
Similarity as a Design Driver for User
Interfaces of Dependable Critical Systems

David Navarre, Philippe Palanque(&), Arnaud Hamon,
and Sabrina Della Pasqua

ICS-IRIT, Université Toulouse III, Toulouse, France
{Navarre,palanque}@irit.fr

Abstract. Assuring that operators will be able to perform their activities even
though the interactive system exhibits failures is one of the main issues to
address when designing and implementing interactive systems in safety critical
contexts. The zero-defect approaches (usually based on formal methods) aim at
guaranteeing that the interactive system will be defect free. While this has been
proven a good mean for detecting and removing faults and bugs at development
time, natural faults (such as bit-flips due to radiations) are beyond their reach.
One of the way to tackle this kind of issue is to propose redundant user inter-
faces offering multiple ways for the user to perform operations. When one of the
interaction mean is failing, the operator can select another functional one.
However, to avoid errors and increase learnability, it is important to ensure that
the various user interfaces are “similar” at presentation and interaction levels.
This paper investigates this relation between dependability and similarity for
fault-tolerant interactive systems.

Keywords: UI properties � Similarity � Dependability � Usability
Learnability

1 Introduction

Usability [9] and user experience [7] properties have received (and are still receiving) a
lot of attention in the area of Human-Computer Interaction to the extent that they are
perceived as the main properties to study and consider while designing interactive
systems or while performing research activities in HCI.

Beyond this main stream of research and design, other more marginal approaches
have tried to investigate the relationship between these properties and other ones such
as security [18], accessibility [16, 19], dependability [3] or privacy [6] (among many
others).

Each of these specific domains bring specific issues in order to ensure that the
associated properties have been taken into account. Taking into account these prop-
erties usually requires identifying and managing trade-off i.e. favoring one property
above the other. For instance, adding an undo function to an interactive system will
improve usability by make it more efficient for users to recover from errors. However,
adding undo functionality to a system increases significantly the number of lines of
code and thus the likelihood of bugs. This paper focuses on dependability related issues

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
T. Clemmensen et al. (Eds.): INTERACT 2017, LNCS 10774, pp. 114–122, 2018.
https://doi.org/10.1007/978-3-319-92081-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92081-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92081-8_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92081-8_11&domain=pdf

and how dealing with them might bring additional concerns for the design of user
interfaces and their associated interaction techniques. However, despite this specific
focus on one property, similar constraints would apply to other conflicting properties.

Assuring that operators will be able to perform their activities even though the
interactive system exhibits failures is one of the main issues to address when designing
and implementing interactive systems in safety critical contexts. Exploiting methods,
techniques and tools from the dependable computing field [10] can ensure this even
though they have not been designed and developed to meet the challenges of interactive
systems [4]. Such approaches can be dived into two main categories:

– The zero-defect approaches (usually based on formal methods [21]) that aim at
guaranteeing that the interactive system will be defect free. While this has been
proven a good mean for detecting and removing faults and bugs at development
time, natural faults (such as bit-flips due to radiations) are beyond their reach.

– The fault-tolerant approaches that promote the use of redundancy (multiple
versions of the system), diversity (the various versions are developed using dif-
ferent means, technologies and providers) and segregation (the various versions are
integrated in the operational environment by independent means e.g. executed on
different computers, using different communication means,…). Segregation ensures
that a fault in one of the versions will not induce a fault in another version – usually
called common point of failure.

One of the way to apply dependability principles to the user interface of the
interactive system is to propose redundant user interfaces offering multiple ways for the
user to perform operations. This can be displaying the same information on different
screens or offering multiple input devices for triggering the same action. This can also
be performed at the interaction technique level as presented in [15] where mouse
failures were mitigated by the use of “similar” configurations based on use of multiples
keys on the keyboard. However, to avoid user errors (such as capture errors [17]) and
increase learnability, it is important to ensure that the various user interfaces are
“similar” at presentation and interaction levels. This concept of similarity has already
been used in the field of web engineering [8] but only with a focus of designing new
web systems being consistent with legacy non-web systems.

