13th modeling action, which added an object labeled
“X”. The modeling actions we use as examples throughout this section allow
adding and removing entire objects. However, the concepts can be applied to
any of the many different operations supported in PHILharmonicFlows, e.g.,
adding attributes or changing the coordination process.

Editable Model “M”
...

L13:[+X]
L24:[+Y]

...
L39:[+A]
L40:[+B]
L41:[+C]
L42:[+D]

{X,Y,A,B,C,D}

Deployed Model
M_T38

{X,Y}De
pl

oy
m

en
t

Deployed Model
M_T42

{X,Y,A,B,C,D}De
pl

oy
m

en
t Instantiated Model 

M_T42_1

{X,Y,A,B,C,D}

Instantiated Model 
M_T38_2

{X,Y(,A,B,C,D)}

Instantiated Model 
M_T38_1

{X,Y}

Version Migration <+A,+B,+C,+D>

In
st

an
tia

tio
n

Instantiation

In
st

an
tia

tio
n

Fig. 5. Deployment example

To reiterate, versioned deployment is a basic requirement for any process
management system and constitutes a feature that most systems offer. However,
we wanted to develop a concept that would, as a topic for future research, allow
for the migration of already running processes to newer versions. Additionally,
as we identified the need for process variants (cf. Sect. 1), we decided to tackle
all three issues, i.e., versioned deployment, variants, and version migration of
running processes, in one approach.

Deploying a data model by simply cloning it and incrementing its ver-
sion number is not sufficient for enabling version migration. Version migration
requires knowledge about the changes that need to be applied to instances
running on a lower version to migrate it to the newest version, denoted as
MT38ΔMT42 in our example. In order to obtain this information elegantly, we log
all actions a process modeler completes when creating the editable model until
the first deployment. We denote these log entries belonging to M as logs (M). To
create the deployed model, we replay the individual log entries l ∈ logs (M) to
a new, empty, data model. As all modeling actions are deterministic, this recre-
ates the data model M step by step, thereby creating the deployed copy, which
we denote as MT38. Additionally, as replaying the logs in logs (M) causes each
modeling action to be repeated, the deployment process causes the deployed data
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model MT38 to create its own set of logs, logs (MT38). Finally, as data model M
remains editable after a deployment, additional log entries may be created and
added to logs (M). Each consecutive deployment causes the creation of another
deployed data model and set of logs, e.g. MT42 and logs (MT42).

As the already deployed version, MT38 has its own set of logs, i.e.,
logs (MT38), it is trivial to determine MT38ΔMT42, as it is simply the set differ-
ence, i.e., logs (MT42) \ logs (MT38). As previously stated, MT38ΔMT42 can be
used later on to enable version migration, as it describes the necessary changes to
instances of MT38 when migrating them to MT42. An example of how we envision
this concept functioning is given in Fig. 5 for the migration of the instantiated
model MT382 to the deployed model MT42.

To enable this logging-based copying and deployment of a data model in
a distributed computing environment, the log entries have to be fitted with
additional meta information. As an example, consider the simple log entry l42
which was created after a user had added a new object type to the editable data
model:

l42 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dataModelId 6123823241189
action AddObjectType

params [name : “ObjectD”]
timestamp 42

Clearly, the log entry contains all information necessary for its replay: the id of
the data model or object the logged action was applied to, the type of action that
was logged, and the parameters of this action. However, due to the distributed
microservice architecture PHILharmonicFlows is built upon, a logical timestamp
for each log entry is required as well. This timestamp must be unique and sortable
across all microservices that represent parts of one editable data model, i.e., all
objects, relations, and coordination processes. This allows PHILharmonicFlows
to gather the log entries from the individual microservices, order them in exactly
the original sequence, and replay them to newly created microservices, thereby
creating a deployed copy of the editable data model.

Coincidentally, it must be noted that the example log entry l42 is the one
created before deployment of MT42. By labeling the deployment based on the
timestamp of the last log entry, determining the modeling actions that need to
be applied to an instance of MT38 to update it to MT42 can be immediately
identified as the sequence 〈l39, l40, l41, l42〉 ⊂ logs (MT42), as evidenced by the
example in Fig. 5.

