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Abstract. Iterative arrays with restricted internal inter-cell communi-
cation are investigated. A quantitative measure for the communication
is defined by counting the number of uses of the links between cells and
it is differentiated between the sum of all communications of an accept-
ing computation and the maximum number of communications per cell
occurring in accepting computations. The computational complexity of
both classes of devices is investigated and put into relation. In addition, a
strict hierarchy depending on the maximum number of communications
per cell is established. Finally, it is shown that almost all commonly stud-
ied decidability questions are not semidecidable for iterative arrays with
restricted communication and, moreover, it is not semidecidable as well
whether a given iterative array belongs to a given class with restricted
communication.

1 Introduction

Devices of homogeneous, interconnected, parallel acting automata have exten-
sively been investigated from a computational capacity point of view. The specifi-
cation of such a system includes the type and specification of the single automata
(sometimes called cells), their interconnection scheme (which can imply a dimen-
sion to the system), a local and/or global transition function, and the input
and output modes. Multidimensional devices with nearest neighbor connections
whose cells are finite automata are commonly called cellular automata (CA).
If the input mode is sequential to a distinguished communication cell, they
are called iterative arrays (IA). In connection with formal language recogni-
tion IA have been introduced in [2], where it was shown that the language
family accepted by realtime-IA forms a Boolean algebra not closed under con-
catenation and reversal. In [1] it is shown that for every context-free grammar
a two-dimensional lineartime-IA parser exists. A realtime acceptor for prime
numbers has been constructed in [3]. A characterization of various types of IA
in terms of restricted Turing machines and several results, especially speed-up
theorems, are given in [4,5]. Several more results concerning formal languages
can be found, for example, in [7,15].
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Communication is an essential resource for cellular automata and can be
measured in a qualitative way and a quantitative way. In the first case, the num-
ber of different messages to be communicated by an IA is bounded by some fixed
constant. Iterative arrays with this restricted inter-cell communication have been
investigated in [16,17] with respect to the algorithmic design of sequence gener-
ation. In particular, it is shown that several infinite, non-regular sequences such
as exponential or polynomial, Fibonacci, and prime sequences can be generated
in real time. In connection with language recognition and decidability ques-
tions multi-dimensional iterative arrays and one-dimensional (one-way) cellular
automata with restricted communication are intensively studied in [8,12,18].

To measure the communication in cellular automata in a quantitative way we
count the number of uses of the links between cells and we consider, on the one
hand, bounds on the sum of all communications of an accepting computation
and, on the other hand, bounds on the maximum number of communications per
cell that may appear in accepting computations. Many results on this quantita-
tive measure have been obtained for cellular automata in [10,11], and cellular
automata that are restricted with respect to the qualitative and the quantita-
tive measure are investigated in [9,11] as well. As main results we would like to
mention hierarchy results and the undecidability of almost all commonly studied
decidability questions such as emptiness, finiteness, equivalence, inclusion, regu-
larity, and context-freeness. It is of particular interest that even a small amount
of communication is sufficient to obtain undecidability results.

In this paper, we want to continue the investigation of the quantitative mea-
sure by studying iterative arrays with quantitatively restricted communication.
In the next section, we present some basic notions and definitions and we intro-
duce the two classes of communication bounded iterative arrays, namely, sum
communication bounded IA and max communication bounded IA. Moreover,
we discuss several examples whose construction ideas are also helpful for other
constructions in the sequel. In Sect. 3, we study the computational capacity of
the introduced devices and obtain proper inclusions in between sum commu-
nication bounded IA and max communication bounded IA as well as between
both classes. Sections 4 and 5 are devoted to studying decidability questions for
sum communication bounded IA and max communication bounded IA. For the
former class we obtain the non-semidecidability of emptiness, finiteness, equiv-
alence, inclusion, regularity, and context-freeness for devices that have at most
O(n) communications on accepted inputs of length n, whereas for the latter
class all questions are not semidecidable as well for devices that have at most
O(log(n)) communications per cell on accepted inputs of length n. Moreover, we
can show for both classes that it is not semidecidable whether an arbitrary IA
belongs to either class. It should be noted that missing proofs are omitted due
to space limitations.

2 Definitions and Preliminaries

We denote the positive integers and zero {0, 1, 2, ...} by N. The empty word is
denoted by λ, the reversal of a word w by wR, and for the length of w we
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write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions. By log(n) we
denote the logarithm of n to base 2. Throughout the article two devices are said
to be equivalent if and only if they accept the same language.

