Skip to main content

Conducting Polymers and Composites

  • Living reference work entry
  • First Online:
Functional Polymers

Abstract

Conducting polymers (CPs) characteristically form polarons, bipolarons, or solitons and exhibit low band-gap energies. These properties make them to be suitable materials for applications in sensors, semiconductors, anticorrosion coatings, batteries, and display devices, among others. This chapter focuses on the electronics, electrochemistry, and processability of some commonly used CPs in the recent past – namely, polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh), poly(3,4-ethylenedioxythiophene) (PEDOT), and polyfuran (PFu). Also included in the chapter are conducting dendritic star copolymers and polymeric nanocomposites incorporating single-walled and multiwalled carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. T. Taka, EMI shielding measurements on poly(3-octyl thiophene) blends. Synth. Met. 41, 1177–1180 (1991)

    Article  CAS  Google Scholar 

  2. D. Coltevieille, A. Le Méhauté, C. Challioui, P. Mirebeau, J.N. Demay, Industrial applications of polyaniline. Synth. Met. 101, 703–704 (1999)

    Article  Google Scholar 

  3. F. Jonas, G. Heywang, Technical applications for conductive polymers. Electrochim. Acta 39, 1345–1347 (1994)

    Article  CAS  Google Scholar 

  4. V. Misoska, J. Ding, J.M. Davey, W.E. Price, S.F. Ralph, G.G. Wallace, Polypyrrole membranes containing chelating ligands: synthesis, characterisation and transport studies. Polymer 42, 8571–8579 (2001)

    Article  CAS  Google Scholar 

  5. B. Wessling, J. Posdorfer, Corrosion prevention with an organic metal (polyaniline): corrosion test results. Electrochim. Acta 44, 2139–2147 (1999)

    Article  CAS  Google Scholar 

  6. C. M. Caldas, L. F. Calheiros, B. G. Soares, Silica-polyaniline hybrid materials prepared by inverse emulsion polymerization for epoxy-based anticorrosive coating, J. Appl. Polym. Sci. (2017). https://doi.org/10.10021/app.45505

  7. Y. Ramanavicius, Z. Oztekin, A. Balevicius, V. Kausaite-Mikstimiene, I. Krikstolaityte, V. Baleviciute, A. Ratautaite, Ramanaviciene: Conducting and electrochemically generated polymers in sensor design. Procedia Energy 47, 825–828 (2012)

    Article  CAS  Google Scholar 

  8. D. Kumar, R.C. Sharma, Advances in conductive polymers. Eur. Polym. J. 34, 1053–1060 (1998)

    Article  CAS  Google Scholar 

  9. T.A. Skotheim, Handbook of Conducting Polymers, vol 2 (Marcel Dekker, New York, 1986)

    Google Scholar 

  10. H. Ma, X. Liu, D. Zhang, J. Xiang, Synthesis of polyaniline shell on nickel oxide nanoflake arrays for enhanced lithium ion storage. Mater. Res. Bull. 96, 301–305 (2017)

    Article  CAS  Google Scholar 

  11. A. Pud, G.S. Shapoval, P.G. Vinogradnyi, Electropolymerization of pyrrole in polymer matrices. Russ. J. Electrochem. 36, 447–447 (2000)

    Article  CAS  Google Scholar 

  12. M.J. Croissant, T. Napporn, J.M. Leger, C. Lammy, Electrocatalytic oxidation of hydrogen at platinum-modified polyaniline elctrode. Electrochim. Acta 43, 2447–2457 (1998)

    Article  CAS  Google Scholar 

  13. J. Heinze, Electrochemistry of conducting polymers. Synth. Met. 41–43, 2805–2823 (1991)

    Article  Google Scholar 

  14. P. Bernier, S. Lefrant, G. Bidan, Advances in synthetic metals. Twenty years of progress in science and technology (Elsevier, 1999)

    Google Scholar 

  15. Y.-C.L. Kuang-Hsuan Yang, Y. Chung-Chin, Temperature effect of electrochemically roughened gold substrates on polymerization electrocatalysts of polypyrrole. Anal. Chim. Acta 631, 4046 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. C. Zhang, X. Yi, H. Yui, S. Asai, M. Sumita, Morphology and electrical properties of short carbon fiber-filled polymer blends: High-density polyethylene/poly(methyl methacrylate). J. Appl. Polym. Sci. 69, 1813–1819 (1998)

    Article  CAS  Google Scholar 

  17. T. Ahuja, I. Mir, D. Kumar, Rajesh: Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28, 791–805 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. B.D. Malhotra, A. Chaubey, S.P. Singh, Prospects of conducting polymers in biosensors. Anal. Chim. Acta 578, 59–74 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. F. Wang, R.D. Rauh, Reflective and conductive star polymers, US Patent 6,025,462 (2000)

    Google Scholar 

  20. F. Gubbels, R. Jerome, E. Vanlathem, R. Deltour, S. Blacher, F. Brouers, Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends. Chem. Mater. 10, 1227–1235 (1998)

    Article  CAS  Google Scholar 

  21. C. Lagrève, J.F. Feller, I. Linossier, G. Levesque, Poly(butylene terephthalate)/poly(ethylene-co-alkyl acrylate)/carbon black conductive composites: Influence of composition and morphology on electrical properties. Polym. Eng. Sci. 41, 1124–1132 (2001)

    Article  Google Scholar 

  22. F. El-Tantawy, K. Kamada, H. Ohnabe, A novel way of enhancing the electrical and thermal stability of conductive epoxy resin–carbon black composites via the Joule heating effect for heating-element applications. J. Appl. Polym. Sci. 87, 97–109 (2003)

    Article  CAS  Google Scholar 

  23. V. Saxena, B.D. Malhotra, Prospects of conducting polymers in molecular electronics. Curr. Appl. Phys. 3, 293–305 (2003)

    Article  Google Scholar 

  24. L. Huang, T. Wen, A. Gopalan, F. Ren, Structural influence on the electronic properties of methoxy substituted polyaniline/aluminum Schottky barrier diodes. Mater. Sci. Eng., B 104, 88–95 (2003)

    Article  CAS  Google Scholar 

  25. S. Brahim, A.M. Wilson, D. Narinesingh, E. Iwuoha, A. Guiseppi-Elie, Chemical and biological sensors based on electrochemical detection using conducting electroactive polymers. Microchim. Acta 143, 123–137 (2003)

    Article  CAS  Google Scholar 

  26. M. Beregoi, A. Evanghelidis, E. Matei, I. Enculescu, Polyaniline based microtubes as building blocks for artificial muscle applications. Sens Actuators B Chem. 253, 576–583 (2017)

    Article  CAS  Google Scholar 

  27. G. Latessa, F. Brunetti, A. Reale, G. Saggio, A. Di Carlo, Piezoresistive behaviour of flexible PEDOT:PSS based sensors. Sens Actuators B Chem 139, 304–309 (2009)

    Article  CAS  Google Scholar 

  28. K. Arshak, V. Velusamy, O. Korostynska, K. Oliwa-Stasiak, C. Adley, Conducting polymers and their applications to biosensors: Emphasizing on foodborne pathogen detection. IEEE Sens. J. 9, 1942–1951 (2009)

    Article  CAS  Google Scholar 

  29. W.J. Feast, Handbook of Conducting Polymers (Marcel Dekker, New York, 1986)

    Google Scholar 

  30. U. Salzner, J.B. Lagowski, P.G. Pickup, R.A. Poirier, Comparison of geometries and electronic structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene. Synth. Met. 96, 177–189 (1998)

    Article  CAS  Google Scholar 

  31. Z.G. Soos, Handbook of Conductive Polymers (Marcel Dekker, New York, 1986)

    Google Scholar 

  32. E. Riande, R. Diaz-Calleja, Electrical Properties of Polymers (Marcel Dekker, Inc., New York, 2004)

    Book  Google Scholar 

  33. R. Gottan, R. Bhosale, P. Srinivasan, Polyaniline salt containing dual dopants pyrelenediimide tetracarboxylic acid, and sulfuric acid. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.45456

  34. J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials. Synth. Met. 125, 23–42 (2001)

    Article  Google Scholar 

  35. H. Masuda, D.K. Asano, Preparation and properties of polypyrrole. Synth. Met. 135-136, 43–44 (2003)

    Article  CAS  Google Scholar 

  36. S.W. Kim, Y.H. Bae, T. Okano, Hydrogels: Swelling, drug loading, and release. Pharm. Res. 9, 283–290 (1992)

    Article  PubMed  CAS  Google Scholar 

  37. R. Langer, New methods of drug delivery. Science 249, 1527–1533 (1990)

    Article  PubMed  CAS  Google Scholar 

  38. W. Rehwald, H.G. Kiess, Charge transport in polymers, in Conjugated Conducting Polymers, (Springer-Verlag, New York, 1992), pp. 135–173

    Chapter  Google Scholar 

  39. G. G. Wallace, P.R. Teasdale, G.M. Spinks, L.A.P. Kane-Maguire, Properties of polypyrroles. In: Conductive Electroactive Polymers: Intelligent Materials Systems. (CRC Press, 2002)

    Google Scholar 

  40. E.T. Kang, K.G. Neoh, K.L. Tan, Polyaniline: a polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 23, 277–324 (1998)

    Article  CAS  Google Scholar 

  41. R.L. Nashat, Temporal characteristics of activation, deactivation, and restimulation of signal transduction following depolarization in the pheochromocytoma cell line PC-12. Mol. Cell. Biol. 23, 4788–4795 (2003)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. K. Cysewska, M. Gazda, P. Jasiński, Influence of electropolymerization temperatures on corrosion, morphological and electrical properties of PPy doped with salicylate on iron. Surf. Coat. Technol. 328, 248–255 (2017)