4.2 Variants

As previously stated, we propose reusing the logging concept presented in
Sect. 4.1 for creating and updating variants of data models and contained objects.
In Sect. 4.1, we introduced two example data models, MT38 and MT42, which
were deployed at different points in time from the same editable data model.
Additionally, we showed that the differences between these two deployed models
are the actions applied by four log entries, namely 〈l39, l40, l41, l42〉. Expanding
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upon this idea, we developed a concept for creating variants of data models using
log entries for each modeling action, which we present in this section.

An example of our concept, in which two variants, V 1 and V 2, are created
from the editable data model M , is shown in Fig. 6. The editable base model,
M , has a sequence of modeling actions that were applied to it and logged in
〈l1, . . . , l42〉. Furthermore, the two variants of M where created at different points
in time, i.e., at different logical timestamps. Variant V 1 was created at timestamp
T39, i.e., the last action applied before creating the variant had been logged in
l39.

As we reuse the deployment concept for variants, the actual creation of a data
model variant is, at first, merely the creation of an identical copy of the editable
data model in question. For variant V 1, this means creating an empty editable
data model and replaying the actions logged in the log entries 〈l1, . . . , l39〉 ⊆
logs (M), ending with the creation of object A. As replaying the logs to the new
editable data model MV 1 creates another set of logs, logs (MV 1), any further
modeling actions that process modelers only apply to MV 1 can be logged in
logs (MV 1) instead of logs (M). This allows us to add or remove elements not
altered in the base model or other variants. An example is given by the removal
of object A in l40 ∈ logs (MV 1), an action not present in logs (M) or logs (MV 2).

Editable Model “M”
...

L13:[+X]
L24:[+Y]

...
L39:[+A]
L40:[+B]
L41:[+C]
L42:[+D]
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Fig. 6. Variant example

Up until this point, a variant is nothing more than a copy that can be edited
independently of the base model. However, in order to provide a solution for
maintaining and updating process variants (cf. Req. 1), the concept must also
support the automated propagation of changes made to the base model to each
variant. To this end, we introduce a hierarchical relationship between editable
models, as required by Req. 2, denoted by �. In the example (cf. Fig. 6), both
variants are beneath data model M in the variant hierarchy, i.e., MV 1 � M and
MV 2 � M . For possible sub-variants, such as MV 2V 1 , the hierarchical relation-
ship is transitive, i.e., MV 2V 1 � M ⇐⇒ MV 2 � M .

To fulfill Req. 1 when modeling a variant, e.g. MV 1 � M , we utilize the
hierarchical relationship to ensure that all modeling actions applied to M are
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propagated to MV 1, always ensuring that logs (MV 1) ⊆ logs (M) holds. This is
done by replaying new log entries added to logs (M) to MV 1, which, in turn,
creates new log entries in logs (MV 1). As an example, Fig. 7 shows the replaying
of one such log, l40 ∈ logs(M) to MV 1, which creates log entry l42 ∈ logs (MV 1).

“M”
...

L39:[+A]
{X,Y,A}

“M” Variant “V1”
...

L41:[+E]
{X,Y,E}

“M”
...

L39:[+A]
L40:[+B]
{X,Y,A,B}

“M” Variant “V1”
...

L41:[+E]
{X,Y,E}

“M” Variant “V1”
...

L41:[+E]
{X,Y,E}

“M”
...

L39:[+A]
L40:[+B]
{X,Y,A,B}

“M” Variant “V1”
...

L41:[+E]
L42:[+B]
{X,Y,E,B}

“M”
...

L39:[+A]
L40:[+B]
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B

(4)
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Replay

Fig. 7. Log propagation example

In the implementation, we realized this by making the propagation of the log
entry for a specific modeling action part of the modeling action itself, thereby
ensuring that updating the base model, including all variants, is atomic. How-
ever, it must be noted that, while the action being logged in both editable
data models is the same, the logs have different timestamps. This is due to the
fact that MV 1 has the variant-specific log entries 〈l40, l41〉 ⊂ logs (MV 1) and
l40 ∈ logs(M) is appended to the end of logs (MV 1) as l42 ∈ logs (MV 1). As evi-
denced by Fig. 6, variants created this way are fully compatible with the existing
deployment and instantiation concept. In particular, from the viewpoint of the
deployment concept, a variant is simply a normal editable model with its own
set of logs that can be copied and replayed to a deployed model.