A one-dimensional iterative array is a linear, semi-infinite array of identical
deterministic finite state machines, sometimes called cells. Except for the left-
most cell each one is connected to its both nearest neighbors. For convenience
we identify the cells by their coordinates, that is, by non-negative integers. The
distinguished leftmost cell at the origin is connected to its right neighbor and,
additionally, equipped with a one-way read-only input tape. At the outset of a
computation the input is written on the input tape with an infinite number of
end-of-input symbols to the right, and all cells are in the so-called quiescent state.
The finite state machines work synchronously at discrete time steps. The state
transition of all cells but the communication cell depends on the current state
of the cell itself and on the information which is currently sent by its neighbors.
The information sent by a cell depends on its current state and is determined by
so-called communication functions. The state transition of the communication
cell additionally depends on the input symbol to be read next. The head of the
one-way input tape is moved to the right in each step. A formal definition is:

Definition 1. An iterative array (IA) is a system 〈S, F,A,B,�, s0, bl, br, δ, δ0〉,
where S is the finite, nonempty set of cell states, F ⊆ S is the set of accepting
states, A ⊆ S is the finite, nonempty set of input symbols, B is the set of com-
munication symbols, � /∈ A is the end-of-input symbol, s0 ∈ S is the quiescent
state, bl, br : S → B ∪ {⊥} are communication functions which determine the
information to be sent to the left and right neighbors, where ⊥ means nothing
to send and bl(s0) = br(s0) = ⊥, δ : (B ∪ {⊥}) × S × (B ∪ {⊥}) → S is the
local transition function for non-communication cells satisfying δ(⊥, s0,⊥) = s0,
and δ0 : (A ∪ {�}) × S × (B ∪ {⊥}) → S is the local transition function for the
communication cell (Fig. 1).

s0 s0 s0 s0 s0

a1a2a3 · · · an�

Fig. 1. An iterative array.

Let M be an IA. A configuration of M at some time t ≥ 0 is a description
of its global state which is a pair (wt, ct), where wt ∈ A∗ is the remaining input
sequence and ct : N → S is a mapping that maps the single cells to their current
states. The configuration (w0, c0) at time 0 is defined by the input word w0 and
the mapping c0 that assigns the quiescent state to all cells, while subsequent
configurations are chosen according to the global transition function Δ that is
induced by δ and δ0 as follows: Let (wt, ct), t ≥ 0, be a configuration. Then its
successor configuration (wt+1, ct+1) = Δ(wt, ct) is as follows.

ct+1(i) = δ(br(ct(i − 1)), ct(i), bl(ct(i + 1)))
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for all i ≥ 1, and ct+1(0) = δ0(a, ct(0), bl(ct(1))), where a = � and wt+1 = λ if
wt = λ, as well as a = a1 and wt+1 = a2 · · · an if wt = a1 · · · an.

An input w is accepted by an IA M if at some time i during the course of
its computation the communication cell enters an accepting state. The language
accepted by M is denoted by L(M). Let t : N → N, t(n) ≥ n + 1 be a mapping.
If all w ∈ L(M) are accepted with at most t(|w|) time steps, then L(M) is said
to be of time complexity t.

The family of all languages which are accepted by some IA with time com-
plexity t is denoted by Lt(IA). If t is the function n+1, acceptance is said to be
in realtime and we write Lrt(IA). Since for nontrivial computations an IA has to
read at least one end-of-input symbol, realtime has to be defined as (n+1)-time.

We remark that we obtain the classical definition of IA, if we set B = S and
bl(s) = br(s) = s for all s ∈ S.

In the following we study the impact of communication in iterative arrays.
The communication is measured by the number of uses of the links between cells.
It is understood that whenever a communication symbol not equal to ⊥ is sent,
a communication takes place. Here we do not distinguish whether either or both
neighboring cells use the link. More precisely, the number of communications
between cell i and cell i + 1 up to time step t is defined by

com(i, t) = |{j | 0 < j ≤ t and (br(cj(i)) �= ⊥ or bl(cj(i + 1)) �= ⊥)}| .
For computations we now distinguish the maximal number of communications
between two cells and the total number of communications. Let c0, c1, . . . , ct(|w|)
be the sequence of configurations computed on input w by some iterative array
with time complexity t(n), that is, the computation on w. Then we define

mcom(w) = max{com(i, t(|w|)) | 0 ≤ i ≤ t(|w|) − 1} and

scom(w) =
t(|w|)−1∑

i=0

com(i, t(|w|)).