    Article  CAS  Google Scholar 

  43. X. Cui, J.F. Hetke, J.A. Wiler, D.J. Anderson, D.C. Martin, Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sens Actuators A 93, 8–18 (2001)

    Article  CAS  Google Scholar 

  44. J. Reut, N. Reut, A. Opik, Preparation and characterization of multilayer systems consisting of the soluble and electrochemically synthesized polypyrrole films. Synth. Met. 119, 81–82 (2001)

    Article  CAS  Google Scholar 

  45. M.S. Freund, C. Karp, N.S. Lewis, Growth of thin processale films of poly(pyrrole) using phosphomolybdate clusters. Inorg. Chim. Acta 240, 447–451 (1995)

    Article  CAS  Google Scholar 

  46. G.B. Street, Handbook of Conductive Polymers (Marcel Dekker, New York, 1986)

    Google Scholar 

  47. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  48. N.F. Mott, Electrons in glass. Nobel Lecture (1977)

    Google Scholar 

  49. X. Sun, D. Lu, R. Fu, X.S. Li, D.L. Lin, T.F. George, Gap states of charged solitons in polyacetylene. Phys. Rev. B 40, 12446 (1989)

    Article  CAS  Google Scholar 

  50. S. Larsson, L. Rodriguez-Monge, Conductivity in polyacetylene. II. Ab initio and tight-binding calculations of soliton structure and reorganization energy in ordered and disordered structures. Int. J. Quantum Chem 58, 517–532 (1996)

    Article  CAS  Google Scholar 

  51. L. Xiaochang, J. Yangsheng, L. Shijin, The syntheses, properties and application of new conducting polymers. Eur. Polym. J. 27, 1345–1351 (1991)

    Article  Google Scholar 

  52. G. Čík, F. Šeršeň, L. Dlháň, Thermally induced transitions of polarons to bipolarons in poly(3-dodecylthiophene). Synth. Met. 151, 124–130 (2005)

    Article  CAS  Google Scholar 

  53. J.H. Kaufman, N. Colaneri, J.C. Scott, G.B. Street, Evolution of polaron states into bipolarons in polypyrrole. Phys. Rev. Lett. 53, 1005 (1984)

    Article  CAS  Google Scholar 

  54. G.A. Farias, W.B. da Costa, F.M. Peeters, Acoustical polarons and bipolarons in two dimensions. Phys. Rev. B 54, 12835–12840 (1996)

    Article  CAS  Google Scholar 

  55. S. Irle, H. Lischka, Combined ab initio and density functional study on polaron to bipolaron transitions in oligophenyls and oligothiophenes. J. Chem. Phys. 107, 3021–3032 (1997)

    Article  CAS  Google Scholar 

  56. M.R. Fernandes, J.R. Garcia, M.S. Schultz, F.C. Nart, Polaron and bipolaron transitions in doped poly(p-phenylene vinylene) films. Thin Solid Films 474, 279–284 (2005)

    Article  CAS  Google Scholar 

  57. G. Verbist, F.M. Peeters, J.T. Devreese, Large bipolarons in two and three dimensions. Phys. Rev. B 43, 2712–2720 (1991)

    Article  CAS  Google Scholar 

  58. K. Pichler, D.A. Halliday, D.D.C. Bradley, P.L. Burn, R.H. Friend, A.B.. Holmes, Optical spectroscopy of highly ordered poly(p-phenylene vinylene). J. Phys.: Condens. Matter 5, 7155–7172 (1993)

    Google Scholar 

  59. J.M. Margolis (ed.), Conductive Polymers and Plastics. (Chapman and Hall, 1989). https://doi.org/10.1002/pi.4990240111

  60. H.K. Chitte, G.N. Shinde, N.V. Bhat, V.E. Walunj, Synthesis of polypyrrole using ferric chloride (FeCl3) as oxidant together with some dopants for use in gas sensors. J. Sens Technol. 1, 47–56 (2011)

    Article  CAS  Google Scholar 

  61. J. Chen, X. Zhu, C. Luo, Y. Dai, Electronic and optical properties of pyrrole and thiophene oligomers: A density functional theory study. Int. J. Quantum Chem. 117, (2017) https://doi.org/10.1002/qua.25453

  62. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, E.J. Louis, A.J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun., 578–580 (1977)

    Google Scholar 

  63. N.K. Guimard, N. Gomez, C.E. Schmidt, Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2002)

    Article  CAS  Google Scholar 

  64. K. Kanazawa, A.F. Diaz, R.H. Geiss, W.D. Gill, J.F. Kwak, J.A. Logan, J.F. Rabolt, G.B. Street, ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’ polymer. J. Chem. Soc. Chem. Commun., 854–855 (1979)

    Google Scholar 

  65. M. Gerard, A. Chaubey, B.D. Malhotra, Application of conducting polymers to biosensors. Biosens. Bioelectron. 17, 345–359 (2002)

    Article  PubMed  CAS  Google Scholar 

  66. R.F. Ngece, Electrochemical Dynamics of Cytochrome P450 (2D6) Biosensors for Selective Serotonin Re-uptake Inhibitors (SSRis) (University of the Western Cape, Cape town, 2007)

    Google Scholar 

  67. G. Tourillon, Polythiophene and its derivatives, in Handbook of Conducting Polymers, (1986), pp. 293–350

    Google Scholar 

  68. L. Groenendaal, G. Zotti, P.H. Aubert, S.M. Waybright, J.R. Reynolds, Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv. Mater. 15, 855–879 (2003)

    Article  CAS  Google Scholar 

  69. M. Dietrich, J. Heinze, G. Heywang, F.J. Jonas, Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal. Chem. 369, 87–92 (1994)

    Article  CAS  Google Scholar 

  70. E. Andreas, K. Stephan, L. Wilfried, M. Udo, R. Knud, PEDOT principles and applications of an intrinsically conductive polymer (Mario En-tech, LLC, Boca Raton, London, New York, 2010)

    Google Scholar 

  71. Y. Kudoh, K. Akami, Y. Matsuya, Properties of chemically prepared polypyrrole with an aqueous solution containing Fe2(SO4)3, a sulfonic surfactant and a phenol derivative. Synth. Met. 95, 191–196 (1998)

    Article  CAS  Google Scholar 

  72. J. Rodriguez, H.-J. Grande, T.F. Otero, Conductive polymers: Synthesis and electrical properties, in Handbook of Organic Conductive Molecules and Polymers, (Wiley Sons, Chichester, 1997)

    Google Scholar 

  73. T. Tüken, B. YazIcI, M. Erbil, The use of polyindole for prevention of copper corrosion. Surf. Coat. Technol. 200, 4802–4809 (2006)

    Article  CAS  Google Scholar 

  74. M. Bazzaoui, J.I. Martins, E.A. Bazzaoui, L. Martins, E. Machnikova, Sweet aqueous solution for electrochemical synthesis of polypyrrole part 1B: On copper and its alloys. Electrochim. Acta 52, 3568–3581 (2007)

    Article  CAS  Google Scholar 

  75. L. Lehr, S.B. Saidman, Corrosion protection of iron by polypyrrole coatings electrosynthesised from a surfactant solution. Corros. Sci. 49, 2210–2225 (2007)

    Article  CAS  Google Scholar 

  76. R. Kiefer, S.Y. Chu, P.A. Kilmartin, G. Bowmaker, R.P. Cooney, J. Travas-Sejdic, Mixed-ion linear actuation behaviour of polypyrrole. Electrochim. Acta 52, 2386–2391 (2007)

    Article  CAS  Google Scholar 

  77. F.W. Scheller, U. Wollenberger, A. Warsinke, F. Lisdat, Research and development in biosensors. Curr. Opin. Biotechnol. 12, 35–40 (2001)

    Article  PubMed  CAS  Google Scholar 

  78. G. Sabouraud, S. Sadki, N. Brodie, The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 29, 283–293 (2000)

    Article  CAS  Google Scholar 

  79. N. Zelikin, D. Lynn, J. Farhadi, I. Martin, V. Shastri, R. Langer, Erodible conducting polymers for potential biomedical applications. Angew. Chem. Int. Ed. 41, 141–144 (2002)

    Article  CAS  Google Scholar 

  80. S. Takeo, O. Akira, I. Tomokazu, H. Kenichi, A novel type of polymer battery using a pyrrole-polyanion composite electrode. J. Chem. Soc. Chem. Commun., 327–328 (1987)

    Google Scholar 

  81. P.M. George, Novel Polypyrrole Derivatives to Enhance Conductive Polymer-Tissue Interactions (Massachusetts Insititute of MIT, 2005)

    Google Scholar 

  82. K. Shimizu, M.K. Yamaka, Rechargeable lithium batteries using polypyrrole-poly(styrenesulfonate) composite as the cathode-active material. Bull. Chem. Soc. Jpn. 61, 4401–4406 (1988)

    Article  CAS  Google Scholar 

  83. R.D. Peres, M.A. De Paoli, S. Panero, B. Scrosati, A new electrode for a poly(pyrrole)-based rechargeable battery. J. Power Sources 40, 299–305 (1992)

    Article  CAS  Google Scholar 

  84. S. Tarkuc, E. Sahin, L. Toppare, D. Colak, I. Cianga, Y. Yagci, Synthesis, characterization and electrochromic properties of a conducting copolymer of pyrrole functionalized polystyrene with pyrrole. Polymer 47, 2001–2009 (2006)