This paper refines the concept of similarity and shows how this concept is relevant
at different levels of the architecture of interactive systems. The paper then presents a
set of examples from the avionics domain where dependability is a major concern and
where development of fault-tolerant mechanisms is a requirement from standardization
authorities such as DO 178C standard [1]. These examples present how similarity has
been driving the design of multiple user interfaces even though they are as different as
hardware only (interaction taking place through knobs and dials) and software mainly
using WIMP interaction techniques. Conclusions and discussions for the workshop are
presented in the last section.

Similarity as a Design Driver for User Interfaces of Dependable Critical Systems 115

2 Conflicts and Congruence Between Similarity, Diversity
and Redundancy in the Area of Interactive Systems

In order to increase resilience to failures, fault-tolerance (i.e. guaranteeing the conti-
nuity of service), requires duplicated user interfaces for the command and control of a
single system. This ends up with redundant user interfaces serving the same purpose.
If those interfaces are built using the same processes and offer the same interaction
techniques, it is possible that a single fault could trigger failures in both user interfaces.
This could be the case for instance when using the idea of cloning the UI as proposed
by [20]. In order to avoid such common points of failure the redundant user interfaces
must ensure diversity. Diversity can be guaranteed if the user interfaces have been
developed using diverse means such as different programming languages, different
notations for describing their specification, executed on top of different operating
systems, exploiting different output and input devices, … Such diversity is only effi-
cient if the command and control system offers confinement mechanisms avoiding
cascading faults i.e. the failure of one user interface triggering a failure in the dupli-
cated one.

Such fault tolerant basic principles raise conflicting design issues when applied to
user interfaces. Indeed, diversity requires the user interfaces to be very different in
terms of structure, content and in terms of interaction techniques they offer, even
though they must guarantee that they support the same tasks and the same goals of the
operators [5]. Another aspect is that they must be located in different places in the
system i.e. distributed as this is one of the most efficient way of ensuring confinement
of faults.

In that context, distribution of user interface does not concern the presentation of
complementary information in different contexts (as presented in [12]) but the pre-
sentation of redundant information in those contexts.

In terms of design, it is important to be able to assess that the various user interfaces
make it possible for the operators to reach their goals (this would be called similarity in
terms of effectiveness). Beyond that, it is also important to be able to assess the relative
complexity and diversity of these interfaces in order to be sure that operations will not
be drastically degraded when a redundant user interface has to be used after a failure
has occurred on another one. Studying the effective similarity (in terms of efficiency)
at the level of input and output is thus required even though different type of displays
and different types of input devices have to be used. This goes beyond the study of
similarity at effectiveness level, but both contribute to the usability of the systems. It is
important to note that all the other properties mentioned previously are intrinsic or
extrinsic properties of a given interactive system. Similarity is very special as it only
has a meaning when two interactive systems are considered (or two different versions
of a same interactive system). Such relative properties are usually less studied than
absolute properties as the focus of interest is usually to favour a given property of a
given system.

116 D. Navarre et al.

3 Examples from the Avionics Domain

The case study presents (in the area of aircraft cockpits) examples of redundant user
interfaces. More precisely, we present in the context of the cockpit of the A380 (see
Fig. 1) aircraft. In this new generation of large civil aircrafts, the cockpit presents
display units (that can be considered here as computers screens) of which some of them
are offering interaction via a mouse and a keyboard by means of an integrated input
device called KCCU (Keyboard Cursor Control Unit). Applications are allocated to the
various display unit (DU).

In the A380, two redundant ways of using the autopilot are offered to the pilot in
order to change the heading of the aircraft. One is performed using the electronic user
interface of the Flight Control Unit (FCU on top of Fig. 1) while the other one exploits
the graphical user interface of the Flight Control Unit Backup interface and the KCCU
(bottom of Fig. 1).