Let f : N → N be a mapping. If all w ∈ L(M) are accepted with compu-
tations where mcom(w) ≤ f(|w|), then M is said to be max communication
bounded by f . Similarly, if all w ∈ L(M) are accepted with computations where
scom(w) ≤ f(|w|), then M is said to be sum communication bounded by f . In
general, it is not expected to have tight bounds on the exact number of com-
munications but tight bounds on their numbers in the order of magnitude. For
the sake of readability we denote the class of IA that are max communication
bounded by some function g ∈ O(f) by MC(f)-IA. In addition, we use the
notation const for functions from O(1). The corresponding notation for sum
communication bounded IA is SC(f)-IA.

To illustrate the definitions we start with some examples. Some of the ideas
are also necessary for later constructions.

Example 2. The language {anb2n | n ≥ 1} belongs to Lrt(MC(const)-IA).
The idea of the construction is to start a signal with speed 1/2 to the right,

that is, at every second time step the signal moves one cell to the right, when
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reading the first a. In addition, a signal with maximum speed to the right is
started when the first b is read. When both signals meet, another signal with
maximum speed is sent to the left and the input is accepted if and only if this
signal reaches the communication cell when the last b is read. Since there are
two right signals and one left signal used, it is clear that the IA constructed is
an MC(const)-IA. An example computation on input a5b10 is depicted in Fig. 2
(left). �

t 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

t 0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Fig. 2. Two example computations for Example 2 (left) on input a5b10 and Example 3
(right) on input a4b4c8.

Example 3. The language {anbnc2n | n ≥ 1} belongs to Lrt(MC(const)-IA).
The construction is similar. We start right signals R1 and R2 with speed 1/2

resp. 1, when the first a resp. b is read. Additionally, a signal R3 with speed
1/2 is started when reading the first b. Finally, signal R4 with speed 1 is started
when reading the first c. When signals R1 and R2 meet, a left signal L1 with
speed 1/2 is started, and a left signal L2 with speed 1 is started when signals R3

and R4 meet. Finally, the input is accepted if and only if signals L1 and L2 meet
in the communication cell when the last c is read. Since there are altogether four
right signals and two left signals used, the IA constructed is an MC(const)-IA.
An example computation on input a4b4c8 is depicted in Fig. 2 (right). �

The next example shows that a binary counter can already be implemented
by an SC(n)-IA.

Example 4. The language {anbn | n ≥ 1} belongs to Lrt(SC(n)-IA).
We implement the usual construction of a binary counter for IA (see, for

example, [8,12]), where the first log(n)� cells store the binary encoding of some
number n and the communication cell carries the least significant bit. To increase
or decrease the counter we possibly have to send carry-overs in order to update
the current encoding. Additionally, we mark the cell carrying the most signifi-
cantbit suitably and this mark may move to the right while increasing the counter
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and may move to the left while decreasing the counter. Thus, to accept an input
anbn we start with a counter 0, we increase the counter by one for every read
a and decrease the counter by one for every read b. If in the end the counter
is 0 again, which can be detected with help of the mark of the most significant
bit, and the input format is correct, we accept the input and reject in all other
cases. An example computation may be found in Fig. 3, where + resp. - denote
carry-overs for increasing resp. decreasing the counter. Furthermore, the grey
cells mark the cells carrying the most significant bit.

To calculate the number of necessary communications on an accepted input
anbn we observe that the only information sent to the right are the carry-overs,
while the only information sent to the left is the position of the most significant
bit. For the latter we have that there always is exactly one cell carrying the most
significant bit which gives 2n communications. For the carry-overs it easy to see
that the communication cell (cell 0) sends a carry-over in every second time step,
while cell 1 sends a carry-over in every fourth time step, cell 2 sends a carry-over
in every eighth time step and so on. Altogether, the number of communications
for the carry-overs is bounded by

�log(n)�∑

i=1

2n

2i
= 2n

�log(n)�∑

i=1

1
2i

= 2n

(
1 − 1

2�log(n)�

)

≤ 2n

(
1 − 1

2log(n)+1

)
= 2n

(
1 − 1

2n

)
= 2n − 1.

