
Capability Management in the Cloud:
Model and Environment

Jānis Grabis(&) and Jānis Kampars

Institute of Information Technology,
Faculty of Computer Science and Information Technology,
Riga Technical University, Kalku street 1, Riga 1658, Latvia

{grabis,janis.kampars}@rtu.lv

Abstract. Capabilities represent key abilities of an enterprise and they
encompass knowledge and resources needed to realize these abilities. They are
developed and delivered in various modes including in-house and as a service
delivery. The as a service delivery mode is provided in the cloud environment.
The cloud-based approach allows offering capabilities possessed by the service
provider to a large number of potential consumers, supports quick deployment
of the capability delivery environment and enables information sharing among
the users. The paper describes a cloud-based capability management model,
which support multi-tenant and private modes. The architecture and technology
of the cloud-based capability development and delivery environment is elabo-
rated. The pattern repository shared among capability users is a key component
enabling information sharing. Additionally, this paper also shows usage of the
cloud-based capability and delivery environment to build cloud native capability
delivery applications.

Keywords: Capability management � Capability as a service � PaaS
Scalability

1 Introduction

Capabilities represent key abilities of an enterprise and they encompass knowledge and
resources needed to realize these abilities. These capabilities can be used internally or
provided to external companies as a service. Capability as a service implies that the
capability bearer delivers abilities and resources to other companies on a contractual
basis. For instance, a consulting company has IT management capabilities and these
capabilities are delivered to its contractors as well as internally in the company itself.

Providing capability as a service stipulates specific requirements towards capability
development and delivery:

• Rapid deployment to onboard new consumers quickly without forcing them to alter
existing IT landscape;

• Scalability to support many consumers and to deal with computationally demanding
context processing and adaption needs;

© Springer International Publishing AG, part of Springer Nature 2018
R. Matulevičius and R. Dijkman (Eds.): CAiSE 2018 Workshops, LNBIP 316, pp. 40–50, 2018.
https://doi.org/10.1007/978-3-319-92898-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92898-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92898-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92898-2_4&domain=pdf

• Collaboration to enable participative capability design and evaluation of capability
delivery results;

• Knowledge sharing to benefit from exchange of capability usage experiences by
different consumers.

These requirements can be met by using cloud technologies. Capability develop-
ment and delivery over the cloud combines features of Platform as a Service (PaaS),
Software as a Service (SaaS) and Business Process as a Service (BPaaS). PaaS enables
quicker and better software development and deployment by using on-demand
development and execution tools catering to specific needs [1, 2]. SaaS provides
on-demand access to various software packages and reduces efforts associated with
software maintenance. In order to improve business and IT alignment in the cloud
environment, a next level of abstraction is introduced – BPaaS [3, 4] Domaschka et al.
[5] define that the key part of BPaaS is an ability to specify and executed distributed
multi-tenant workflows and BPaaS should be naturally integrated with other layers of
cloud computing. Customization is an important concern of BPaaS. Taher et al. [6]
show that business processes can be customized on the basis of the meta-solution.
A multi-layered approach to customization where different customization aspects are
separated in dedicated layers contributes to tailoring business services to individual
consumers [7]. Capability management in the cloud can be perceived as yet a higher
level abstraction relative to BPaaS focusing on development of enterprise core com-
petencies as a service offering.

The Capability Driven Development (CDD) methodology [8] can be used for
capability development and it is supported by an Eclipse based capability design tool.
This paper describes conversion of this tool for the cloud environment. However, the
cloud-based CDD environment is not only a technological change, it also enables
capability delivery as a service. A company possessing specific knowledge and
resources of providing services in varying circumstances is able to specify those abilities
in terms of the capability model and to provide the cloud-based CDD environment to
offer them to potential consumers. Additionally, the cloud-based capability management
both enables and benefits from capability delivery information sharing. The pattern
repository [9] is the key component for information and knowledge sharing.

The paper describes the Capability as a Service (CaaS) capability management
model and cloud-based CDD environment as a key enabler of this model. Additionally,
this paper also shows usage of the CDD methodology to build cloud native capability
delivery applications combining the cloud-based CDD environment and cloud ready
CDA. These applications concern development and delivery of the scalability capa-
bility. Scalability, which is one of the requirements for cloud-based capability devel-
opment and delivery, itself is context dependent [10], and the CDD approach can be
used to develop the scalability capability. The scalability capability ensures that
computational resources used by CDA are adjusted in response to the context situation.

The rest of the paper is structured as follows. Section 2 describes a cloud-based
capability management model, which is supported by the cloud-based CDD environ-
ment presented in Sect. 3. Application of the cloud-based CDD environment is
demonstrated in Sect. 4. Section 5 concludes.