3.1 Example One: Entering a New Value for Heading

Figure 2 presents a zoomed view on the two means for entering a new heading of the
aircraft. On the left-hand side of the figure, the editing of the heading is performed
using a physical knob, which may be turned to set a heading value (this value ranges
from 0 to 360). The selected value can be sent to the autopilot (called “engaged”) by

KCCU

FCU

FCU Backup

Fig. 1. Two possible means to control flight heading within the A380 interactive cockpit, one
using the FCU and the other using the FCU Software application and the KCCU

Similarity as a Design Driver for User Interfaces of Dependable Critical Systems 117

pressing the physical LOC push button below the knob. On the right-hand side, the
heading is set using the keyboard of the KCCU and engaged by using the KCCU and
its manipulator to click on the dedicated software LOC push button.

At a high level of abstraction (i.e. not taking into account the input and output
devices), the task of setting a new value for the heading is the same on both user
interfaces (they are similar at the effectiveness level). If described at a lower level, the
description of these two tasks would be different, as they would require different
physical movements from the pilots (they are thus not similar at the effectiveness level
as for instance, the pilot would have to execute the FCUS application while the
hardware FCU is directly reachable). It is important to note that there are other addi-
tional means to perform the same task (for instance controlling directly the aircraft
using the sidestick) that are not presented here.

3.2 Example Two: Entering a Set of Parameters for the Navigation
Display

Figure 3 presents two different means to handle both barometer settings and parameters
of the navigation display (ND – pilot ND is the second screen on the left in Fig. 1 while
first officer ND is the second screen on the right). It illustrates how physical input
devices (on the left-hand side of Fig. 3) have been transposed into software compo-
nents (right-hand side of Fig. 3) handled using the KCCU (as in the FCUS presented in
Fig. 2). The general layout of both interface is quite close to that one, but the trans-
lation into a software application leads to different design options:

• On the physical interface, the two barometer settings options (highlighted in
yellow and on the bottom left part of both physical and software interfaces) are
handled using two physical labelled push buttons (LS and VV) that are lighted on

Engage Bu on

Heading Value

Value
selec on Knob

Heading textbox

Fig. 2. Heading selection.

118 D. Navarre et al.

with a single light when the option is selected. The transposition of these two
buttons in the software user interface results is a set of two software buttons that
may be highlighted by changing the color of three horizontal lines. In this case, the
two design options are quite similar.

• The General ND parameter settings (highlighted in green and on the top right part
of both physical and software interfaces) are physically handled using physical push
buttons without labels associated to labels displayed on a dedicated screen. These
buttons behave in the same way as the two previous buttons. The software trans-
position is similar to the previous one, using both software push buttons and labels,
and following the same layout constraints (relative position and size) as the physical
interface.

• The Pressure editing (highlighted in red and located on the left-hand side of both
physical and software interfaces) consists in the editing of a numeric value. The
physical and software representations of this function follow two distinct design
option. With the physical interface, this value is modified using a physical knob and
the edited value is displayed on a dedicated screen while on the software trans-
position, this editing is performed using a classical text field that embed both editing
and display of the value. It is thus possible on the software UI to use the arrow keys
to navigate into the text box and modify one specific digit of the pressure, which is
not feasible on the hardware UI.

• The ND range setting (highlighted in blue and on the bottom right part of both
physical and software interfaces) is performed by selecting a range amongst a finite
set of predefined values. In this case, the two design options are quite different too.
On the physical interface, the task is performed using a knob that can rotate between
the set of values, these values being physically written around the knob (making it
visible at any time). The software translation of this interface is made up using a drop
down combo box that embed both the display and selection of the value. In this case,
the selectable values are only displayed while using the software component.

Fig. 3. Baro settings and Navigation Display configuration

Similarity as a Design Driver for User Interfaces of Dependable Critical Systems 119

3.3 Example One: Visualization of Aircraft Pitch and Roll

Figure 4 presents two different design of the gyroscope instrument that aims at pro-
viding the pilot with information about the position of the aircraft relatively to the
horizon (both pitch and roll). At the bottom right-hand side of Fig. 4 the cockpit
presents the physical analog display of these values. This device is also called the
artificial horizon as the information it displays is similar to the view the pilots have
when they look outside through the windshield. The software transposition of this
instrument (on the left-hand side of Fig. 4 – called Primary Flight Display) embeds
several other functions such as an altimeter or a speed controller. The graphical layout
of the software UI is clearly inspired by the physical one which was, in the early days
of aviation only a physical ball emerged in a container filled with liquid.