Hence, the number of communications on input anbn is 2n + 2n − 1 ∈ O(n) and
the IA constructed is a realtime-SC(n)-IA. �

1 g+ 01 00 0

+ 01 01 00 0

1 -1 11 00 0

+ 00 -1 10 0

1 -+ 00 10 0

+ 01 00 10 0

1 -1 10 -0 1

+ 00 -0 00 1

1 -0 00 00 1

t ≥ 0 t ≥ 100 00 00 +0 0

Fig. 3. Example computation for the construction given in Example 4 on input a9b9.
The symbols + resp. - denote carry-overs for increasing resp. decreasing the counter.
The cells carrying the most significant bit are marked grey and g denotes an accepting
state.
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Example 5. The language {a2nb2n | n ≥ 1} belongs to Lrt(SC(n)-IA).
The rough idea is to implement a binary counter as in Example 4 which is

increased for every input symbol a. When the first b is read, a right signal is
started which inspects the counter and checks whether all cells are carrying a
carry-over except the cell carrying the most significant bit. If so, the number
of a’s is 2n for some n ≥ 1 and the signal is sent back to the left with maximum
speed. When it reaches the communication cell exactly when the end-of-input
symbol is read, then the input is accepted and in all other cases rejected. �

3 Separability Results

In this section, we will separate several classes of max communication bounded
and sum communication bounded iterative arrays. We start by showing that
realtime-SC(n)-IA are less powerful than realtime-SC(n2)-IA. We remark that
a similar result is known between realtime-SC(n)-CA and realtime-SC(n2)-CA
(see, e.g., [10]).

Theorem 6. Lrt(SC(n)-IA) ⊂ Lrt(SC(n2)-IA).

Proof. The inclusion follows from structural reasons. To show the properness of
the inclusion we consider the language L = {wcw | w ∈ {a, b}+}, which can
be accepted by using a queue store in which the first w part is enqueued. After
the separating symbol c the queue store is symbolwise dequeued and matched
with the second w part. It is shown in [6] how an IA can simulate such a queue
store without any loss of time. Thus, L ∈ Lrt(IA) which implies that L ∈
Lrt(SC(n2)-IA). Another construction idea for L may be found in [2]. On the
other hand, let us assume that L belongs to Lrt(SC(n)-IA). Then, we will derive
a contradiction in two steps. First, it is possible under the above assumption to
construct a realtime-SC(n · √

n)-CA accepting L′ = {(wc)|w| | w ∈ {a, b}+}.
Second, by adapting the proof given in [10] showing that {wcwR | w ∈ {a, b}+}
does not belong to Lrt(SC(f)-CA) if f ∈ o(n2/ log(n)), we obtain that L′ does
not belong to Lrt(SC(n ·√n)-CA) as well which gives the desired contradiction.

Now, let L be accepted by some realtime-SC(n)-IA M . A CA M ′ accepting L′

works as follows on input wcwc · · · wc. M ′ has six tracks. The original input is
kept on track 1 without change. Each cell having as left neighbor a c-cell or the
leftmost border cell can identify itself and will act on track 2 as communication
cell for the simulation of M . The “input” is fed into the communication cells
by shifting the input of the remaining cells on track 3 one cell to the left in
every time step, whereby a second c acts as end-of-input symbol. The shifting is
stopped before passing the second c-cell. Hence, every communication cell can
decide after 2|w|+2 time steps whether it has recognized the structure wcw and
stores this information by entering some state g. On track 4, the rightmost cell
starts a signal moving with maximum speed to the left that checks whether the
input is correctly formatted and all communication cells have entered state g.
Since the checked w-blocks are pairwise overlapping, we can check with this
construction whether the input is of the form (wc)+ for some w ∈ {a, b}+.
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It remains to check that the number of c’s is exactly |w|. To this end, we use
track 5 on which each c-cell sends a signal with maximum speed to the left.
All incoming c-signals are collected on track 6 from left to right starting in the
leftmost cell. This means that sending m c-signals leads to the marking of the
leftmost m cells on track 6. Hence, the final signal on track 4 has additionally to
check whether the leftmost w-block is completely marked on track 6. If this is the
case, the input is accepted and in all other cases rejected. Hence, M ′ accepts L′