    Article  CAS  Google Scholar 

  85. M. Mermillod, J. Tanguy, F. Petiot, A study of chemically synthesized polypyrrole as electrode material for battery spplications. J. Electrochem. Soc. 133, 1073–1079 (1986)

    Article  Google Scholar 

  86. F. Diaz, J.I. Castillo, J.A. Logan, W.Y. Lee, Electrochemistry of conducting polypyrrole films. J. Electroanal. Chem. 129, 115–132 (1981)

    Article  CAS  Google Scholar 

  87. G. Sotzing, J.R. Reynolds, P. Steel, Electrochromic conducting polymers via electrochemical polymerization of Bis(2-(3,4-ethylenedioxy)thienyl) Monomers. Chem. Mater. 4, 882–889 (1996)

    Article  Google Scholar 

  88. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B.. Holmes, Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990)

    Google Scholar 

  89. D. Braun, A. Heeger, Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58, 1982–1984 (1991)

    Article  CAS  Google Scholar 

  90. F. Larmat, J.R. Reynolds, Y.J. Qiu, Polypyrrole as a solid electrolyte for tantalum capacitors. Synth. Met. 79, 229–233 (1996)

    Article  CAS  Google Scholar 

  91. A. Rudge, I. Raistrick, S. Gottesfeld, J. Ferraris, A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim. Acta 39, 273–287 (1994)

    Article  CAS  Google Scholar 

  92. P. Zhang, Y.X. Zhou, J. Lin, H. Li, Y. Bai, J. Zhu, S. Mao, J. Wang, Gravity assisted synthesis of micro/nano-structured polypyrrole for supercapacitors. Chem. Eng. J. 330, 1060–1067 (2017)

    Article  CAS  Google Scholar 

  93. F. Selampinar, L. Toppare, U. Akbulut, T. Yalçin, S. Süzer, A conducting composite of polypyrrole II. As a gas sensor. Synth. Met. 68, 109–116 (1995)

    Article  CAS  Google Scholar 

  94. J.J. Miasik, A. Hooper, B.C. Tofield, Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. I 82, 1117–1126 (1986)

    Article  CAS  Google Scholar 

  95. P.N. Bartlett, P.B. Archer, S. Ling-Chung, Conducting polymer gas sensors part I: Fabrication and characterization. Sens. Actuators 19, 125–140 (1989)

    Article  CAS  Google Scholar 

  96. S. Hwang, J.M. Ko, H.W. Rhee, C.Y. Kim, A polymer humidity sensor. Synth. Met. 57, 3671–3676 (1993)

    Article  CAS  Google Scholar 

  97. T. Otero, S. Beaumont, Chemical sensors from the cooperative actuation of multistep electrochemical molecular machines of polypyrrole: Voltammetric study. Sens. Actuators B: Chem 253, 958–966 (2017)

    Article  CAS  Google Scholar 

  98. C.R. Martin, W. Liang, V. Menon, R. Parthasarathy, A. Parthasarathy, Electronically conductive polymers as chemically-selective layers for membrane-based separations. Synth. Met. 57, 3766–3773 (1993)

    Article  CAS  Google Scholar 

  99. W. Schuhmann, C. Kranz, J. Huber, H. Wohlschläger, Conducting polymer-based amperometric enzyme electrodes. Towards the development of miniaturized reagentless biosensors. Synth. Met. 61, 31–35 (1993)

    Article  CAS  Google Scholar 

  100. W. Schuhmann, Functionalized polypyrrole. A new material for the construction of biosensors. Synth. Met. 41, 429–432 (1991)

    Article  CAS  Google Scholar 

  101. F. Selampinar, U. Akbulut, M.Y. Özden, L. Toppare, Immobilization of invertase in conducting polymer matrices. Biomaterials 18, 1163–1168 (1997)

    Article  PubMed  CAS  Google Scholar 

  102. X.B. Chen, J. Devaux, J.-P. Issi, D. Billaud, The stability of polypyrrole electrical conductivity. Eur. Poly. J. 30, 809–811 (1994)

    Article  CAS  Google Scholar 

  103. R. Singh, R.P. Tandon, V.S. Panwar, S. Chandra, Low frequency ac conduction in lightly doped polypyrrole films. J. Appl. Phys. 69, 2504–2508 (1991)

    Article  CAS  Google Scholar 

  104. S. Kivelson, Electron hopping conduction in the soliton model of polyacetylene. Phys. Rev. Lett. 46, 1344–1348 (1981)

    Article  CAS  Google Scholar 

  105. M. Ates, T. Karazehir, A.S. Sarac, Conducting polymers and their applications. Curr. Phys. Chem. 2, 224–2410 (2012)

    Article  CAS  Google Scholar 

  106. Y. Liu, T. Cui, K. Varahramyan, All-polymer capacitor fabricated with inkjet printing technique. Solid-State Electron. 47, 1543–1548 (2003)

    Article  CAS  Google Scholar 

  107. F.O. Toribio, T.C. Maria, Soft and wet conducting polymers for artificial muscles. Adv. Mater. 15, 279–282 (2003)

    Article  Google Scholar 

  108. J. Lee, F. Serna, J. Nickels, C.E. Schmidt, Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules 7, 1692–1695 (2006)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. A. Kotwal, C.E. Schmidt, Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22, 1055–1064 (2001)

    Article  PubMed  CAS  Google Scholar 

  110. Y. Furukawa, S. Tazawa, Y. Fujii, I. Harada, Raman spectra of polypyrrole and its 2,5-13C-substituted and C-deuterated analogues in doped and undoped states. Synth. Met. 24, 329–341 (1988)

    Article  CAS  Google Scholar 

  111. S. Radhakrishnan, P. Somani, Electrochromic response in polypyrrole sensitized by Prussian blue. Chem. Phys. Lett. 292, 218–222 (1998)

    Article  Google Scholar 

  112. E.M. Girotto, M.-A. de Paoli, Polypyrrole color modulation and electrochromic contrast enhancement by doping with a dye. Adv. Mater. 10, 790–793 (1998)

    Article  CAS  Google Scholar 

  113. U. Bulut, F. Yilmaz, Y. Yagci, L. Toppare, Synthesis, characterization and electrochromic properties of conducting copolymers of 3-[(3-thienylcarbonyl)oxy]-2,2-bis{[(3-thienylcarbonyl)oxy]}propyl 3-thiophene carboxylate with thiophene and pyrrole. React. Funct. Polym. 61, 63–70 (2004)

    Article  CAS  Google Scholar 

  114. J. Xu, G. Nie, S. Zhang, X. Han, J. Hou, S. Pu, Electrochemical copolymerization of indole and 3,4-ethylenedioxythiophene. J. Mater. Sci. 40, 2867–2873 (2005)

    Article  CAS  Google Scholar 

  115. S. Alkan, L. Toppare, Y. Hepuzer, Y. Yagci, Block copolymers of thiophene-capped poly(methyl methacrylate) with pyrrole. J. Polym. Sci., Part A: Polym. Chem. 37, 4218–4225 (1999)

    Article  CAS  Google Scholar 

  116. N. Kizilyar, L. Toppare, A. Önen, Y. Yağci, Synthesis of conducting PPy/pTHF copolymers. J. Appl. Polym. Sci. 71, 713–720 (1999)

    Article  CAS  Google Scholar 

  117. E. Kalaycioglu, L. Toppare, Y. Yagci, V. Harabagiu, M. Pintela, R. Ardelean, B. Simionescu, Synthesis of conducting H-type polysiloxane-polypyrrole block copolymers. Synth. Met. 97, 7–12 (1998)

    Article  CAS  Google Scholar 

  118. B. Bengü, L. Toppare, E. Kalaycioglu, Synthesis of conducting graft copolymers of 2-(N-pyrrolyl)ethylvinyl ether with pyrrole. Des. Monomers Polym. 4, 53–65 (2001)

    Article  Google Scholar 

  119. H. Yamamoto, M. Oshimia, M. Fukuda, I. Isa, K. Yoshino, Characteristics of aluminum solid electrolyte capacitors using a conducting polymer. J. Power Sources 60, 173–177 (1996)

    Article  CAS  Google Scholar 

  120. Y.-C. Liu, K.-C. Chung, Characteristics of conductivity-improved polypyrrole films via different procedures. Synth. Met. 139, 277–281 (2003)

    Article  CAS  Google Scholar 

  121. J. Sung, S. Kim, K. Lee, Fabrication of microcapacitors using conducting polymer microelectrodes. J. Power Sources 124, 343–350 (2003)

    Article  CAS  Google Scholar 

  122. A. Marrocchi, D. Lanari, A. Facchetti, L. Vacarro, Poly(3-hexylthiophene): Synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ. Sci. 5, 8457–8474 (2012)

    Article  CAS  Google Scholar 

  123. R.L. Elsenbaumer, K.Y. Jen, R. Oboodi, Processible and environmentally stable conducting polymers. Synth. Met. 15, 169–174 (1986)

    Article  CAS  Google Scholar 

  124. A. Balamurugan, S. Chen, Silver nanograin incorporated PEDOT modified electrode for electrocatalytic sensing of hydrogen peroxide. Electroanal. (12), 1419–1423 (2009)

    Google Scholar 

  125. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12, 481–494 (2000)

    Article  CAS  Google Scholar 

  126. G. Sonmez, P. Schottland, J.R. Reynolds, PEDOT/PAMPS: An electrically conductive polymer composite with electrochromic and cation exchange properties. Synth. Met. 155, 130–137 (2005)