4 Research Directions

While the examples above focus on the presentation and interaction aspects of inter-
active systems, we are investigating other means to support similarity analysis and
assessment also at user level:

– Investigating means of describing past experiences and practice of users to
understand the level of familiarity a user may have with a given interaction

– Investigating means of describing tasks (including knowledge, information and
objects used to perform the tasks) such as with the HAMSTERS tool [14] to assess
similarity of tasks and goals

– Investigating means of describing users’ errors (including causes called genotypes
and manifestation called phenotypes) in order to identify potential unexpected types
of errors that could occur see [2].

In the area of aviation, the design driver for cockpit has been on targeting at simi-
larity of command and displays even though this is not clearly stated. Indeed, looking at
training, most airlines propose Cross Crew Qualification programs for pilots [11]. As
training is mainly based on tasks execution [13] such a goals and task-based approach is
critical and is the only way of designing and evaluating training programs evolutions.

Fig. 4. Physical and software representation of the aircraft gyroscope.

120 D. Navarre et al.

5 Discussions and Conclusion

This paper has presented the similarity property for interactive systems offering
redundant ways for the users to enter and perceive information. In order to ensure
diversity and segregation (that are required for building dependable interactive sys-
tems) the similarity property may be violated. We have shown on the first example that
the hardware and the software user interface are similar at the effectiveness level but
distinct at interaction level. The following examples have shown bigger gaps in terms
of similarity as the use of computing systems and graphical interfaces provides
designers and developers with more advanced communication and interaction means.
Digital devices are thus more informative and more efficient than the hardware ones.
However, they are also less reliable than hardware systems and must not be used if
failures are detected [3]. This means that the design and the evaluation of the training
program is a complex and expensive activity requiring tools and technique to assess
(and explain to trainees) gaps in similarity.

References

1. DO-178C/ED-12C, Software Considerations in Airborne Systems and Equipment Certifi-
cation, published by RTCA and EUROCAE (2012)

2. Fahssi, R., Martinie, C., Palanque, P.: Enhanced task modelling for systematic identification
and explicit representation of human errors. In: Abascal, J., Barbosa, S., Fetter, M., Gross,
T., Palanque, P., Winckler, M. (eds.) INTERACT 2015. LNCS, vol. 9299, pp. 192–212.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22723-8_16

3. Fayollas, C., Martinie, C., Palanque, P., Deleris, Y., Fabre, J-C., Navarre, D.: An approach
for assessing the impact of dependability on usability: application to interactive cockpits. In:
Tenth European Dependable Computing Conference (EDCC 2014), pp. 198–209. IEEE
Computer Society (2014)

4. Fayollas, C., Fabre, J.-C., Palanque, P., Cronel, M., Navarre, D., Deleris, Y.A.:
Software-implemented fault-tolerance approach for control and display systems in avionics.
In: 20th IEEE Pacific Rim International Symposium on Dependable Computing, PRDC
2014, pp. 21–30. IEEE Computer Society (2014)

5. Fayollas, C., Martinie, C., Navarre, D., Palanque, P., Fahssi, R.; Fault-tolerant user interfaces
for critical systems: duplication, redundancy and diversity as new dimensions of distributed
user interfaces. In: Workshop on Distributed UIs and Multimodal Interaction (DUI 2014),
pp. 27–30. ACM DL (2004)

6. Gerber, P., Volkamer, M., Renaud, K.: Usability versus privacy instead of usable privacy:
Google’s balancing act between usability and privacy. SIGCAS Comput. Soc. 45(1), 16–21
(2015)