5 Evaluation

The presented concept covers all requirements (cf. Sect. 3) as we will show in
the following. The main requirement, and goal of this research, was to develop
a concept for maintainable process variants of object-aware data models and
contained objects (cf. Req. 1). We managed to solve this challenge by introducing
a strict hierarchical structure between the base data model, variants, and even
sub-variants (cf. Req. 2). Furthermore, our solution ensures that the variants
are always updated by changes made to their base models. As presented in
Sect. 4.2, this is done by managing logs with logical timestamps and replaying
them to variants that are lower in the hierarchy. This ensures that any modeling
action applied to a variant will always take into consideration the current base
model. However, this strict propagation of all modeling actions to all variants
poses additional challenges. For instance, expanding on the situation presented
in Fig. 6, a modeling action that changes part of the lifecycle process of object
A could be logged as l43 ∈ logs(M), causing the log to be replayed to variant
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V 1. However, V 1 does not have an object A anymore, as is evidenced by the set
of objects present, i.e., {X,Y,E,B,C,D}. Clearly, this is due to the fact that
l40 ∈ logs (MV 1) removed object A from that variant.

As it is intentional for variant V 1 to not comprise object A, this particular
case poses no further challenge, as changes to an object not existing in a variant
can be ignored by that variant. However, there are other scenarios to be consid-
ered, one of which is the application of modeling actions in a base model that
have already been applied to a variant, such as introducing a transition between
two steps in the lifecycle process of an object. If this transition already exists in
a variant, the log replay to that variant will create an identical transition. As
two transitions between the same steps are prohibited, this action would break
the lifecycle process model of the variant and, in consequence, the entire object
and data model it belongs to. A simplified example of the bank transfer object
can be seen next to a variant with an additional transition between Amount and
Date to showcase this issue in Fig. 8. The problem arises when trying to add a
transition between Amount and Date to the base lifecycle process model, as the
corresponding log entry gets propagated to the variant, causing a clash.

Initialized
Approved

Rejected

AmountAmount

DateDate

Transfer - Variant

ImmediateImmediate

Initialized
Approved

Rejected

AmountAmount

DateDate

Transfer - Base

ImmediateImmediate

Fig. 8. Conflicting actions example

To address this and similar issues, which pose a threat to validity for our con-
cept, we utilize the existing data model verification algorithm we implemented in
the PHILharmonicFlows engine [16]. In particular, we leverage our distributed,
micro-service based architecture to create clones of the parts of a variant that will
be affected by a log entry awaiting application. In the example from Fig. 8, we
can create a clone of the microservice serving the object, apply the log describing
the transition between Amount and Date, and run our verification algorithm on
the clone. This would detect any problem caused in a variant by a modeling
action and generate an error message with resolution options, such as deleting
the preexisting transition in the variant (cf. Reqs. 3 and 4). In case there is no
problem with the action, we apply it to the microservice of the original object.
How the user interface handles the error message (e.g., offering users a deci-
sion on how to fix the problem) is out of the scope of this paper, but has been
implemented and tested as a proof-of-concept for some of the possible errors.

All other concepts presented in this paper have been implemented and tested
in the PHILharmonicFlows prototype. We have headless test cases simulating a
multitude of users completing randomized modeling actions in parallel, as well as
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around 50,000 lines of unit testing code, covering various aspects of the engine,
including the model verification, which, as we just demonstrated, is central to
ensuring that all model variants are correct. Furthermore, the basic mechanism
used to support variants, i.e., the creation of data model copies using log entries,
has been an integral part of the engine for over a year. As we rely heavily on it
for deploying and instantiating versioned data models (cf. Sect. 4.1), it is utilized
in every test case and, therefore, thoroughly tested.