    Article  CAS  Google Scholar 

  127. V.S. Vasantha, R. Thangamuthu, S. Mingchen, Electrochemical polymerization of poly (3,4-ethylene dioxyl thiophene) from aqueous solution containing hydroxyl propyl-beta-cyclodextrine and the electrocatalytic behavior of modified electrode towards oxidation of sulphur oxoanion and nitrite. Electroanal. 20, 1754–1759 (2008)

    Article  CAS  Google Scholar 

  128. M. Zahid, E.L. Papadopoulou, A. Athanassiou, I.S. Bayer, Strain-responsive mercerized conductive cotton fabrics based on PEDIT:PSS/graphene. Mater. Design 135, 213–222 (2017)

    Article  CAS  Google Scholar 

  129. J. Aguirre, L. Daille, D.A. Fischer, C. Galarce, G. Pizarro, I. Vargas, M. Walczak, R. de la Iglesia, F. Armijo, Study of poly(3,4-ethylenedioxythiophene) as a coating for mitigation of biocorrosion of AISI 304 stainless steel in natural seawater. Prog. Org. Coat. 113, 175–184 (2017)

    Article  CAS  Google Scholar 

  130. G. Zotti, B. Vercelli, A. Berlin, Gold nanoparticle linking to polypyrole and polythiophene monolayers and multilayers. Chem. Mater. 20, 6509–6516 (2008)

    Article  CAS  Google Scholar 

  131. N. Sakmeche, E.A. Bazzaoui, M. Fall, S. Aeiyach, M. Jouini, J.C. Lacroix, J.J. Aaron, P.C. Lacaze, Application of sodium dodecyl sulphate (SDS) micellar solution as an organised medium for electropolymerization of thiopene derivatives in water. Synthetic Met. 84, 191–192 (1997)

    Article  CAS  Google Scholar 

  132. A. Zykwinska, W. Domagala, M. Lapkowski, ESR spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) (PEDOT). Electrochem. Commun. 5, 603–608 (2003)

    Article  CAS  Google Scholar 

  133. R. Ruffo, A. Celik-Cochet, U. Posset, C.M. Mari, G. Schottner, Mechanistic study of the redox process of an in situ oxidatively polymerised poly(3,4-ethylene-dioxythiophene) film. Sol. Energy Mater. Sol. Cells 92, 140–145 (2008)

    Article  CAS  Google Scholar 

  134. W.A. Gazotti Jr., G. Casalbore-Miceli, S. Mitzakoff, A. Geri, M.C. Gallazzi, M.A. De Paoli, Conductive polymer blends as electrochromic materials. Electrochim. Acta 44, 1965–1971 (1999)

    Article  CAS  Google Scholar 

  135. M. Higuchi, Y. Akasaka, T. Ikeda, A. Hayashi, D. Kurth, Electrochromic solid-state devices using organic-metallic hybrid polymers. J. Inorg. Organomet. Polym. Mater. 19, 74–78 (2009)

    Article  CAS  Google Scholar 

  136. C. Damlin, A.I. Kvarnström, Electrochemical synthesis and in situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) (PEDOT) in room temperature ionic liquids. J. Electroanal. Chem. 570, 113–122 (2004)

    Article  CAS  Google Scholar 

  137. C.T. Barry, S. Philippe, Z. Kyukwan, R.R. John, In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater. 12, 1563–1571 (2000)

    Article  CAS  Google Scholar 

  138. C. Nien, T.S. Tung, K.C. Ho, Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly(3,4-ethylenedioxythiophene) film. Electroanal. 18, 1408–1415 (2006)

    Article  CAS  Google Scholar 

  139. W. Chen, G. Güler, E. Kuruvilla, G.B. Schuster, H.C. Chiu, E. Riedo, Development of self-organizing, self-directing molecular nanowires: Synthesis and characterization of conjoined DNA-2,5-Bis(2-thienyl)pyrrole oligomers. Macromolecules 43, 4032–4040 (2010)

    Article  CAS  Google Scholar 

  140. M. Giannetto, V. Mastria, G. Mori, A. Arduini, A. Secchi, New selective gas sensor based on piezoelectric quartz crystal modified by electropolymerization of a molecular receptor functionalised with 2,2′-bithiophene. Sens. Actuators B Chem. 115, 62–68 (2006)

    Article  CAS  Google Scholar 

  141. T. Kuwahara, H. Ohta, M. Kondo, M. Shimomura, Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell. Bioelectrochemistry 74, 66–72 (2008)

    Article  PubMed  CAS  Google Scholar 

  142. M. Park, H.J. Lee, Recent advances in electrochemical studies of π-conjugated polymers. Bull. Korean Chem. Soc. 26, 697–705 (2005)

    Article  CAS  Google Scholar 

  143. L.L. Beecroft, K.O. Christopher, Nanocomposite materials for optical applications. Chem. Mater. 9, 1302–1317 (1997)

    Article  CAS  Google Scholar 

  144. O. Rasaq, O. Arotiba, S. Mailu, T. Waryo, P. Baker, E. Iwuoha, Electrochemical aptasensor for endocrine disrupting 17β-estradiol based on a poly(3,4-ethylenedioxylthiopene)-gold nanocomposite platform. Sensors 10, 9872–9890 (2010)

    Article  CAS  Google Scholar 

  145. P.C. Nien, P.Y. Chen, K.C. Ho, Fabricating an amperometric cholesterol biosensor by a covalent linkage between Poly(3-thiopheneacetic acid) and cholesterol oxidase. Sensors 9, 1794–1806 (2009)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  146. L. Pigani, A. Heras, Á. Colina, R. Seeber, J. López-Palacios, Electropolymerisation of 3,4-ethylenedioxythiophene in aqueous solutions. Electrochem. Commun. 6, 1192–1198 (2004)

    Article  CAS  Google Scholar 

  147. Y.H. Xiao, C.M. Li, M.L. Toh, R. Xue, Adenosine 5' triophosphate incorporated poly (3,4-ethylenedioxythiophene) modified electrode a bioactive platform with electroactivity, stability and biocompartibility. Chem. Biol. Interact. 157–158, 423–426 (2005)

    Google Scholar 

  148. V.S. Vasantha, S.-M. Chen, Electrochemical preparation and electrocatalytic properties of PEDOT/ferricyanide film-modified electrodes. Electrochim. Acta 51, 347–355 (2005)

    Article  CAS  Google Scholar 

  149. P. Olowu, C. Ndangili, N. Ikpo, P. Njomo, E. Baker, Iwuoha: Specroelecrochemical dynamics of dendritic poly(propyleneimine)-polythiophene star copolymer aptameric 17b-estradiol biosensor. Int. J. Electrochem. Sci. 6, 1686–1708 (2011)

    CAS  Google Scholar 

  150. P. Ali, S. Srivastava, I. Ali Khan, V.D. Gupta, S.U.I. Ansari, Phonon dispersion and heat capacity in polyfuran. Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 149–154 (2012)

    Article  PubMed  CAS  Google Scholar 

  151. C.C. Ferrón, M.C.R. Delgado, O. Gidron, S. Sharma, D. Sheberla, Y. Sheynin, M. Bendikov, J.T.L. Navarrete, V. Hernández, α-Oligofurans show a sizeable extent of π-conjugation as probed by Raman spectroscopy. Chem. Commun. 48, 6732–6734 (2012)

    Article  CAS  Google Scholar 

  152. M. El-Nahas, A.H. Mangood, T.S. El-Shazly, Theoretical investigation of the conducting properties of substituted phosphole oligomers. Comp. Theor. Chem. 980, 68–72 (2012)

    Article  CAS  Google Scholar 

  153. N.F. Atta, M.F. El-Kady, A. Galal, Palladium nanoclusters-coated polyfuran as a novel sensor for catecholamine neurotransmitters and paracetamol. Sens. Actuators B-Chem. 141, 566–574 (2009)

    Article  CAS  Google Scholar 

  154. M. Kraljić, Z. Mandić, L. Duić, Inhibition of steel corrosion by polyaniline coatings. Corros. Sci. 45, 181–198 (2003)

    Article  Google Scholar 

  155. D. Zhang, Y. Wang, Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng., B 134, 9–19 (2006)

    Article  CAS  Google Scholar 

  156. D. Trivedi, Polyanilines. In: Handbook of Organic Conductive Molecules and Polymers, Volume 2, Conductive Polymers: Synthesis and Electrical Properties. (Wiley, 1997) pp. 506–572

    Google Scholar 

  157. J.C. Michaelson, A.J. McEvoy, M. Grätzel, Proceedings of the international conference on science and technology of synthetic metals electrochemical behaviour of various polyaniline morphologies in nonaqueous electrolytes. Synth. Met. 55, 1564–1569 (1993)

    Article  CAS  Google Scholar 

  158. E.I. Iwuoha, D. Saenz de Villaverde, N.P. Garcia, M.R. Smyth, J.M. Pingarron, Reactivities of organic phase biosensors. 2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film. Biosens. Bioelectron. 12, 749–761 (1997)

    Article  CAS  Google Scholar 

  159. L.G. Paterno, S. Manolache, F. Denes, Synthesis of polyaniline-type thin layer structures under low-pressure RF-plasma conditions. Synth. Met. 130, 85–97 (2002)

    Article  CAS  Google Scholar 

  160. G.J. Cruz, J. Morales, M.M. Castillo-Ortega, R. Olayo, Synthesis of polyaniline films by plasma polymerization. Synth. Met. 88, 213–218 (1997)

    Article  CAS  Google Scholar 

  161. C. Liao, M. Gu, Electroless deposition of polyaniline film via autocatalytic polymerization of aniline. Thin Solid Films 408, 37–42 (2002)