7. Hassenzahl, M., Platz, A., Burmester, M., Lehner, K.: Hedonic and ergonomic quality
aspects determine a software’s appeal. In: CHI 2000, pp. 201–208 (2000)

8. Heil, S., Bakaev, M., Gaedke, M.: Measuring and ensuring similarity of user interfaces: the
impact of web layout. In: Cellary, W., Mokbel, Mohamed F., Wang, J., Wang, H., Zhou, R.,
Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 252–260. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48740-3_18

9. International Standard Organization: “ISO 9241-11.” Ergonomic requirements for office
work with visual display terminals (VDT) – Part 11 Guidance on Usability (1996)

Similarity as a Design Driver for User Interfaces of Dependable Critical Systems 121

http://dx.doi.org/10.1007/978-3-319-22723-8_16
http://dx.doi.org/10.1007/978-3-319-48740-3_18

10. Laprie, J., Randell, B.: Basic concepts and taxonomy of dependable and secure computing.
IEEE Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)

11. Lufthansa: Cross Crew Qualification courses. https://www.lufthansa-flight-training.com/
documents/10156/5537743/Cross+Crew+Qualification+Course+CCQ. Accessed 2 Nov
2017

12. Martinie, C., Navarre, D., Palanque, P.: A multi-formalism approach for model-based
dynamic distribution of user interfaces of critical interactive systems. Int. J. Hum. Comput.
Stud. 72(1), 77–99 (2014)

13. Martinie, C., Palanque, P., Navarre, D., Winckler, M., Poupart, E.: Model-based training an
approach supporting operability of critical interactive systems. In: EICS 2011, pp. 53–62.
ACM DL (2011)

14. Martinie, C., Palanque, P., Ragosta, M., Fahssi, R.: Extending procedural task models by
systematic explicit integration of objects, knowledge and information. In: ECCE 2013,
pp. 23:1–23:10. ACM DL (2013)

15. Navarre, D., Palanque, P., Basnyat, S.: A formal approach for user interaction reconfig-
uration of safety critical interactive systems. In: SAFECOMP 2008, pp. 373–386 (2008)

16. Petrie, H., Kheir, O.: The relationship between accessibility and usability of websites. In:
SIGCHI Conference on Human Factors in Computing Systems (CHI 2007), pp. 397–406.
ACM (2007)

17. Reason, J.: Human Error. Cambridge University Press, New York (1990)
18. Sasse, M.A., Karat, C.-M., Maxion R.: Designing and evaluating usable security and privacy

technology. In: 5th Symposium on Usable Privacy and Security (SOUPS 2009). ACM
(2009)

19. Section 508: The Road to Accessibility. http://www.section508.gov
20. Villanueva, P.G., Tesoriero, R., Gallud, J.A.: Distributing web components in a display

ecosystem using Proxywork. In: 27th BCS HCI Conference (BCS-HCI 2013). British
Computer Society (2013)

21. Weyers, B., Bowen, J., Dix, A., Palanque, P.: The Handbook of Formal Methods in
Human-Computer Interaction. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
51838-1

122 D. Navarre et al.

https://www.lufthansa-flight-training.com/documents/10156/5537743/Cross+Crew+Qualification+Course+CCQ
https://www.lufthansa-flight-training.com/documents/10156/5537743/Cross+Crew+Qualification+Course+CCQ
http://www.section508.gov
http://dx.doi.org/10.1007/978-3-319-51838-1
http://dx.doi.org/10.1007/978-3-319-51838-1

	Similarity as a Design Driver for User Interfaces of Dependable Critical Systems
	Abstract
	1 Introduction
	2 Conflicts and Congruence Between Similarity, Diversity and Redundancy in the Area of Interactive Systems
	3 Examples from the Avionics Domain
	3.1 Example One: Entering a New Value for Heading
	3.2 Example Two: Entering a Set of Parameters for the Navigation Display
	3.3 Example One: Visualization of Aircraft Pitch and Roll

	4 Research Directions
	5 Discussions and Conclusion
	References

