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Chapter 11
Generating Farm-Validated Variety 
Recommendations for Climate Adaptation

Carlo Fadda and Jacob van Etten

11.1  �Introduction

Choice of crop varieties plays an important role in climate adaptation (Ceccarelli 
et al. 2010). One of the most important options farmers have to adapt arable farming 
to future climates is adjusting the crop varieties they use to new climates as they 
emerge (IPCC 2014). Also, a portfolio of two or more varieties can substantially 
buffer the impact of climate variation between seasons (Nalley and Barkley 2010; 
Di Falco et al. 2007).

Several barriers, however, stand in the way of a more effective use of intra-
specific crop diversity for climate adaptation. Variety recommendations are often 
based on station trial data—hardly reflecting variety performance in low-input agri-
culture—and are seldom based on climate analysis (Abay and Bjørnstad 2009). This 
means farmers often reject the new varieties they try because of poor performance 
(Ceccarelli and Grando 2007). In addition, many varieties are released based on 
their potential for broad adaptation. This approach offers a good average potential 
yield over many localities but will not maximise yield at any given place (Ceccarelli 
and Grando 2007). In addition, breeding rarely relies on genebank material, focus-
ing instead on elite varieties with limited allelic diversity. Genebanks hold thou-
sands of varieties of major crops that have (co-)evolved under natural and human 
selection for thousands of years and have the potential to host alleles for adaptation 
to various biotic and abiotic stresses (Vavilov and Dorofeev 1992). Yet, these prom-
ising, diverse materials are rarely used. Introducing sets of diverse materials into 
areas where modern varieties have not yet made an impact is a possible first step in 
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support of climate adaptation. This does not only serve to identify initial popula-
tions for breeding programmes, but can also identify farmers varieties (or varieties 
bred for other areas) that may prove superior and can therefore be disseminated 
directly. For example, in Ethiopia we found in a durum wheat trial that the best 
farmer variety outperformed the best modern variety with a yield difference of 20% 
(Mengistu et al. 2018).

The use of improved or modern varieties (MVs) has limitations in Africa (Salami 
et  al. 2010). MVs often require a high quantity of external inputs to fulfil their 
potential. On African low-input farms in high-risk areas, landraces may be chosen 
over MVs by local farmers because of their better adaptation, higher market value 
and better end-product quality (Ceccarelli et al. 2010). In addition, the cultivation of 
a small set of MVs over large areas lowers the genetic diversity at a landscape scale, 
with detrimental effects on the resilience of agro-ecosystems (Cabell and Oelofse 
2012).

At present, both public and private efforts fail to insert varietal diversity for cli-
mate adaptation into local farming systems in a rational way (Ceccarelli 2015). 
On-farm testing is crucial to determine farmer knowledge and preferences (Mancini 
et al. 2017). Such tests can also identify suitable germplasm for breeding and can be 
linked to improved dissemination of the genetic material to local communities 
through more efficient seed systems (Thomas et al. 2012). Current on-farm testing 
is usually done with a limited set of elite materials, which are compared to the cur-
rent market-leader variety. These trials require constant attention from technical 
personnel. As a result, the testing is relatively costly, especially in marginal areas 
where technical personnel must travel long distances. These trials are therefore kept 
relatively small and thus have limited statistical power. In some cases no formal 
statistical inference is done, and decisions are made based on tallies of farmer votes 
and simple averages of yield data. These trials allow the release of a small number 
of varieties backed by limited evidence of their value under farm conditions (Abay 
and Bjørnstad 2009).

For climate adaptation of African smallholder agriculture, a different approach is 
needed. The best approach would be a hybrid system in which the quantitative 
aspects of conventional trials are combined with the benefits of participatory on-
farm methods. This would ensure that a diverse range of useful genetic material 
reaches farmers. A system in which farmers play a more active role would acceler-
ate genetic gain and access to variety diversity, thus contributing to system resil-
ience (Badstue et al. 2012).

In this chapter, we present a possible solution to a number of the problems of 
on-farm trials: the triadic comparisons of technologies, or “tricot”. Following a citi-
zen science philosophy, this approach increases farmer ownership of trials and uses 
smart, simple data collection formats to help scale on-farm testing (van Etten et al. 
2016). The tricot approach involves cost-effective, large-scale, repeated participa-
tory evaluation of varieties under farm conditions using novel material from national 
gene banks or other sources (advanced lines from breeding programmes, varieties 
bred for other areas). Van Etten et al. (2016) provide a detailed discussion on how 
the tricot approach simultaneously builds on and differs from previous participatory 
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approaches in crop improvement. The approach was designed to overcome a num-
ber of specific challenges in participatory crop improvement, including the need for 
scaling, cost reduction, data standardisation, and taking into account heterogeneity 
in environments and farmer preferences.