    Article  CAS  Google Scholar 

  162. S.-C. Kim, P. Huh, J. Kumar, B. Kim, J.-O. Lee, F.F. Bruno, L.A. Samuelson, Synthesis of polyaniline derivatives via biocatalysis. Green Chem. 9, 44–48 (2007)

    Article  CAS  Google Scholar 

  163. J. Gong, X.-J. Cui, Z.-W. Xie, S.-G. Wang, L.-Y. Qu, The solid-state synthesis of polyaniline/H4SiW12O40 materials. Synth. Met. 129, 187–192 (2002)

    Article  CAS  Google Scholar 

  164. G.G. Wallace, M.S. Geoffrey, A.P.K.-M. Leon, Conductive Electroactive Polymers: Intelligent Materials Systems, 2nd edn. (CRC Press, Boca Raton, 2003)

    Google Scholar 

  165. H. Tang, A. Kitani, M. Shiotani, Effects of anions on electrochemical formation and overoxidation of polyaniline. Electrochim. Acta 41, 1561–1567 (1996)

    Article  CAS  Google Scholar 

  166. M. Kalaji, L. Nyholm, L.M. Peter, A microelectrode study of the influence of pH and solution composition on the electrochemical behaviour of polyaniline films. J. Electroanal. Chem. Interfacial Electrochem. 313, 271–289 (1991)

    Article  CAS  Google Scholar 

  167. S.-S. Chen, T.-C. Wen, A. Gopalan, Electrosynthesis and characterization of a conducting copolymer having S–S links. Synth. Met. 132, 133–143 (2003)

    Article  CAS  Google Scholar 

  168. G.D. Storrier, S.B. Colbran, D.B. Hibbert, Chemical and electrochemical syntheses, and characterization of poly(2,5-dimethoxyaniline) (PDMA): a novel, soluble, conducting polymer. Synth. Met. 62, 179–186 (1994)

    Article  CAS  Google Scholar 

  169. B. Palys, A. Kudelski, A. Stankiewicz, K. Jackowska, Influence of anions on formation and electroacitivity of poly-2,5-dimethoxyaniline. Synth. Met. 108, 111–119 (2000)

    Article  CAS  Google Scholar 

  170. T.-C. Wen, L.-M. Huang, A. Gopalan, An in situ spectroelectrochemical investigation of the copolymerization of diaminobenzenesulfonic acid with aniline and its derivatives. Electrochim. Acta 46, 2463–2475 (2001)

    Article  CAS  Google Scholar 

  171. J. Stejskal, I. Sapurina, M. Trchová, Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 35, 1420–1481 (2010)

    Article  CAS  Google Scholar 

  172. J. Stejskal, P. Kratochvíl, A.D. Jenkins, The formation of polyaniline and the nature of its structures. Polymer 37, 367–369 (1996)

    Article  CAS  Google Scholar 

  173. H. Zengin, W. Zhou, J. Jin, R. Czerw, D.W. Smith, L. Echegoyen, D.L. Carroll, S.H. Foulger, J. Ballato, Carbon nanotube doped polyaniline. Adv. Mater. 14, 1480–1483 (2002)

    Article  CAS  Google Scholar 

  174. P. Fedorko, M. Trznadel, A. Pron, D. Djurado, J. Planès, J.P. Travers, New analytical approach to the insulator–metal transition in conductive polyaniline. Synth. Met. 160, 1668–1671 (2010)

    Article  CAS  Google Scholar 

  175. M.G. Milica, Z.J. Branimir, S.S. Jasmina, L.T. Tomislav, B.N. Grgur, Electrochemical Polymerization of Aniline, Electropolymerization, (ed.) Dr. Ewa Schab-Balcerzak (InTech, 2011). https://doi.org/10.5772/28293. Accessed http://www.intechopen.com/books/electropolymerization/electrochemical-polymerization-of-aniline2016

  176. R. Qian, J. Qiu, D. Shen, Conducting polypyrrole electrochemically prepared from aqueous solutions. Synth. Met. 18, 13–18 (1987)

    Article  CAS  Google Scholar 

  177. A. Metin, L. Toppare, Synthesis of star-shaped pyrrole and thiophene functionalized monomers and optoelectrochemical properties of corresponding copolymers. Mater. Chem. Phys. 114, 789–794 (2009)

    Article  CAS  Google Scholar 

  178. S. Chronakis, A.J. Grapenson, Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Polymer 47, 1597–1603 (2006)

    Article  CAS  Google Scholar 

  179. S. Brahim, A. Guiseppi-Elie, Electroconductive hydrogels: Electrical and electrochemical properties of polypyrrole-poly(HEMA) composites. Electroanal. 17, 556–570 (2005)

    Article  CAS  Google Scholar 

  180. N.S. Sundaresan, S. Basak, M. Pomerantz, J.R. Reynolds, Electroactive copolymers of pyrrole containing covalently bound dopant ions: poly{pyrrole-co-[3-(pyrrol-1-yl)propanesulphonate]}. J. Chem. Soc. Chem. Comm. (8), 621–622 (1987)

    Google Scholar 

  181. C. Mailhe-Randolph, J. Desilvestro, Morphology of electropolymerized aniline films modified by para-phenylenediamine. J. Electroanal. Chem. Interfac. Electrochem. 262, 289–295 (1989)

    Article  CAS  Google Scholar 

  182. B.L. Funt, E.M. Peters, J.D. Van Dyke, Preparation of conducting copolymers by oxidative electropolymerization of 2,2′-bithiophene with pyrrole. J. Polym. Sci. Part A: Polym. Chem. 24, 1529–1537 (1986)

    Article  CAS  Google Scholar 

  183. O. Inganäs, B. Liedberg, W. Chang-Ru, H. Wynberg, A new route to polythiophene and copolymers of thiophene and pyrrole. Synth. Met. 11, 239–249 (1985)

    Article  Google Scholar 

  184. H.S.O. Chan, E.T. Kang, K.G. Neoh, K.L. Tan, B.T.G. Tan, Y.K. Lim, XPS studies of copolymers of pyrrole and N-methylpyrrole. Synth. Met. 30, 189–197 (1989)

    Article  CAS  Google Scholar 

  185. J.P. Ferraris, T.R. Hanlon, Optical, electrical and electrochemical properties of heteroaromatic copolymers. Polymer 30, 1319–1327 (1989)

    Article  CAS  Google Scholar 

  186. R.D. McCullough, R.D. Lowe, Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc., Chem. Commun., 70–72 (1992)

    Google Scholar 

  187. R.D. McCullough, S. Tristram-Nagle, S.P. Williams, R.D. Lowe, M. Jayaraman, Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers. J. Am. Chem. Soc. 115, 4910–4911 (1993)

    Article  CAS  Google Scholar 

  188. A. Chen, X. Wu, R.D. Rieke, Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: Their characterization and solid-state properties. J. Am. Chem. Soc. 117, 233–244 (1995)

    Article  CAS  Google Scholar 

  189. G. MacDiarmid, A.J. Epstein, Conducting polymers: Past, present and future. Mater. Res. Soc. Symp. Proc. 328, 133–144 (1994)

    Article  CAS  Google Scholar 

  190. J.M.J. Frechet, Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263, 1710–1715 (1994)

    Article  PubMed  CAS  Google Scholar 

  191. J.L. Hedrick, M. Trollsas, C.J. Hawker, B. Atthoff, H. Claesson, A. Heise, R.D. Miller, D. Mecerreyes, R. Jérôme, P. Dubois, Dendrimer-like star block and amphiphilic copolymers by combination of ring opening and atom transfer radical polymerization. Macromolecules 31, 8691–8705 (1998)

    Article  CAS  Google Scholar 

  192. J. Roovers, L.L. Zhou, P.M. Toporowski, M. Vanderzwan, H. Iatrou, N. Hadjichristidis, Regular star polymers with 64 and 128 arms. Models for polymeric micelles. Macromolecules 26, 4324–4331 (1993)

    Article  CAS  Google Scholar 

  193. J. Roovers, B. Comanita, Dendrimers and dendrimer-polymer hybrids, in Branched Polymers I, (Springer, Berlin/Heidelberg, 1999), pp. 179–228

    Chapter  Google Scholar 

  194. M. Kimura, M. Kato, T. Muto, K. Hanabusa, H. Shirai, Temperature-sensitive dendritic hosts: synthesis, characterization, and control of catalytic activity. Macromolecules 33, 1117–1119 (2000)

    Article  CAS  Google Scholar 

  195. A. Cooper, J. Londono, G. Wignall, J. McClain, E. Samulski, J. Lin, A. Dobrynin, M. Rubinstein, A.C. Burke, J. Frechet, J. DeSimone, Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants. Nature 389, 368–371 (1997)

    Article  CAS  Google Scholar 

  196. R.C. Hedden, B.J. Bauer, A. Paul Smith, F. Gröhn, E. Amis, Templating of inorganic nanoparticles by PAMAM/PEG dendrimer-star polymers. Polymer 43, 5473–5481 (2002)

    Article  CAS  Google Scholar 

  197. D. Luo, K. Haverstick, N. Belcheva, E. Han, W.M. Saltzman, Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules 35, 3456–3462 (2002)

    Article  CAS  Google Scholar 

  198. R.C. Hedden, B.J. Bauer, Structure and dimensions of PAMAM/PEG dendrimer−star polymers. Macromolecules 36, 1829–1835 (2003)

    Article  CAS  Google Scholar 

  199. B. Comanita, B. Noren, J. Roovers, Star poly(ethylene oxide)s from carbosilane dendrimers. Macromolecules 32, 1069–1072 (1999)