Finally, through the use of the microservice-based architecture, we can ensure
that time-consuming operations, such as verifying models for compatibility with
actions caused by log propagation, are highly scalable and cannot cause bottle-
necks [2]. This would hardly be an issue at design-time either way, but we are
ensuring that this basis for our future research into run-time version migration, or
even migration between variants, is highly scalable (cf. Req. 5). Furthermore, the
preliminary benchmark results for the distributed PHILharmonicFlows engine,
running on a cluster of 8 servers with 64 CPUs total, are promising. As copying
data models using logs is central to the concepts presented in this paper, we
benchmarked the procedure for various data model sizes (5, 7, and 14 objects)
and quadrupling increments of concurrently created copies of each data model.
The results in Table 1 show very good scalability for the creation of copies, as
creating 64 copies only takes twice as long as creating one copy. The varying per-
formance between models of only slightly different size can be attributes to the
fact that some of the more complex modeling operations are not yet optimized.

Table 1. Results

Example process Objects 1 copy 4 copies 16 copies 64 copies

Recruitment 5 880 ms 900 ms 1120 ms 2290 ms

Intralogistics 7 2680 ms 2830 ms 4010 ms 9750 ms

Insurance 14 4180 ms 4470 ms 7260 ms 12170 ms

6 Related Work

Related work deals with modeling, updating, and managing of process variants
in the activity-centric process modeling paradigm [5,7,11,13,15], as well as the
management of large amounts of process versions [4].

The Provop approach [5] allows for flexible process configuration of large
process variant collections. The activity-centric variants are derived from base
processes by applying change operations. Only the set of change operations con-
stituting the delta to the base process is saved for each variant, reducing the
amount of redundant information. Provop further includes variant selection tech-
niques that allow the correct variant of a process to be instantiated at run-time,
based on the context the process is running in.

An approach allowing for the configuration of process models using question-
naires is presented in [13]. It builds upon concepts presented in [15], namely the
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introduction of variation points in process models and modeling languages (e.g.
C-EPC). A process model can be altered at these variation points before being
instantiated, based on values gathered by the questionnaire. This capability has
been integrated into the APROMORE toolset [14].

An approach enabling flexible business processes based on the combination of
process models and business rules is presented in [7]. It allows generating ad-hoc
process variants at run-time by ensuring that the variants adhere to the business
rules, while taking the actual case data into consideration as well.

Focusing on the actual procedure of modeling process variants, [11] offers
a decomposition-based modeling method for entire families of process variants.
The procedure manages the trade-off between modeling multiple variants of a
business process in one model and modeling them separately.

A versioning model for business processes that supports advanced capabilities
is presented in [4]. The process model is decomposed into block fragments and
persisted in a tree data structure, which allows versioned updates and branching
on parts of the tree, utilizing the tree structure to determine affected parts of
the process model. Unaffected parts of the tree can be shared across branches.

Our literature review has shown that there is interest in process variants and
developing concepts for managing their complexity. However, existing research
focuses on the activity-centric process management paradigm, making the cur-
rent lack of process variant support in other paradigms, such as artifact- or
data-centric, even more evident. With the presented research we close this gap.

7 Summary and Outlook

This paper focuses on the design-time aspects of managing data model variants
in a distributed object-aware process management system. Firstly, we presented
a mechanism for copying editable design-time data models to deployed run-
time data models. This feature, by itself, could have been conceptualized and
implemented in a number of different ways, but we strove to find a solution
that meets the requirements for managing process variants as well. Secondly, we
expanded upon the concepts created for versioned deployment to allow creating,
updating, and maintaining data model variants. Finally, we showed how the
concepts can be combined with our existing model verification tools to support
additional requirements, such as error messages for affected variants.

There are still open issues, some of which have been solved for activity-
centric process models, but likely require entirely new solutions for non-activity-
centric processes. Specifically, one capability we intend to realize for object-aware
processes is the ability to take the context in which a process will run into account
when selecting a variant.

When developing the presented concepts, we kept future research into truly
flexible process execution in mind. Specifically, we are currently in the process
of implementing a prototypical extension to the current PHILharmonicFlows
engine that will allow us to upgrade instantiated data models to newer versions.
This kind of version migration will allow us to fully support schema evolution.
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Additionally, we are expanding the error prevention techniques presented in
our evaluation to allow for the verification of data model correctness for already
instantiated data models at run-time. We plan to utilize this feature to enable ad-
hoc changes of instantiated objects and data models, such as adding an attribute
to one individual object instance without changing the deployed data model.
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