The tricot approach is especially suited for climate adaptation. Combining the 
resulting geo-referenced variety evaluation data with environmental data and cli-
matic data, the approach distinguishes different responses of crop varieties to sea-
sonal climatic conditions. The data can then be translated into concrete variety 
recommendations that reflect current farm conditions, stabilise yields, and track 
climate change over time. We illustrate the approach with an example, using simu-
lated (yet realistic) data.

11.2  �Analyzing Data from On-Farm Trials Using the Tricot 
Approach

We performed a series of simple simulations to illustrate the methods and results of 
the tricot approach. In our simulation we use realistic data that mimic the data col-
lected in a number of countries, including India, Nicaragua, Honduras and Ethiopia. 
Farmers provide feedback based on different traits. These traits are selected together 
with farmers and technical personnel in focus groups. The traits can include yield, 
pest and disease resistance, phenological characteristics, plant vigour and more.

In the trials, each farmer receives three different varieties and is trained on how 
to set up the experiment in terms of plot layout and management. They plant the 
seeds, and, as the crop grows, they rank the varieties for each of the traits. Farmers 
do not know the names of the varieties in their set, which are randomly allocated to 
them from a larger portfolio, generally at least 10–20 per trial, at times previously 
selected from a much larger set—up to 400  in a recent application in Ethiopia 
(Mancini et  al. 2017). Farmers are asked to fill out the forms during the season 
based on the traits they are evaluating. At the end of the season, farmers complete 
the forms by providing their assessments of productivity and the quality of the final 
product, as well as an overall performance judgment (Steinke and Van Etten 2016; 
Van Etten et  al. 2016). The entire process is supported by the digital platform 
ClimMob (http://climmob.net/), which takes the user through a structured process 
of trial design, electronic data collection, analysis and automatic reporting.

The overall performance of crop varieties was analysed using Plackett-Luce 
trees, using R software (Hothorn and Zeileis 2015; Zeileis et al. 2008; Turner et al. 
2018). Publicly available soil and climate data can be linked to the trial dataset by 
using location data (latitude and longitude) and the planting date of each farm. The 
Plackett-Luce model can use these data to distinguish between groups of environ-
ments with different patterns of variety performance.

We simulated two examples. In each, 500 farmers ranked a set of 3 varieties 
taken from a set of 20 varieties. Varieties are assigned in a randomised and balanced 
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way. In Example 1, farmers draw random values from a normal distribution sepa-
rated by a small interval and rank the varieties based on these values (see Fig. 11.1). 
This simulates the error that farmers make, following our findings on the accuracy 
of farmer observations in these trials for a relatively difficult trait (Steinke et al. 
2017). An interesting feature of this ranking approach is that it also works for more 
elusive traits that depend on farmers’ preferences, such as the taste of the product or 
farmers’ overall evaluation of each variety, which is eventually what determines 
variety adoption.

In Fig. 11.2, the results of the first simulation can be seen. The original input 
values of the simulation are on the x axis and the Plackett-Luce model estimates are 
on the y axis. As the graph shows, the PL model is able to reconstruct the values 
very closely, with a correlation of 0.994 with the original values. In a few cases, the 
model does not retrieve the right order. Variety 13 is ranked lower than Variety 12 
and Variety 18 is ranked lower than Variety 17. In other words, only 10% of the 
varieties are shifted by one position. There is very little information loss. However, 
there are important features that reveal the limitations of the PL model. The y scale 
represents the log-odds of winning from Variety 1, the variety arbitrarily chosen as 
our reference. The scale of the model parameters does not have an absolute zero. 
Variety 1 has a parameter value of zero, but any other variety can be chosen as the 
reference variety. In reality the underlying mean value for Variety 1 is 4. The origi-
nal value cannot be retrieved from the model. In other words, the index given by the 
PL model has a meaning only relative to the other varieties, even though there is a 
strong linear relationship with the underlying latent variable.