in realtime. Next, we have to calculate the sum of all communications. The
length of an accepted input is (|w| + 1)|w| = |w|2 + |w| ∈ O(|w|2). The number
of communications on track 1 and track 6 is zero and in O(|w|), respectively. On
track 2, we roughly have |w| simulations of M which has O(|w|) communications
each by assumption. Hence, track 2 has at most O(|w|2) communications. On
track 3, we shift blocks of length 2|w| + 2 for O(|w|) many time steps which
causes at most O(|w|2) communications in the whole. On track 4 we have O(|w|2)
communications, since the signal passes the complete input. Finally, on track 5
we have |w| signals passing at most O(|w|2) cells which gives at most O(|w|3)
communications. Altogether, the sum of all communications in M ′ is in O(|w|3).
Therefore, M ′ is a realtime-SC(n · √

n)-CA.
The proof that L′ does not belong to Lrt(SC(f)-CA) if f ∈ o(n2/ log(n)) is

an adaption of a proof given in [10] and omitted here. ��
For separating results in between the classes of max communication bounded

iterative arrays we will use in the following the notion of time constructability.
We say that a function f : N → N is time-constructible by an MC-IA M , if
the communication cell of M enters, on empty input, a certain state exactly at
the time steps f(n) for all n ≥ 1. For more information on time-constructible
functions we refer to [7,14].

Lemma 7. The function 2n can be time constructed by an MC(log(n))-IA. The
function n2 can be time constructed by an MC(

√
n)-IA.

Now, we can state the hierarchy of max communication bounded iterative
arrays.

Theorem 8. 1. REG ⊂ Lrt(MC(const)-IA),
2. Lrt(MC(const)-IA) ⊂ Lrt(MC(log(n))-IA),
3. Lrt(MC(log(n))-IA) ⊂ Lrt(MC(

√
n)-IA),

4. Lrt(MC(
√

n)-IA) ⊂ Lrt(MC(n)-IA).

Proof. The inclusion claimed in 1. is clear, since the communication cell of an IA
can simulate a deterministic finite automaton accepting a given regular language
without using any communication. The inclusion is proper, since Example 2 pro-
vides a non-regular language accepted by a realtime-MC(const)-IA.

The inclusions claimed in 2.–4. follow from structural reasons. Hence, it
remains for us to show each properness. We start with the inclusion claimed in 2.
and consider language L = {c2

|w|
wcw | w ∈ {a, b}+} for which we show that it

belongs to Lrt(MC(log(n))-IA), but not to Lrt(MC(const)-IA). To construct a
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realtime-MC(log(n))-IA M for L we implement on track 1 the construction of 2n

given in Lemma 7. Additionally, we simulate on track 2 a queue store, where the
top of the queue is located in the communication cell, and enter some symbol $
into the queue at every time step at which the communication cell recognizes a
time step 2n for n ≥ 1. Finally, we simulate on track 3 another queue store. As
soon as the communication cell processes the first input symbol a or b from w,
we check whether a time step 2n has been identified in the last time step and we
stop the computation on track 1. Additionally, we start to enter w to the queue
on track 3 while for every symbol of w a symbol $ from the queue on track 2 is
removed. When the separating symbol c is processed by the communication cell,
we check whether the queue on track 2 is empty. If so, the number of initial c’s
has exactly been 2|w| and we can continue to check the remaining input against
the contents of the queue on track 3. Finally, the input is accepted if the check
is positive and in all other cases the input is rejected. Next, we want to esti-
mate the maximum number of communications per cell. An accepted input has
a length of 2|w| + 2|w| + 1. Due to Lemma 7 we know that at most O(|w|) com-
munications take place on the first track. To enter |w| symbols into the queue
on track 2 needs at most |w| communications per cell. Finally, at most 2|w| + 1
communications per cell can take place on track 2 and track 3 while processing
the input suffix wcw. Altogether, at most O(|w|) communications take place per
cell. Thus, L can be accepted by a realtime-MC(log(n))-IA.