Capability Management in the Cloud: Model and Environment 41

2 Management Model

The CDD methodology supports capability delivery in various modes including
internal capability development as well as provisioning capability as a service to
external consumer. The cloud-based delivery is essential in the latter case. Two main
delivery modes (Fig. 1) can be distinguished in the case of capability delivery as a
service (CaaS). The service provider owns some of the knowledge and resources
needed to deliver the capability and the service consumer uses this knowledge and
resources to serve its customers or support her internal processes. The service consumer
also contributes some of the knowledge and resources to capability delivery, chiefly in
the form of knowledge and resources committed to running information systems
involved in capability delivery referred as to Capability Delivery Applications (CDA).
The first CaaS mode implies usage of the shared multi-tenant CDD environment. The
second CaaS mode is deployment of the private CDD environment for every consumer
(be it private or public cloud and operated by capability provider, service consumer or
third party).

In the case of the shared multi-tenant mode, the capability owner has developed the
capability design, which describes capability delivery goals, context, processes and
context-dependent adaptions. The capability is deployed in a shared CDD environment.
Multiple instances of the capability can be setup within this deployment and configured
according to the needs of individual capability consumers. However, this setup is
limited to providing individualized data binding for context data and consumer specific
treatment of context and performance indicators.

In the case of the private mode, the capability design is used as a reference model for
creating customized designs for individual consumers. These customized designs are
used to configure private capability deployment for each capability consumers. This way
every consumer gets an individualized capability design, which supports unique
requirements while also requires separate maintenance. From the cloud base capability
management standpoint, it is important to emphasize that the customized designs still
retain clearly identifiable elements from the reference design (Fig. 2) to enable infor-
mation sharing among the capability consumers. The customized design consists of

Fig. 1. CaaS design and delivery modes: (a) shared multi-tenant mode; and (b) private mode.

42 J. Grabis and J. Kampars

common elements inherited from the reference design, custom elements added to a design
tailored for specific consumers and capability delivery patterns. The patterns are reusable
chunks of capability design what are used to design and customize capabilities [9].

The CDD environment consists of the Capability Design Tool (CDT), the Capa-
bility Navigation Application (CAN), which is responsible for configuration of indi-
vidual deployments, monitoring of capability delivery and context-dependent run-time
adaption of capability delivery, the Capability Context Platform (CCP), which captures
capability delivery context, and CDA (see [11] for more details). The CDD environ-
ment can be deployed on the cloud-based infrastructure for both CaaS delivery modes.
Using the cloud-based infrastructure enables horizontal scalability of the CDD envi-
ronment (see Sect. 3). Thus, the capability service provider is able to serve a large
number of potential capability consumers.

3 Cloud-Based Deployment

All components of the CDD environment are deployed in the cloud environment
(Fig. 3). The deployment backbone is the Infrastructure as a Service (IaaS) layer. In
this case, open source Apache CloudStack1 software is used to create and manage the
IaaS layer. It allows managing large networks of virtual machines what is necessary for
quick deployment of all components of the CDD environment. CDT and CCP form the
Platform as a Service (PaaS) layer of the cloud-based CDD environment while CNA
forms the Software as a Service (SaaS) layer. In the case of the private deployment
mode, every capability consumer is provisioned with a set of virtual machines hosting
CDT, CCP and CNA. Kernel-based Virtual Machine (KVM)2, which is a full virtu-
alization solution for Linux on x86 hardware, was chosen as a hypervisor for the
cloud-based CDD due its open-source nature. While KVM was used to provision fully
pledged virtual machines, Docker3 allowed to host applications inside lightweight,

Fig. 2. Composition of the customized capability design

1 https://cloudstack.apache.org/.
2 https://www.linux-kvm.org/.
3 http://docker.com/.

Capability Management in the Cloud: Model and Environment 43

https://cloudstack.apache.org/
https://www.linux-kvm.org/
http://docker.com/

customized software containers. Experiments show that containerization results in
equal or better performance than traditional virtual machines in almost all cases [12].
Docker was especially useful for CCP as it required Apache Camel, Apache Acti-
veMQ, PostgreSQL and Redhat Wildfly, which were deployed in a form of software
containers on a single KVM virtual machine. This approach allows to run multiple
isolated instances of CCP on a single virtual machine thus minimizing usage of cloud
resources. CDA also could be deployed in the same cloud if requested by the
consumer.

The capability pattern repository is managed by the capability service provider as a
single instance. It is accessed by all capability service consumers and ensures infor-
mation and knowledge sharing among all involved parties.