In Example 2, we added a complication in that 250 of the 500 farmers experi-
enced a drought condition, which made two varieties increase their mean. However, 
there is also an error in the measurement of the drought condition. We then applied 
a Plackett-Luce tree model to this artificial dataset, to visualise how it distinguishes 
between the two groups of farmers and their variety rankings. Also, we show how to 
derive variety recommendations from the model outputs to respond to climate risk.
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Fig. 11.1  Probability distributions used for the simulation for 20 varieties. Normal distributions 
with standard deviation of 1 and means separated by an interval of 0.185 (value from Steinke et al. 
2017 for “challenging trait”)
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In Fig. 11.3, we show the results of a Plackett-Luce tree, applied on data with a 
covariate representing seasonal rainfall. The Plackett-Luce tree determines how to 
use the drought variable to split the data.

In real analyses, we derive covariates from a geospatial weather dataset, using 
the GPS point of each farm and the planting date to retrieve data from the right place 
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Fig. 11.2  Results of Example 1. Relation between simulation input values and Plackett-Luce 
output values. Based on a simulation of 500 farmers, each ranking 3 varieties out of a set of 20

Fig. 11.3  Results of Example 2. Half of the farmers were selecting under a drought condition, in 
which Varieties 6 and 10 excelled. The Plackett-Luce tree distinguishes correctly between the two 
groups
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and time. We then generate multiple variables from these data (number of consecu-
tive dry days, number of days with temperature above a certain threshold, total 
rainfall accumulated, etc.). We also use variables related to the terrain and soil. The 
Plackett-Luce model picks the best predictor and determines the best point where to 
split the data (for example, making a group with less than four consecutive dry days 
and another group with more than 4 days).

In our second example, the model splits the set of farmers in two equal groups. 
In the simulation, 250 farmers were assigned to each condition. It correctly identi-
fies the drought resistant varieties—Varieties 6 and 10—which jump out in the right 
part of the graph. The graph also shows 95% confidence intervals around the param-
eter estimations, which give an idea of the certainty we have that the varieties are 
really different.

The results of our simulation illustrate how the tricot approach can distinguish 
between different varieties and has the power to evaluate the variety by climatic 
conditions. In a simulation of different environmental conditions, it is clear that the 
performance of the different varieties varies based on those basic climatic condi-
tions. This influences the evaluation of the farmers, who provide different 
feedback.

11.3  �Deriving Variety Recommendations from On-Farm 
Trials

The outputs from the Plackett-Luce model and the Plackett-Luce tree are shown on 
a log-scale in reference to winning from a particular variety. These values are a bit 
abstract, but as shown in Fig. 11.2, the values are linearly related to the underlying 
trait values. The PL model can also produce probabilities of winning from all other 
varieties for each of the varieties, which are easier to interpret. These values can be 
used to construct portfolios of varieties.

We illustrate variety portfolio construction with an example. To construct robust 
portfolios, we use theory from financial asset management, adapting the method of 
Dembo and King (1992) to relative losses (probabilities of being the best). The 
method is closely related to Conditional Value at Risk (Testuri and Uryasev 2004). 
This is a state-of-the-art metric now widely used in banks, which was previously 
applied by Sukcharoen and Leatham (2016) to variety portfolio construction.

For simplicity, we focus on a smaller example, with four varieties in two sea-
sonal climate scenarios. In Table 11.1 we show a possible output from a Plackett-
Luce tree, which can be interpreted as a payoff matrix for the construction of robust 
portfolios.

We generated another table from this, Table 11.2, showing the relative opportu-
nity loss. We obtained these values by dividing the values by the highest value in 
each column, to first get the so-called competitive ratio. We subtract the competitive 
ratio from 1 to get relative opportunity loss values. Different types of seasonal 
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climate happen with different probabilities. In our example, we have determined 
with long-term weather data or seasonal climate forecasting that the probability of 
dry conditions during the growing season is 0.6 and of a wet condition 0.4.

From this table, we can calculate the expected regret for a particular portfolio of 
varieties. We square the regret per variety per scenario to give more emphasis to 
higher regret values, following Dembo and King (1992). For example, a portfolio 
with 50% Variety 2 and 50% Variety 3, would give a regret of 0.0062 (Table 11.3).

Expected regret will never become zero, because we can never beat a perfect 
forecast by choosing a good portfolio. But we can get very close. We can pick an 
optimally robust portfolio by minimising the expected regret. We can calculate the 
proportions of each of these varieties in an optimally robust portfolio through a 
simple optimisation, which can be done in Microsoft Excel. In this case, the optimal 
portfolio has 67% of Variety 1 and 24% of Variety 2 (and small contributions from 
Varieties 3 and 4), achieving a regret value of 0.0014, more than four times less than 
the portfolio we looked at above. More study is needed to determine the best port-
folio design method on the basis of this type of data. There are various ways to 
parameterise the model further. However, our main point here was to demonstrate 
that it is possible to construct rational variety portfolios from this type of data. This 
portfolio construction approach can also be used to construct crop portfolios for 
climate resilience.