To show that L is not accepted by any realtime-MC(const)-IA we combine
two techniques which have successfully been applied for SC-CA [10] and for IA
with a bounded constant number of different messages to be communicated [12].
First, we derive an upper bound for the number of different communications that
the communication cell can perform while processing an input of length n and
performing � communications. We have to take into account the information to
be communicated and the time steps at which the communication takes place.
Since there are

(
n
�

)
possibilities to choose time steps and |B| different messages

to be sent, we obtain, for some constant k0 ≥ 1, at most
(

n

�

)
|B|� ≤ n�

(�/2)�/2
2log(|B|)� =

n�2�/2

��/2
2log(|B|)�

= 2log(n)�+�/2+log(|B|)�−log(�)�/2 ≤ 2k0 log(n)� = nk0�

possibilities. Now, we assume that L is accepted by realtime-MC(const)-IA M
and we denote by k the constant number of maximal communications per cell.
Moreover, let cp be the configuration after processing the complete c-prefix of the
input. Next, we want to calculate the number of different configurations of M
starting in cp and processing the first w part of an input. Such a configuration
depends on the information that has been sent to the IA via the communica-
tion cell and the current state of the communication cell. Hence, there are at
most |w|k0·k · |S| different configurations, where S denotes the state set of M .
On the other hand, there are 2|w| different words w. Now, we choose |w| large
enough such that 2|w| is larger than the polynomial |w|k0·k · |S|. Then, there
are two different words w �= w′ such that |w| = |w′| and M enters the same
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configuration after processing c2
|w|

w as well as after processing c2
|w|

w′. Since
the input c2

|w|
wcw is accepted, input c2

|w|
w′cw is accepted as well which is a

contradiction.
The proof of claim 3. is similar. We consider L′ = {c|w|2wcw | w ∈ {a, b}+}

and can construct in a similar way as above an MC(
√

n)-IA accepting L′ in
realtime by taking into account that Lemma7 shows that at most O(|w|) com-
munications per cell are necessary to time construct |w|2. To show with the above
technique that L′ is not accepted by any realtime-MC(log(n))-IA it is sufficient
to choose |w| large enough such that 2|w| > |w|k0 log(|w|) · |S|. This is possible
since the latter inequality is equivalent to |w| > k0 · |S| · log(|w|) · log(|w|) which
holds for |w| large enough.

Finally, we show 4. by considering L′ = {wcw | w ∈ {a, b}+} which is
obviously accepted by a realtime-MC(n)-IA. On the other hand, we have to
choose |w| large enough such that 2|w| > |w|k0

√
|w| · |S| which is equivalent to

|w| > k0 · |S| · log(|w|) · √|w| and holds for |w| large enough. ��

4 Undecidability Results for SC(n)-IA

In this section, we will show that almost all commonly studied decidability
questions such as emptiness, finiteness, equivalence, inclusion, regularity, and
context-freeness are not semidecidable for realtime-SC(n)-IA. Here, we say that
a decision problem is decidable (undecidable) if the set of all instances for which
the answer is “yes” is recursive (not recursive). A decision problem is said to be
semidecidable if the set of all instances for which the answer is “yes” is recur-
sively enumerable. It is known that the above-mentioned decidability questions
are not semidecidable for realtime-IA [13]. Thus, the basic idea in the follow-
ing is to find suitable languages that relate realtime-IA with realtime-SC(n)-IA.
Let M be a realtime-IA over some alphabet A and a, b be symbols such that
A ∩ {a, b} = ∅. Then, we define language

LM =
{

wa2|w|
b2

|w| | w ∈ L(M)
}

.

Lemma 9. Let M be a realtime-IA. Then, LM ∈ Lrt(SC(n)-IA).

Proof. We sketch the construction of a realtime-SC(n)-IA M ′ accepting LM .
The IA M ′ uses three tracks. Track 1 is used to simulate M where two cells
of M are grouped into one cell of M ′. Track 2 is used to store in a queue for
every input symbol from A a certain symbol $. When the first a-symbol is read,
the first |w| cells of track 2 are marked with $. At this moment, we stop the
simulation of M on track 1 and we start to increase a binary counter on track 3
as long as the input symbols are a. If the first b is read, we send a signal which
checks whether the number of a’s has been 2|w|. This can be done by inspecting
the counter and checking whether exactly all cells marked with $ have been used
(see, e.g., Example 5). Additionally, we start to decrease the counter for every
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input symbol b. Finally, we accept the input if the counter has been decreased
to zero and reject in all other cases.