CDT is natively developed as an Eclipse based application. It is made available
over the cloud using desktop virtualization technologies (Fig. 4). A single CDT virtual
machine instance can be used by multiple users having either dedicated or shared
workspaces. The cloud-based CDT supports all functionality of the desktop CDT, does
not require installation of any specific software and is available on multiple devices and
platforms.

The cloud-based CDD environment is vertical scalability. The components also can
be made to support horizontal scalability. Both CNA and CCP of the single deployment
can be replicated across multiple virtual machines though dynamic resource allocation
is not supported out-of-the-box. A fully horizontally scalable context data integration,
processing and adjustment solution is described in [13].

IAAS

CDD1 CDD2

Capability
Naviga on
Applica on Capability

Pa ern
RepositoryCapability

Context
Pla orm

Capability
Context
Pla orm

Capability
Naviga on
Applica on

Capability
Naviga on
Applica on

Capability
Design Tool

Capability
Design Tool

Fig. 3. Overview of cloud-based CDD environment

44 J. Grabis and J. Kampars

4 Scalability Capability

The CDD methodology in combination with cloud-enabled capability management
allows to develop highly scalable applications. That is demonstrated by development of
a simplified auto-scaling capability using the cloud-based CDD environment and
supported by cloud native CDA. It serves as a demo project that is shipped together
with the cloud-based CDT. The CDA of the demo capability is a NodeJS4 and
AngularJS5 based web application that can be used to generate a mosaic from image
and keyword provided by a user. The logic of the CDA is shown in Fig. 5.

Once the user has submitted the mosaic generation form, the data about the mosaic
generation job is added to a RabbitMQ6 message queue. One of the worker nodes,
implemented as Docker containers, picks up this job and starts the mosaic generation
process. In order to find the small tiles that correspond to the user provided keyword it
queries the Flickr API7. The list of relevant images is downloaded, they are resized and

Fig. 4. User interface of the cloud-based CDT

4 https://nodejs.org/.
5 https://angularjs.org/.
6 https://www.rabbitmq.com/.
7 https://www.flickr.com/services/api/.

Capability Management in the Cloud: Model and Environment 45

https://nodejs.org/
https://angularjs.org/
https://www.rabbitmq.com/
https://www.flickr.com/services/api/

matched with sections of the user provided image. The most similar image tiles are
overlaid on top of the user provided image thus forming a mosaic. Finally, the gen-
erated mosaic is presented to the user of the CDA and user is asked to rate the
experience. Statistics from the CDA like time in queue, rating, queue size, data retrieval
time from Flickr, mosaic generation time, number of current nodes, number of busy
nodes are made available to the CCP via a series of REST (Representational state
transfer) web services. The corresponding configuration of the CCP is shown in Fig. 6.

The CDT model containing goals, KPIs, context set, context ranges, context ele-
ments and measurable properties is presented in Fig. 7.

The main goal of the capability is to ensure scalability of the mosaic generation
application through minimizing cloud resource consumption and maximizing the
Quality of Service. The number of busy nodes (Docker containers currently performing
mosaic generation), queue size (unprocessed mosaic generation jobs stored in the

Fig. 5. Capability delivery application logic

Fig. 6. CCP configuration for the scalability capability

46 J. Grabis and J. Kampars

message queue), number of nodes (running Docker containers) and average time in
queue serve as the context for the scalability capability. A scheduled adjustment is
created to monitor the values of the context elements and to scale the mosaic generation
application accordingly (see Fig. 8). Besides previously documented context elements
it uses three adjustment coefficients that can be altered during run-time to change the
scaling algorithm behavior (see Fig. 9). The scheduled adjustment is implemented as a
Java class which makes a decision whether the mosaic generation application should be
scaled down, up or left intact. The names on the arrows in Fig. 8 are equal to the names
of variables that are made available in the adjustment for retrieving values of context
elements and adjustment constants.

The source-code of the scheduled adjustment is given in Fig. 10. The method
this.scale() is used for calling a REST scaling web-service that changes the
number of running Docker containers during run-time.

The end results from the demo CDA and list of running containers retrieved from
the Docker engine are shown in Fig. 11.

The results from command docker ps show that there are four running Docker
containers. This information is also visible in the user interface of the CNA together
with other context indicators like average waiting time and current queue length.