Table 11.1  Imaginary 
example of probability of 
winning from all other 
varieties for two different 
seasonal climate scenarios

Variety
Dry 
(P = 0.6)

Wet 
(P = 0.4)

Var1 0.30 0.25
Var2 0.27 0.27
Var3 0.25 0.25
Var4 0.18 0.23

Table 11.2  Relative 
opportunity loss of each 
variety in each seasonal 
climate

Variety Dry (P = 0.6) Wet (P = 0.4)

Var1 1–0.30/0.30 = 0.00 1–0.25/0.27 = 0.07
Var2 1–0.27/0.30 = 0.10 1–0.27/0.27 = 0.00
Var3 1–0.25/0.30 = 0.17 1–0.25/0.27 = 0.07
Var4 1–0.18/0.30 = 0.40 1–0.23/0.27 = 0.15

Table 11.3  Regret calculation for a portfolio of 50% Variety 2 and 50% Variety 3

Variety Dry (P = 0.6) Wet (P = 0.4) Expected regret

Var2 (0.5 share) 0.6 * (0.10 * 0.5)2 = 0.0015 0.4 * (0.00 * 0.5)2 = 0.0000 0.0015
Var3 (0.5 share) 0.6 * (0.17 * 0.5)2 = 0.0042 0.4 * (0.07 * 0.5)2 = 0.0006 0.0047
Expected regret 0.0057 0.00055 0.0062
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11.4  �Contribution of the Tricot Approach

Our simulation exercises show that the tricot approach is statistically robust and 
allows us to identify the varieties or portfolios of varieties that are preferred by 
farmers in different environments. Each farm constitutes a mini-experiment in 
which most of the conditions are not constant. The tricot approach does not try to 
eliminate the variability between farmers’ management practices, soil types, sea-
sons and preferences, but rather makes statistical use of such information to provide 
recommendations that work in each place and are robust to climate risk.

The approach can also determine if varieties perform differently under different 
environmental conditions. This has the potential to significantly contribute to the 
improvement of seed systems by allowing the delivery of varieties based on sea-
sonal climate forecasts or on prevailing conditions in different environments. When 
working in a complex topography such as those found in Ethiopia, one can expect 
important differences in conditions among villages, depending on altitude, rainfall 
and other factors. The tricot approach can help to deliver the best seeds based on the 
actual climatic conditions of a particular village.

The tricot approach also can cover a higher number of varieties than usual on-
farm testing approaches. It can engage with a larger community of farmers than a 
conventional participatory variety selection (PVS), and the larger number of farm-
ers provides considerable statistical power, resulting in more data points. In addi-
tion, the tricot approach could be combined with genomic data to increase the 
predictive power of the model (Jean-Luc Jannink, personal communication).

Lastly, even without determining absolute levels of yield or other variables, the 
tricot approach can deliver variety recommendations for risk-reducing portfolios, 
which adds another tool for climate adaptation. In the literature, limited applications 
of crop variety portfolio design can be found, mainly for well-endowed production 
environments in the US and Mexico (e.g., Nalley and Barkley 2010, among others). 
Our simulation shows that it is possible in principle to generate crop variety portfo-
lio recommendations for marginal environments through participatory trials at 
scale.

11.5  �Implications for Development

Under the current agricultural model, climate change will cause a reduction of 
yields for many crops in many parts of Africa. Farmers in these environments need 
accelerated seed-based innovation to cope with climate change. It seems logical, 
therefore, to diversify in ways that will enhance productivity at any given locality by 
quickly delivering varieties that are tested by the farmers. Such an approach will 
significantly increase the adoption rate. As Ceccarelli (2015) has argued, success of 
plant breeding should be measured based on the technologies that are adopted by 
the farmers and not by the number of released varieties.
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Modern plant breeding has not yet reached many marginal environments and is 
unlikely to reach them in the next couple of decades through conventional 
approaches. Research has shown that all over the world, farmers often prefer to 
grow traditional varieties despite the availability of more productive technologies 
(Jarvis et al. 2011). The reasons for this include the traditional varieties’ better adap-
tation to prevailing climatic and soil conditions, taste preferences, market prefer-
ences, nutritional value, resistance to pests and diseases, and reduced risks. Many 
times new technologies are not adopted because of costs or lack of accessibility—or 
simply because they do not match farmers’ needs.