    Article  CAS  Google Scholar 

  200. Y. Zhao, X. Shuai, C. Chen, F. Xi, Synthesis and characterization of star-shaped poly(l-lactide)s initiated with hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimers. Chem. Mater. 15, 2836–2843 (2003)

    Article  CAS  Google Scholar 

  201. S. Heise, J.L. Diamanti, C.W. Hedrick, R.D.M. Frank, Investigation of the initiation behavior of a dendritic 12-arm initiator in atom transfer radical polymerization. Macromolecules 34, 3798–3801 (2001)

    Article  CAS  Google Scholar 

  202. Q. Zheng, C.Y. Pan, Preparation and characterization of dendrimer-star PNIPAAM using dithiobenzoate-terminated PPI dendrimer via RAFT polymerization. Eur. Polym. J. 42, 807–814 (2006)

    Article  CAS  Google Scholar 

  203. F. Wang, M.S. Wilson, R.D. Rauh, Electroactive and conducting star-branched poly(3-hexylthiophene)s with a conjugated core. Macromolecules 32, 4272–4278 (1999)

    Article  CAS  Google Scholar 

  204. L.L. Miller, R.G. Duan, D.C. Tully, D.A. Tomalia, Electrically conducting dendrimers. J. Am. Chem. Soc. 119, 1005–1010 (1997)

    Article  CAS  Google Scholar 

  205. N. Baleg, A. Jahed, N. Arotiba, R. Mailu, P. Hendricks, E.I. Baker, Synthesis and characterization of poly(propylene imine) dendrimer – Polypyrrole conducting star copolymer. J. Electroanal. Chem. 652, 18–25 (2011)

    Article  CAS  Google Scholar 

  206. R.A. Olowu, P.M. Ndangili, C.O. Ikpo, A. Williams, R.F. Ngece, S.N. Mailu, N. Njomo, V.D.V. Wyk, P. Baker, E. Iwuoha, Impedimetry and microscopy of electrosynthetic poly(propylene imine)-co-poly(3,4-ethylene dioxythiophene) dendritic star copolymer. Int. J. Electrochem. Sci. 1855–1870 (2011)

    Google Scholar 

  207. P.H.J. Schenning, P. Jonkheijm, J. Hofkens, S.D. Feyter, T. Asavei, M. Cotlet, F.C.D. Schryver, E.W. Meijer, Formation and manipulation of supramolecular structures of oligo(p-phenylenevinylene) terminated poly(propylene imine) dendrimers. Chem. Commun., 1264–1265 (2002)

    Google Scholar 

  208. P.H.J. Schenning, E. Peeters, E.W. Meijer, Energy transfer in supramolecular assemblies of oligo(p-phenylene vinylene)s terminated poly(propylene imine) dendrimers. J. Am. Chem. Soc. 122, 4489–4495 (2000)

    Article  CAS  Google Scholar 

  209. K. Miyashita, M. Kamigaito, M. Sawamoto, T. Higashimura, Synthesis of end-functionalized polystyrenes with organosilicon end-capping reagents via living cationic polymerization. J. Polym. Sci., Part A: Polym. Chem. 32, 2531–2542 (1994)

    Article  CAS  Google Scholar 

  210. P.R.L. Malenfant, J.M.J. Frechet, Dendrimer s solubilizing groups for conducting polymers: Preparation and characterization of polythiophene functionalized exclusively withaliphatic ether convergence dendron. Macromolecules 33, 3634–3640 (2000)

    Article  CAS  Google Scholar 

  211. J. Roncali, Electrogenerated functional conjugated polymers as advanced electrode materials. J. Mater. Chem. 9, 1875–1893 (1999)

    Article  CAS  Google Scholar 

  212. S. Deng, J. Locklin, D.B.A. Patton, R.C. Advincula, Thiophene dendron jacketed poly(amidoamine) dendrimers: Nanoparticle sythensis and adsorption on graphite. J. Am. Chem. Soc. 127, 1744–1751 (2005)

    Article  PubMed  CAS  Google Scholar 

  213. H.A.M. Van-Aert, M.E.M. Burkard, J.F.G.A. Jansen, M.H.P. Van-Genderen, E.W. Meijer, H. Oevering, G.H.W. Buning, Functional oligomers, telechelics, and graft and star-shaped poly(2,6-dimethyl-1,4-phenylene ether)s prepared by redistribution. Macromolecules 28, 7967–7969 (1995)

    Article  CAS  Google Scholar 

  214. H.A.M. Van-Aert, M.H.P. Van-Genderen, E.W. Meijer, Star-shaped poly(2,6-dimethyl-1,4-phenylene ether). Polym. Bull. 37, 273–280 (1996)

    Article  CAS  Google Scholar 

  215. M. Liu, M. Petro, J.M.J. Fréchet, S.A. Haque, H.C. Wang, Preparation of hydrophobic poly(isobutylene) star polymer with hydrophilic poly(propylene imine) dendritic cores. Polym. Bull. 43, 51–58 (1999)

    Article  CAS  Google Scholar 

  216. E. Sahin, P. Camurlu, L. Toppare, V.M. Mercore, I. Cianga, Y. Yagci, Conducting copolymers of thiophene functionalized polystyrenes with thiophene. J. Electroanal. Chem. 579, 189–197 (2005)

    Article  CAS  Google Scholar 

  217. A. Hirao, K. Sugiyama, Y. Tsunoda, A. Matsuo, T. Watanabe, Precise synthesis of well-defined dendrimer-like star-branched polymers by iterative methodology based on living anionic polymerization. J. Polym. Sci., Part A: Polym. Chem. 44, 6659–6687 (2006)

    Article  CAS  Google Scholar 

  218. M. Trollsås, M.A. Kelly, H. Claesson, R. Siemens, J.L. Hedrick, Highly branched block copolymers: Design, synthesis, and morphology. Macromolecules 32, 4917–4924 (1999)

    Article  CAS  Google Scholar 

  219. R. Francis, D. Taton, J.L. Logan, P. Masse, Y. Gnanou, R.S. Duran, Synthesis and surface properties of amphiphilic star-shaped and dendrimer-like copolymers based on polystyrene core and poly(ethylene oxide) corona. Macromolecules 36, 8253–8259 (2003)

    Article  CAS  Google Scholar 

  220. M. Trollsås, B. Atthoff, H. Claesson, J.L. Hedrick, Dendritic homopolymers and block copolymers: Tuning the morphology and properties. J. Polym. Sci. Part A: Polym. Chem. 42, 1174–1188 (2004)

    Article  CAS  Google Scholar 

  221. N. Urbani, D.E. Lonsdale, C.A. Bell, M.R. Whittaker, M.J. Monteiro, Divergent synthesis and self-assembly of amphiphilic polymeric dendrons with selective degradable linkages. J. Polym. Sci. Part A: Polym. Chem. 46, 1533–1547 (2008)

    Article  CAS  Google Scholar 

  222. M. Stancik, J.A. Pople, M. Trollsås, P. Lindner, J.L. Hedrick, A.P. Gast, Impact of core architecture on solution properties of dendrimer-like star copolymers. Macromolecules 36, 5765–5775 (2003)

    Article  CAS  Google Scholar 

  223. N. Urbani, C.A. Bell, D.E. Lonsdale, M.R. Whittaker, M.J. Monteiro, Self-assembly of amphiphilic polymeric dendrimers synthesized with selective degradable linkages. Macromolecules 41, 76–86 (2007)

    Article  CAS  Google Scholar 

  224. R. Matmour, B. Lepoittevin, T.J. Joncheray, R.J. El-khouri, D. Taton, R.S. Duran, Y. Gnanou, Synthesis and investigation of surface properties of dendrimer-like copolymers based on polystyrene and poly(tert-butylacrylate). Macromolecules 38, 5459–5467 (2005)

    Article  CAS  Google Scholar 

  225. K. Van Ruymbeke, M. Orfanou, H. Kapnistos, M. Iatrou, N. Pitsikalis, D.J. Hadjichristidis, D.V. Lohse, Entangled dendritic polymers and beyond: Rheology of symmetric Cayley-tree polymers and macromolecular self-assemblies. Macromolecules 40, 5941–5952 (2007)

    Article  CAS  Google Scholar 

  226. L. Yang, W. Wu, Y. Ohki, Y. Feng, S. Li, Enhanced conductivity of polyanilne in the presence of nonionic amphiphilic polymers and their diverse morphologies. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.45547

  227. H. Yoo, T. Watanabe, A. Hirao, Precise Synthesis of dendrimer-like star-branched polystyrenes and block copolymers composed of polystyrene and poly(methyl methacrylate) segments by an iterative methodology using living anionic polymerization. Macromolecules 42, 4558–4570 (2009)

    Article  CAS  Google Scholar 

  228. H. Makelane, O. Tovide, C. Sunday, T. Waryo, E. Iwuoha, Electrochemical interrogation of G3-poly(propylene thiophenoimine) dendritic star polymer in phenanthrene sensing. Sensors 15, 22343 (2015)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  229. C. Liu, J. Lee, C. Small, J. Ma, M. Elimelech, Comparison of organic fouling resistance of thin film composite membranes modified by hydrophilic silica nanoparticles and zwitterionic polymer brushes. J. Membr. Sci. 544, 135–142 (2017)

    Article  CAS  Google Scholar 

  230. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  231. A. Pud, N. Ogurtsov, A. Korzhenko, G. Shapoval, Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Prog. Polym. Sci. 28, 1701–1753 (2003)

    Article  CAS  Google Scholar 

  232. J. Anand, S. Palaniappan, D.N. Sathyanarayana, Conducting polyaniline blends and composites. Prog. Polym. Sci. 23, 993–1018 (1998)