Fig. 7. Scalability capability

Capability Management in the Cloud: Model and Environment 47

Fig. 8. Input data for the scheduled adjustment

Fig. 9. Changing adjustment coefficients during run-time

Fig. 10. Implementation of a scheduled adjustment

48 J. Grabis and J. Kampars

5 Conclusion

This paper has described cloud-based capability management as an enabler of the CaaS
approach. In comparison with typical service-oriented approaches, CaaS still requires a
relatively high degree of collaboration between the capability provider and the capa-
bility consumer. Both parties are required to commit their abilities and resources to
capability delivery. Additionally, one can argue that capabilities are traditionally
viewed as a company’s internal asset. Some of competencies and resources can be
procured from providers, however, capability consumers are still expected to evolve the
capabilities by themselves at least partially. Therefore, the private capability delivery
mode involving capability design customization is suitable for the CaaS approach. The
capability design customization leads to challenges associated with model management
and handling of different versions of the capability design in a distributed environment.
The service consumers also must have sufficient incentives for information sharing and
a greater degree of customization potentially leads to lower returns on information
sharing. This challenge relates to the overall issue of valuing and trading data what
becomes more and more relevant in the area.

References

1. Cohen, B.: PaaS: new opportunities for cloud application development. Computer 46(9),
97–100 (2013)

2. Gass, O., Meth, H., Maedche, A.: PaaS characteristics for productive software development:
an evaluation framework. IEEE Internet Comput. 18(1), 56–64 (2014)

3. Papazoglou, M.P., van den Heuvel, W.-J.: Blueprinting the cloud. IEEE Internet Comput.
15(6), 74–79 (2011)

4. Barton, T., Seel, C.: Business process as a service - status and architecture. In: Proceedings -
Series of the Gesellschaft fur Informatik (GI). Lecture Notes in Informatics (LNI), p. 145
(2014)

5. Domaschka, J., Griesinger, F., Seybold, D., Wesner, S.: A cloud-driven view on business
process as a service. In: Proceedings of the 7th International Conference on Cloud
Computing and Services Science, CLOSER 2017, p. 739 (2017)

6. Taher, Y., Haque, R., Van Den Heuvel, W.-J., Finance, B.: a BPaaS - a customizable BPaaS
on the cloud. In: Proceedings of the 3rd International Conference on Cloud Computing and
Services Science, CLOSER 2013, pp. 290–296 (2013)

Fig. 11. Results from CDA and Docker engine status

Capability Management in the Cloud: Model and Environment 49

7. Taher, Y., Haque, R., Parkin, M., van den Heuvel, W.-J., Richardson, I., Whelan, E.:
A multi-layer approach for customizing business services. In: Huemer, C., Setzer, T. (eds.)
EC-Web 2011. LNBIP, vol. 85, pp. 64–76. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23014-1_6

8. Berzisa, S., Bravos, G., Gonzalez, T., Czubayko, U., España, S., Grabis, J., Henkel, M.,
Jokste, L., Kampars, J., Koç, H., Kuhr, J., Llorca, C., Loucopoulos, P., Juanes, R., Pastor, O.,
Sandkuhl, K., Simic, H., Stirna, J., Valverde, F., Zdravkovic, J.: Capability driven
development: an approach to designing digital enterprises. Bus. Inf. Syst. Eng. 57(1),
15–25 (2015)

9. Kampars, J., Stirna, J.: A repository for pattern governance supporting capability driven
development. In: Johansson, B. (ed.) Joint Proceedings of the BIR 2017 pre-BIR Forum,
Workshops and Doctoral Consortium co-located with 16th International Conference on
Perspectives in Business Informatics Research (BIR 2017). CEUR-WS.org (2017)

10. Kampars, J., Pinka, K.: Auto-scaling and adjustment platform for cloud-based systems. In:
Environment. Technology. Resources: Proceedings of the 11th International Scientific and
Practical Conference, 15–17 June, vol. 2, pp. 52–57 (2017)

11. Henkel, M., Kampars, J., Hrvoje, S.: The CDD environment architecture. In: Sandkuhl, K.,
Stirna, J. (eds.) Capability Management for Digital Enterprises. Springer, Cham (2018)

12. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of
virtual machines and Linux containers. Technology 25482, 171–172 (2014)

13. Kampars, J., Grabis, J.: Near real-time big-data processing for data driven applications. In:
Proceedings of the 3rd International Conference on Big Data Innovations and Applications,
Innovate-Data 2017, Czech Republic, Prague, 21–23 August 2017, pp. 35–42. IEEE,
Piscataway (2017)

50 J. Grabis and J. Kampars

http://dx.doi.org/10.1007/978-3-642-23014-1_6
http://dx.doi.org/10.1007/978-3-642-23014-1_6

	Capability Management in the Cloud: Model and Environment
	Abstract
	1 Introduction
	2 Management Model
	3 Cloud-Based Deployment
	4 Scalability Capability
	5 Conclusion
	References