The number of communications for the simulation of M on track 1 is bounded
by O(|w|2). The number of communications to mark the first |w| cells by $ and
to stop the simulation is bounded by O(|w|). By observing that binary counters
can be realized by SC(n)-IA, cf. Example 4, we know that the number of com-
munications to increase the binary counter is bounded by O(2|w|). The number
of communications to check that the number of a’s has been 2|w| is bounded by
O(|w|). Finally, the number of communications to decrease the binary counter
is bounded by O(2|w|) as well. Altogether, the number of all communications is
bounded by in O(2|w|+1). Since the input length is |w| + 2|w|+1, we obtain that
the IA constructed is an SC(n)-IA. ��

Now, the non-semidecidable property of realtime-IA M to accept the empty
or a finite language, respectively, is reflected in properties of language LM which
enable us in the next theorem to obtain the desired non-semidecidability results
for realtime-SC(n)-IA.

Lemma 10. Let M be a realtime-IA.

1. LM is empty if and only if L(M) is empty.
2. LM is finite if and only if L(M) is finite.
3. LM is regular if and only if L(M) is finite.
4. LM is context-free if and only if L(M) is finite.

Proof. Claim 1 and claim 2 are obvious. It can be shown by a standard applica-
tion of the pumping lemma that the language LM is not context-free, if L(M)
is infinite. On the other hand, if L(M) is finite, LM is finite as well. This shows
claim 3. and claim 4. ��
Theorem 11. Emptiness, finiteness, infiniteness, equivalence, inclusion, regu-
larity, and context-freeness are not semidecidable for realtime-SC(n)-IA.

Proof. It is known that all above-mentioned questions are not semidecidable for
realtime-IA due to the results given in [13]. By applying Lemmas 9 and 10 we can
immediately translate the non-semidecidability results to realtime-SC(n)-IA. ��

Moreover, we cannot even semidecide the property of being sum communi-
cation bounded by n.

Theorem 12. It is not semidecidable for an arbitrary realtime-IA M whether
or not M is a realtime-SC(n)-IA.

Finally, we can apply similar construction ideas as in Lemma9 to separate
the classes of realtime-MC(const)-IA and realtime-SC(n)-IA.

Theorem 13. Lrt(MC(const)-IA) ⊂ Lrt(SC(n)-IA).
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5 Undecidability Results for MC(log(n))-IA

In this section, we prove similar non-semidecidability results for MC(log(n))-IA
by using similar methods as in the previous section. Let M be a realtime-IA
over some alphabet A and c be a symbol such that A∩{c} = ∅. Then, we define
language

LM =
{

c2
|w|

w | w ∈ L(M)
}

.

Lemma 14. Let M be a realtime-IA. Then, LM ∈ Lrt(MC(log(n))-IA).

The proof of the following lemma and the following theorem is nearly identical
to the proof of Lemma 10 and of Theorem 11, respectively.

Lemma 15. Let M be a realtime-IA.

1. LM is empty if and only if L(M) is empty.
2. LM is finite if and only if L(M) is finite.
3. LM is regular if and only if L(M) is finite.
4. LM is context-free if and only if L(M) is finite.

Theorem 16. Emptiness, finiteness, infiniteness, equivalence, inclusion, regu-
larity, and context-freeness are not semidecidable for realtime-MC(log(n))-IA.

Finally, we cannot even semidecide the property of being max communication
bounded by log(n).

Theorem 17. It is not semidecidable for an arbitrary realtime-IA M whether
or not M is a realtime-MC(log(n))-IA.

We remark that it is currently an open question whether or not all discussed
decidability questions are not semidecidable for realtime-MC(const)-IA as well.
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the topic while his internship at our institute in 2014.

References

1. Chang, J.H., Ibarra, O.H., Palis, M.A.: Parallel parsing on a one-way array of
finite-state machines. IEEE Trans. Comput. C–36, 64–75 (1987)

2. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Trans. Comput. C–18(4), 349–365 (1969)

3. Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array.
J. ACM 12, 388–394 (1965)

4. Ibarra, O.H., Palis, M.A.: Some results concerning linear iterative (systolic) arrays.
J. Parallel Distrib. Comput. 2, 182–218 (1985)

5. Ibarra, O.H., Palis, M.A.: Two-dimensional iterative arrays: Characterizations and
applications. Theor. Comput. Sci. 57, 47–86 (1988)



112 A. Malcher

6. Kutrib, M.: Cellular automata - a computational point of view. In: Bel-Enguix, G.,
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