    Article  CAS  Google Scholar 

  233. L. Dai, Electrochemical sensors based on architectural diversity of the π-conjugated structure: Recent advancements from conducting polymers and carbon nanotubes. Aust. J. Chem. 60, 472–483 (2007)

    Article  CAS  Google Scholar 

  234. M. Baibarac, P. Gómez-Romero, Nanocomposites based on conducting polymers and carbon nanotubes: From fancy materials to functional applications. J. Nanosci. Nanotechnol. 6, 289–302 (2006)

    Article  PubMed  CAS  Google Scholar 

  235. A. Bora, K. Mohan, D. Pegu, C.B. Gohain, S.K. Dolui, A room temperature methanol bapor sensor based on highly conducting carboxyalted multi-walled carbon nanotube/polyaniline nanotube composite. Sens. Actuators B: Chem 253, 977–986 (2017)

    Article  CAS  Google Scholar 

  236. C. Oueiny, S. Berlioz, F.-X. Perrin, Carbon nanotube–polyaniline composites. Prog. Polym. Sci. 39, 707–748 (2014)

    Article  CAS  Google Scholar 

  237. R. Andrews, D. Jacques, M. Minot, T. Rantell, Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 287, 395–403 (2002)

    Article  CAS  Google Scholar 

  238. O. Breuer, U. Sundararaj, Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 25, 630–645 (2004)

    Article  CAS  Google Scholar 

  239. P. Gajendran, R. Saraswathi, Polyaniline-carbon nanotube composites. Pure Appl. Chem. 80, 2377–2395 (2008)

    Article  CAS  Google Scholar 

  240. A. Tchmutin, A.T. Ponomarenko, E.P. Krinichnaya, G.I. Kozub, O.N. Efimov, Electrical properties of composites based on conjugated polymers and conductive fillers. Carbon 41, 1391–1395 (2003)

    Article  CAS  Google Scholar 

  241. M. Baibarac, I. Baltog, S. Lefrant, J.Y. Mevellec, O. Chauvet, Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem. Mater. 15, 4149–4156 (2003)

    Article  CAS  Google Scholar 

  242. X.-B. Yan, Z.-J. Han, Y. Yang, B.-K. Tay, Fabrication of carbon nanotube−polyaniline composites via electrostatic adsorption in aqueous colloids. J. Phys. Chem. C 111, 4125–4131 (2007)

    Article  CAS  Google Scholar 

  243. M. Cochet, W.K. Maser, A.M. Benito, M.A. Callejas, M.T. Martinez, J.-M. Benoit, J. Schreiber, O. Chauvet, Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun., 1450–1451 (2001)

    Google Scholar 

  244. M.R. Karim, C.J. Lee, Y.-T. Park, M.S. Lee, SWNTs coated by conducting polyaniline: Synthesis and modified properties. Synth. Met. 151, 131–135 (2005)

    Article  CAS  Google Scholar 

  245. K.-T. Lau, M. Lu, L. Chun-ki, H.-Y. Cheung, F.-L. Sheng, H.-L. Li, Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos. Sci. Tech. 65, 719–725 (2005)

    Article  CAS  Google Scholar 

  246. M.B. Bryning, D.E. Milkie, M.F. Islam, J.M. Kikkawa, A.G. Yodh, Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87, 161909 (2005)

    Article  CAS  Google Scholar 

  247. S. Badaire, P. Poulin, M. Maugey, C. Zakri, In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir 20, 10367–10370 (2004)

    Article  PubMed  CAS  Google Scholar 

  248. S. Barrau, P. Demont, E. Perez, A. Peigney, C. Laurent, C. Lacabanne, Effect of palmitic acid on the electrical conductivity of carbon nanotubes−epoxy resin composites. Macromolecules 36, 9678–9680 (2003)

    Article  CAS  Google Scholar 

  249. M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh, High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003)

    Article  CAS  Google Scholar 

  250. T. Jeevananda, N.H.K. Siddaramaiah, S.-B. Heo, J.H. Lee, Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate. Polym. Adv. Tech. 19, 1754–1762 (2008)

    Article  CAS  Google Scholar 

  251. J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li, A.S.C. Chan, Carbon nanotube–polyaniline hybrid materials. Eur. Polym. J. 38, 2497–2501 (2002)

    Article  CAS  Google Scholar 

  252. M. Zelikman, A. Narkis, L. Siegmann, J.M.K. Valentini, Polyaniline/multiwalled carbon nanotube systems: Dispersion of CNT and CNT/PANI interaction. Polym. Eng. Sci. 48, 1872–1877 (2008)

    Article  CAS  Google Scholar 

  253. M. Zhang, L. Su, L. Mao, Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon 44, 276–283 (2006)

    Article  CAS  Google Scholar 

  254. A.P. Kane-Maguire, D.L. Officer, S.J. Park, S.Y. Park, M.S. Cho, H.J. Choi, M.S. Jhon, Proceedings of the international conference on science and technology of synthetic metals: Synthesis and electrorhelogy of multi-walled carbon nanotube/polyaniline nanoparticles. Synth. Met. 152, 337–340 (2005)

    Article  CAS  Google Scholar 

  255. C.S. Choi, S.J. Park, H.J. Choi, Carbon nanotube/polyaniline nanocomposites and their electrorheological characteristics under an applied electric field. Curr. Appl. Phys. 7, 352–355 (2007)

    Article  Google Scholar 

  256. X. Zhang, Z. Lü, M. Wen, H. Liang, J. Zhang, Z. Liu, Single-walled carbon nanotube-based coaxial nanowires: Synthesis, characterization, and electrical properties. J. Phys. Chem. B 109, 1101–1107 (2005)

    Article  PubMed  CAS  Google Scholar 

  257. L. de la Chapelle, C. Stéphan, T.P. Nguyen, S. Lefrant, C. Journet, P. Bernier, E. Munoz, A. Benito, W.K. Maser, M.T. Martinez, G.F. de la Fuente, T. Guillard, G. Flamant, L. Alvarez, D. Laplaze, International conference on science and technology of synthetic metals: Raman characterization of singlewalled carbon nanotubes and PMMA-nanotubes composites. Synth. Met. 103, 2510–2512 (1999)

    Article  Google Scholar 

  258. J.M. Benoit, B. Corraze, S. Lefrant, W.J. Blau, P. Bernier, O. Chauvet, Proceedings of the international conference on the science and technology of synthetic metals: Transport properties of PMMA-carbon nanotubes composites. Synth. Met. 121, 1215–1216 (2001)

    Article  CAS  Google Scholar 

  259. C. Ramamurthy, W.R. Harrell, R.V. Gregory, B. Sadanadan, A.M. Rao, Mechanical and electrical properties of solution-processed polyaniline/multiwalled carbon nanotube composite films. J. Electrochem. Soc. 151, G502–G506 (2004)

    Article  CAS  Google Scholar 

  260. S.I.A. Razak, S.H.S. Zein, A.L. Ahmad, Effect of para-hydroxybenzene sulfonic acid on the properties of ex situ prepared polyaniline/multiwalled carbon nanotubes-MnO2. Nano 05, 369–373 (2010)

    Article  CAS  Google Scholar 

  261. J. Shi, Z.-Y. Zhang, Y.-Q. Hu, Y.-X. Hua, Incorporation of 4-aminobenzene functionalized multi-walled carbon nanotubes in polyaniline for application in formic acid electrooxidation. J. Appl. Polym. Sci. 118, 1815–1820 (2010)

    CAS  Google Scholar 

  262. Y.-W. Lin, T.-M. Wu, Synthesis and characterization of externally doped sulfonated polyaniline/multi-walled carbon nanotube composites. Compos. Sci. Tech. 69, 2559–2565 (2009)

    Article  CAS  Google Scholar 

  263. Z. Dong-Lin, Z. Xian-Wei, S. Zeng-Min, Synthesis of carbon nanotube/polyaniline composite nanotube and its microwave permittivity. Acta Phys. Sin. 54, 3878–3883 (2005)

    Google Scholar 

  264. F. Yakuphanoglu, B.F. Şenkal, Thermoelectrical and optical properties of double wall carbon nanotubes:polyaniline containing boron n-type organic semiconductors. Polym. Adv. Tech. 19, 905–908 (2008)

    Article  CAS  Google Scholar 

  265. M. Cabuk, B. Gündüz, Controlling the optical properties of polyaniline doped by boric acid particles by changing their doping agent and initiator concentration. Appl. Surf. Sci. 424, 345–351 (2017)

    Article  CAS  Google Scholar 

  266. M. Cabuk, B. Gündüz, Change of optoelectronic parameters of the boric acid-doped polyaniline conducting polymer with concentration. Colloids Surf. A: Physiochem. Eng. Asp. 532, 263–269 (2017)

    Article  CAS  Google Scholar 

  267. Y.-W. Lin, H.-H. Chang, Y.-S. Liu, M.-C. Tsai, Y.-C. Tsai, T.-M. Wu, Preparation and electrochemical performance of externally doped sulfonated polyaniline/multiwalled carbon nanotube composites. J. Electrochem. Soc. 157, K15–K20 (2010)

    Article  CAS  Google Scholar 

  268. F.M. Blighe, D. Diamond, J.N. Coleman, E. Lahiff, Increased response/recovery lifetimes and reinforcement of polyaniline nanofiber films using carbon nanotubes. Carbon 50, 1447–1454 (2012)