Engaging farmers directly in the development of new technologies has many 
benefits (Beza et al. 2017). It decentralises crop improvement efforts, reduces costs, 
enhances the efficiency of plant breeding, and shortens the time frame for new vari-
eties to be released. It also increases adoption rates, and allows the adoption of a 
portfolio of varieties that will enhance resilience in the face of climate unpredict-
ability. Perhaps most importantly, it will maximise yields at any given location 
rather than promoting a good average variety.

Another significant advantage is the use of material conserved in national or 
international gene banks. This injects into the production systems novel alleles for 
adaptation to a number of stresses, biotic and a-biotic, that are lost when only elite 
lines are used in the process of breeding. Many of the farmers’ varieties conserved 
in the gene banks have been exposed to different pests and pathogens and different 
climatic conditions, and as a result have developed alleles that allow them to adapt 
to a multitude of conditions. The gene banks, designed mainly as recipient of mate-
rial to be eventually distributed by breeders, need to rethink their role and become a 
source of new traits for farmers and production systems. A shift in the functioning 
of the gene banks is already underway in Ethiopia and Uganda, where gene banks 
are delivering material to the farmers and are helping to manage community seed 
banks.

Once such genetic material is out in the production system, the new alleles in the 
varieties selected by farmers may prove very important for breeders. If the varieties 
are also investigated using genotyping approaches, this would allow the identifica-
tion of quantitative trait loci (QTLs) for relevant traits and promote marker-assisted 
participatory breeding.

The tricot approach has the potential to contribute to making seed systems more 
dynamic when demand and supply are put in contact—e.g., using the ClimMob 
platform—and more diversified because more varieties per crop will be delivered in 
a location-specific way. A more integrated seed system will allow both informal and 
formal contributions to the sustainability and resilience of farming system. It also 
creates the space for an intermediate seed system in which local seed cooperatives 
or community seed banks are involved in the production of preferred seeds that are 
identified through the tricot approach. Legislation is being developed in Africa 
(including in Tanzania, Uganda and Ethiopia) in which seed production rules are 
designed to allow those local actors to multiply and sell seeds of certain varieties of 
a sufficiently good quality (Quality Declared Seeds or QDS). This legislation favors 
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the promotion of varieties developed using the tricot approach. Also, variety release 
procedures could benefit from scaled on-farm testing using the tricot approach.

How does this work contribute to Climate-Smart Agriculture? Climate-Smart 
Agriculture means different things to different people (Chandra et al. 2018). The 
smartness in our approach does not come through technical prioritisation exercises 
that guide investments towards certain “climate-smart” agricultural practices that 
are guaranteed to confer climate-related benefits. We have serious doubts about this 
approach. The Green Revolution settled on seeds largely because more knowledge-
intensive approaches were more difficult to realise in the absence of well-developed 
extension systems (Fitzgerald 1986; Harwood 2009). As a result, “smartness” had 
be put into scientifically-bred seeds as the vehicles that would reach farms. Farmers 
would not need to learn, they simply had to start using the new seeds. This worked, 
but it worked best where the ground was already prepared, in production areas that 
most resembled modern temperate-climate agriculture, where agriculture was com-
mercial in outlook, used high levels of inputs or irrigation water, and worked in rela-
tively homogeneous environments (Fitzgerald 1986). Mechanisation and increased 
use of bulky fossil inputs characterised these farming systems, rather than knowl-
edge intensification.

In our approach, which focuses specifically on marginal areas, we do not pretend 
that agricultural science can inject smartness into farming using seeds or other 
“climate-smart” technologies as the vehicle. “Climate-smart technologies” do not 
exist literally, if at all. It is subject to the fallacy of misplaced concreteness. In the 
end, smartness is about how people do things, how farmers are involved in con-
stantly assessing the local appropriateness of technologies, how farmers, extension 
agents and researchers create new linkages that enhance information generation and 
exchange, and how these different ways of doing are then leading to new types of 
knowledge, seeds, and technologies. These end products may symbolise people’s 
collective smartness, but do not replace it. The desired smartness (or better, wis-
dom) emerges as a systemic property of reconfigured seed and knowledge systems 
in which knowledge and technology is generated and exchanged in ways that are in 
pace with accelerated climate and socio-economic change, more equitable, and 
more attentive to environmental and social diversity and needs.
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