    Article  CAS  Google Scholar 

  269. J. Stejskal, R.G. Gilbert, Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl. Chem. 74, 857–868 (2002)

    Article  CAS  Google Scholar 

  270. G. Khomenko, V.Z. Barsukov, A.S. Katashinskii, The catalytic activity of conducting polymers toward oxygen reduction. Electrochim. Acta 50, 1675–1683 (2005)

    Article  CAS  Google Scholar 

  271. H. Zhou, Y. Lin, P. Yu, L. Su, L. Mao, Doping polyaniline with pristine carbon nanotubes into electroactive nanocomposite in neutral and alkaline media. Electrochem. Commun. 11, 965–968 (2009)

    Article  CAS  Google Scholar 

  272. C. Su, G. Wang, F. Huang, Preparation and characterization of composites of polyaniline nanorods and multiwalled carbon nanotubes coated with polyaniline. J. Appl. Polym. Sci. 106, 4241–4247 (2007)

    Article  CAS  Google Scholar 

  273. E. Zelikman, R.Y. Suckeveriene, G. Mechrez, M. Narkis, Fabrication of composite polyaniline/CNT nanofibers using an ultrasonically assisted dynamic inverse emulsion polymerization technique. Polym. Adv. Tech. 21, 150–152 (2010)

    Article  CAS  Google Scholar 

  274. J. Xu, P. Yao, L. Liu, Z. Jiang, F. He, M. Li, J. Zou, Synthesis and characterization of an organic soluble and conducting polyaniline-grafted multiwalled carbon nanotube core–shell nanocomposites by emulsion polymerization. J. Appl. Polym. Sci. 118, 2582–2591 (2010)

    Article  CAS  Google Scholar 

  275. H. Li, B. Wu, J.-E. Huang, J. Zhang, Z.-F. Liu, H.-L. Li, Fabrication and characterization of well-dispersed single-walled carbon nanotube/polyaniline composites. Carbon 41, 1670–1673 (2003)

    Article  CAS  Google Scholar 

  276. T.-M. Wu, Y.-W. Lin, Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer 47, 3576–3582 (2006)

    Article  CAS  Google Scholar 

  277. E. Lafuente, M.A. Callejas, R. Sainz, A.M. Benito, W.K. Maser, M.L. Sanjuán, D. Saurel, J.M. de Teresa, M.T. Martínez, The influence of single-walled carbon nanotube functionalization on the electronic properties of their polyaniline composites. Carbon 46, 1909–1917 (2008)

    Article  CAS  Google Scholar 

  278. Y.-J. Wu, L. Chao, K.-S. Ho, Y.-J. Huang, Y.-L. Huang, C.-S. Yang, B.-H. Tseng, Characterizations on the amidized multiwalled carbon nanotubes grafted with polyaniline via in situ polymerization. J. Appl. Polym. Sci. 124, 5270–5278 (2012)

    CAS  Google Scholar 

  279. X. Biju, K.A. Jining, K.V. Jose, Vijay: A new synthetic route to enhance polyaniline assembly on carbon nanotubes in tubular composites. Smart Mater. Struct. 13, 105–107 (2004)

    Article  CAS  Google Scholar 

  280. N.A. Kumar, Y.T. Jeong, Fabrication of conducting polyaniline–multiwalled carbon nanotube nanocomposites and their use as templates for loading gold nanoparticles. Polym. Int. 59, 1367–1374 (2010)

    Article  CAS  Google Scholar 

  281. H. Zhang, H.X. Li, H.M. Cheng, Water-soluble multiwalled carbon nanotubes functionalized with sulfonated polyaniline. J. Phys. Chem. B 110, 9095–9099 (2006)

    Article  PubMed  CAS  Google Scholar 

  282. L. Cabezas, Z.-B. Zhang, L.-R. Zheng, S.-L. Zhang, Morphological development of nanofibrillar composites of polyaniline and carbon nanotubes. Synth. Met. 160, 664–668 (2010)

    Article  CAS  Google Scholar 

  283. W. Li, D. Kim, Polyaniline/multiwall carbon nanotube nanocomposite for detecting aromatic hydrocarbon vapors. J. Mater. Sci. 46, 1857–1861 (2011)

    Article  CAS  Google Scholar 

  284. W.D. Zhang, L. Shen, I.Y. Phang, T. Liu, Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37, 256–259 (2004)

    Article  CAS  Google Scholar 

  285. A. Soroudi, M. Skrifvars, Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres. Synth. Met. 160, 1143–1147 (2010)

    Article  CAS  Google Scholar 

  286. Y. Liao, C. Zhang, Y. Zhang, V. Strong, J. Tang, X.-G. Li, K. Kalantar-zadeh, E.M.V. Hoek, K.L. Wang, R.B. Kaner, Carbon nanotube/polyaniline composite nanofibers: Facile synthesis and chemosensors. Nano Lett. 11, 954–959 (2011)

    Article  PubMed  CAS  Google Scholar 

  287. A. Mirmohseni, M.S.S. Dorraji, Effects of dopant, coagulant, and reinforcing nanofiller on mechanical and electrical properties of wet-spun polyaniline nanocomposite fibers. J. Polym. Res. 19, 1–10 (2012)

    Article  CAS  Google Scholar 

  288. P. Dubois, M. Alexandre, Performant clay/carbon nanotube polymer nanocomposites. Adv. Engin. Mater. 8, 147–154 (2006)

    Article  CAS  Google Scholar 

  289. R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219–225 (2000)

    Article  CAS  Google Scholar 

  290. K.P. Jin, S.H. Pramoda, G.X. Goh, Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites. Mater. Res. Bull. 37, 271–278 (2002)

    Article  CAS  Google Scholar 

  291. S. Pande, R.B. Mathur, B.P. Singh, T.L. Dhami, Synthesis and characterization of multiwalled carbon nanotubes-polymethyl methacrylate composites prepared by in situ polymerization method. Polym. Compos. 30, 1312–1317 (2009)

    Article  CAS  Google Scholar 

  292. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)

    Article  CAS  Google Scholar 

  293. Y. Yu, B. Che, Z. Si, L. Li, W. Chen, G. Xue, Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. Synth. Met. 150, 271–277 (2005)

    Article  CAS  Google Scholar 

  294. B. Valter, M.K. Ram, C. Nicolini, Synthesis of multiwalled carbon nanotubes and poly(o-anisidine) nanocomposite material: Fabrication and characterization of its Langmuir−Schaefer films. Langmuir 18, 1535–1541 (2002)

    Article  CAS  Google Scholar 

  295. X. Lu, J. Zheng, D. Chao, J. Chen, W. Zhang, Y. Wei, Poly (N-methylaniline)/multi-walled carbon nanotube composites – Synthesis, characterization, and electrical properties. J. Appl. Polym. Sci. 100, 2356–2361 (2006)

    Article  CAS  Google Scholar 

  296. X. Lu, D. Chao, J. Zheng, J. Chen, W. Zhang, Y. Wei, Preparation and characterization of polydiphenylamine/multi-walled carbon nanotube composites. Polym. Int. 55, 945–950 (2006)

    Article  CAS  Google Scholar 

  297. B. Zhao, H. Hu, R.C. Haddon, Synthesis and properties of a water-soluble single-walled carbon nanotube–poly(m-aminobenzene sulfonic acid) graft copolymer. Adv. Funct. Mater. 14, 71–76 (2004)

    Article  CAS  Google Scholar 

  298. B. Zhao, H. Hu, A. Yu, D. Perea, R.C. Haddon, Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. J. Am. Chem. Soc. 127, 8197–8203 (2005)

    Article  PubMed  CAS  Google Scholar 

  299. C. Downs, J. Nugent, P.M. Ajayan, D.J. Duquette, K.S.V. Santhanam, Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater. 11, 1028–1031 (1999)

    Article  CAS  Google Scholar 

  300. M. Wu, G.A. Snook, V. Gupta, M. Shaffer, D.J. Fray, G.Z. Chen, Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J. Mater. Chem. 15, 2297–2303 (2005)

    Article  CAS  Google Scholar 

  301. J.-E. Huang, X.-H. Li, J.-C. Xu, H.-L. Li, Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon 41, 2731–2736 (2003)

    Article  CAS  Google Scholar 

  302. E. Kooi, U. Schlecht, M. Burghard, K. Kern, Electrochemical modification of single carbon nanotubes. Angew. Chem. Int. Ed. 41, 1353–1355 (2002)

    Article  CAS  Google Scholar 

  303. K. Balasubramanian, M. Friedrich, C. Jiang, Y. Fan, A. Mews, M. Burghard, K. Kern, Electrical transport and confocal Raman studies of electrochemically modified individual carbon nanotubes. Adv. Mater. 15, 1515–1518 (2003)

    Article  CAS  Google Scholar 

  304. M. Milua, S.N. Mailu, A. Tsegaye, C.O. Ikpo, N.J. Njomo, T.T. Waryo, P.G.L. Baker, E.I. Iwuoha, In-situ electrochemical synthesis, microscopic and spectroscopic characterisations of electroactive poly(2,5-dimethoxyaniline) – Multi-walled carbon nanotubes composite films in neutral media. Int. J. Electrochem. Sci. 9, 7003–7020 (2014)

    Google Scholar 

  305. P. Gajendran, R. Saraswathi, Enhanced electrochemical growth and redox characteristics of poly(o-phenylenediamine) on a carbon nanotube modified glassy carbon electrode and its application in the electrocatalytic reduction of oxygen. J. Phys. Chem. C 111, 11320–11328 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suru Vivian John or Emmanuel Iwuoha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Baleg, A.A. et al. (2018). Conducting Polymers and Composites. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92067-2_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92067-2_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92067-2

  • Online ISBN: 978-3-319-92067-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics