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Abstract. The increasing immersion of technology on our daily lives
demands for additional investments in various areas, including, as in the
present case, the enhancement of museums’ experiences. One of the tech-
nologies that improves our relationship with everything that surrounds
us is Augmented Reality. This paper presents the architecture of MIRAR,
a Mobile Image Recognition based Augmented Reality framework. The
MIRAR framework allows the development of a system that uses mobile
devices to interact with the museum’s environment, by: (a) recognizing
and tracking on-the-fly, on the client side (mobile), museum’s objects,
(b) detecting and recognizing where the walls and respective boundaries
are localized, as well as (c) do person detection and segmentation. These
objects, wall and person segmentation will allow the projection of dif-
ferent contents (text, images, videos, clothes, etc.). Promising results
are presented in these topics, nevertheless, some of them are still in a
development stage.
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1 Introduction

Augmented Reality (AR) [2] is a technology that, thanks to the mobile devices
increasing hardware capabilities and new algorithms, quickly evolved in the
recent years, gaining a huge amount of users. AR empowers a higher level of
interaction between the user and real world objects, extending the experience
on how the user sees and feels those objects by creating a new level of edutain-
ment that was not available before. The M5SAR: Mobile Five Senses Augmented
Reality System for Museums project [48] aims for the development of an AR sys-
tem that acts as guide for cultural, historical and museum events. This is not
a novelty, since almost every known museum has its own mobile applications
(App), e.g. [31,57]. While the use of AR in museums is much less common, it
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is also not new, see e.g. [25,44,54,59]. The novelty in the M5SAR project is to
extend the AR to the human five senses, see e.g. [48] for more details.

This paper focus on MIRAR, Mobile Image Recognition based Augmented
Reality framework, one of the M5SAR’s modules. MIRAR focuses on the devel-
opment of a mobile multi-platform AR [2] framework, with the following main
goals: (a) to perform “all” computational processing in the client-side (mobile
device), minimizing, this way, costs with server(s) and communications; (b) to
use real world two- and three-dimensional (2D and 3D) objects as markers for
the AR; (c) to recognise environments, i.e., walls and its respective boundaries;
(d) to detect and segment human shapes; (e) to project contents (e.g., text
and media) onto different objects, walls and persons detected and displayed in
the mobile device’s screen, as well as enhance the object’s displayed contents,
by touching on the device’s screen regions on those objects; and (f) to use the
mobile device’s RGB camera to achieve these goals. A framework that integrates
these goals is completely different from the existing (SDK, frameworks, content
management, etc.) AR systems [1,8,32,33,40].

The MIRAR sub-module for object recognition and environment detection
presented in this paper is AR marker-based, often also called image-based [9].
AR image-based markers allow adding pre-set signals (e.g., from paintings, stat-
ues, etc.) easily detectable in the environment, and the use computer vision
techniques to sense them. There are many image-based commercial AR toolkits
(SDK) such as Catchoom or Kudan [8,32], and AR content management sys-
tems such as Catchoom or Layar [8,33], including open source SDKs [1]. Each of
the above solutions have pros and cons. Between other problems, some are quite
expensive, others consume too much memory (it is important to stress that the
present application will have many markers, at least one for each museum piece),
and others take too much time to load on the mobile device.

The increasing massification of AR applications brings new challenges to
the table, such as the demand for planar regions detection (“walls”), with the
more popular being developed within the scope of Simultaneous Localization
And Mapping (SLAM) [4,12]. Usually, the common approach for image acqui-
sition of 3D environments uses RGB-D devices or light detection and ranging
(LIDAR) sensors [30,47,55,60]. There are also novelty advances within environ-
ment detection, localization or recognition, either using Direct Sparse Odome-
try [13], or using descriptors, like ORB SLAM [37] or even Large-Scale Direct
Monocular SLAM [14]. However, as mentioned, the MIRAR framework focuses
on mobile devices with only monocular cameras. Following this, an initial study
of an environment detection sub-module was presented in [43], being the pur-
posed method a geometric approach to the extracted edges of a frame. It should
be considered that a frame is always captured from a perspective view of the
surrounding environment, with the usual expected environment being charac-
terized by the existence of numerous parallel lines which converge to a unique
point in the horizon, called vanishing point [11,53].

The last topics addressed in the MIRAR framework regards the detection
of human shapes in real world conditions. This continues to be a challenge in
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computer vision due to the existence of multiple variants, e.g., object obstruc-
tions, light variations, different viewpoints, the existence of multiple humans
(occlusions), poses, etc., nevertheless, the detection of human shapes is an area
with many studies and developments [17,39,52,56,61].

In summary, the MIRAR’s object recognition sub-module uses images from
the museum’s objects, and the mobile device’s camera to recognise and track on-
the-fly, on the client-side, the museum’s objects. The environment detection and
recognition sub-module is supported upon the same principles of the object’s
recognition, but uses images from the environment, walls, to recognise them.
Finally, the human detection and segmentation uses Convolutional Networks
for the detection and an image processing algorithm for foreground (person)
extraction. The main contribution of this paper is the integration of these three
topics into a single mobile framework for AR.

The paper is structured as follows: The MIRAR framework and architec-
ture is introduced in Sect. 2. Section 3 presents the main MIRAR’s sub-module,
namely the object detection, followed by the wall detection sub-module in Sect. 4
and the human shape detection in Sect. 5. The paper concludes with a final dis-
cussion and future work, Sect. 6.

2 MIRAR Framework

Before detailing the MIRAR framework it is important to give a brief overview
of the M5SAR system, shown on top of Fig. 1. On the figure’s left side, the basic
communications flow between the server and mobile device is outlined (a detailed
description is out of the scope of this paper) and, on the right side, the simplified
diagram of the mobile App and the devices “connected” (via bluetooth) with
the mobile device is shown. The displayed Beacons [16] are employed in the
user’s localisation and the Portable Device for Touch, Taste and Smell Sensations
(PDTTSS) [51] used to enhance the five senses. In summary, the M5SAR App
architecture is divided into three main modules: (A) Adaptive User Interfaces
(AUI), see [48]; (B) Location module, a detailed explanation is out of this paper’s
focus, and (C) MIRAR module (see Fig. 1 bottom).

The MIRAR has four main features: (a) the detection and recognition of
museum objects, triggering a card in the (M5SAR) App [48]; (b) the detection,
recognition and tracking of objects as the user moves along the museum, allow-
ing to touch different areas of the objects displayed in the mobile screen and
showing information about that region of the object, MIRAR sub-module (i);
(c) detection and modelling of the museum walls, and projecting information
into the detected walls (e.g., images, movies, text) related with the recognized
object’s epoch, sub-module (ii); (d) detection of persons that are moving in the
museum, and, for instance, to dress them with clothes from the object’s epoch,
sub-module (iii).

Sub-modules (i) and (ii) need to communicate with the server, i.e., the
MIRAR module sends the user’s position to the server, based on the previous
object detections and the localisation given by the beacon’s signals. From the
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Fig. 1. Top: overall simplified system architecture. Bottom: MIRAR block diagram.

server, the MIRAR module receives a group of object markers (image descrip-
tors; see next section), here called bundles, that contain all the objects available
in the located room or museum section. In a way to minimise communications,
the App stores in the memory (limited to each device’s memory size) the bundles
from the previous room(s), museum section(s), and as soon as it detects a new
beacon signal it downloads a new bundle. Older bundles are discarded in a FIFO
(first in, first out) manner.

It is also important to stress that, since the sensor used to acquire the images
from the environment is the mobile’s camera, in order to save battery, the camera
is only activated when the AR option is selected in the UI. When the activation
occurs, the user can see the environment in the mobile screen and effectuate the
previously mentioned actions. As an additional effort to save battery, the device
will enter a low-power state if the user turns the phone upside down, by dimming
the phone’s screen and interrupting the processing.

As final remarks, the App was implemented using Unity [58], the computer
vision algorithms were deployed using the OpenCV [38] library (Asset) for Unity,
and tests and results consider that the mobile device is located inside a muse-
ological space. The next section will present the object detection and tracking
module.
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3 Object Detection, Recognition and Tracking Module

The object detection sub-module aim at detecting objects present in the
museum, being the algorithm divided in 2 components: (a) detection and recog-
nition, and (b) tracking. While the recognition is intended to work on every
museum object, the tracking will only work in masterpieces1. The masterpieces’
tracking allows to place contents in specific parts of the UI, so that the user will
touch on those areas in order to gain more information about a particular region
of the detected object.

Before describing this module in further details, it is important to distinguish
from templates and markers. Here, templates are images (photographs) of the
objects stored in the server’s database (DB) while, on the other hand, a marker
is the set of features (keypoints) with their respective (binary) descriptors for a
certain template, see Fig. 2 and [43]. The authors’ employ the ORB descriptor
for keypoint detection and descriptors implementation [19,43,50].

A generic image recognition and tracking algorithm for AR has the following
main steps: (1) extract the markers (keypoints and descriptors) from a tem-
plate; (2) extract keypoints and compute descriptors from query images (i.e.,
for each mobile device camera’s frame); (3) match the descriptors of both the
template and query; and, when needed, (4) calculate the projection matrix to
allow perspective wrapping of images, videos, and other contents.

An initial recognition algorithm was presented in [48], with further advances
presented in [43], as follows. Similar to [3], in Step (1) it is utilised the image
to extract keypoints and compute descriptors. The borders are the exception
(e.g., the painting frame) which were removed, since usually there is no relevant
information in those areas. Nevertheless, the templates are processed in different
scales (image sizes): starting at the pre-defined camera frame size, 640 × 480px
(pixels), the templates are scaled up and down (by a 1/3), resulting in a total
of 3 scales per template. To further increase the framework’s performance, these
markers continue to be created on a server and sent to the client (mobile device)
on demand, to be de-serialized. Step (2) from the frame acquired by the camera,
the keypoints are simply extracted and their respective descriptors computed
(using the ORB descriptor).

Regarding Step (3), the query image descriptors are (3.1) brute-force
matched, using K-Nearest Neighbours (KNN), with K = 2, against the descrip-
tors of the available markers. Next, (3.2) the markers’ descriptors are matched to
the query’s descriptors. Following, (3.3) a ratio test is performed, i.e., if the two
closest neighbours of a match have close matching distances (65% ratio), then
the match is discarded [3], because this would be an ambiguous match. This ratio
evaluation is the test where most matches are removed. For this reason, this test
is performed first to improve performance later on. Then, (3.4) it is performed a
symmetry match where only the matches resulting from the KNN in (3.1) that
are present in (3.2) are accepted. After this, a (3.5) homography refinement is

1 Masterpieces are objects that have an enlarged (historical and cultural) value in the
museum’s collection.
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Fig. 2. Top: Example of existing objects in Faro Municipal Museum. Bottom: examples
of detected and tracked markers with the corresponding axis.

applied. This refinement uses the RANSAC method to verify if the matched key-
points in the query image maintain the same configuration between them (same
relative position) as they had in the template image. If any of the keypoints
stay out of this relation, then they are considered outliers and removed from the
match set. (3.6) If after all of these refinements there are at least 8 matches left,
then it is considered as a valid classification.

In the (3.6.i) classification stage the query image is compared using Brute-
Force (BF) to all marker scales for each of the available templates. This, in turn,
returns a classification based on the count of (filtered) matches, when there
are at least 8 descriptors matches. The marker that retrieved the most number
of matches is considered the template to be tracked. Afterwards (3.6.ii), if the
tracking stage is necessary, i.e., if a masterpiece is present, the matching only
occurs with the markers of the 3 scales of the template to be tracked previously
selected in classification phase. If the object (template to be tracked) is not visible
in the scene for 1 second then it is considered lost and the recognition process
initiates again. Last, but not least, Step (4) of the generic algorithm is done
using perspective wrapping (pose estimation) in order to place content on the
same plane as the detected image (marker).

Figure 2 bottom shows some examples of tests done in the Faro Municipal
Museum where the classification number is shown in red. For more algorithm
details and results see [43].
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4 Environments Detection

As previously mentioned, the objective of this sub-module is to be able to discern
the location and position of the walls of a given environment, and afterwards
replace them with other contents. The algorithm presented here does not yet
supports our investigation over this subject mentioned in [43], although it will
eventually merge with the preceding work. In the present case, similar to Sect. 3
markers are used (keypoints and descriptors) for each template, with the bundles
being previously generated. For this sub-module, the templates are of the entire
walls, and not only of the museum’s object, see Fig. 3 top row, which allows
for the retrieval of the expected wall shape using a pose estimation algorithm.
Various implementations of pose estimation have already been presented for 3D
objects using RGB-D sensors [6] or through monocular images [46], and urban
environments [22]. The main contribution of this sub-module is the initial imple-
mentation of the wall estimation for primarily indoor detection and recognition
while the user navigates through museums, which are presented in this paper,
with a future user localization feature already being developed. Regarding our
implementation of wall estimation, it is important to note that the aim for this
sub-module is a seamlessly fully integrated AR application for mobile devices;
therefore, the presented algorithm is focused and adjusted for performance on
smartphones.

Fig. 3. Top: Example of templates. Bottom: Extracted keypoints location for each
template.

Contrary to what was presented for the object detection, instead of using
ORB descriptors, we found that BRISK [34] descriptors perform better for this
task, which will be explained later in Sect. 4.1. For comparison between markers,
not only Brute-Force was tested, but also the Fast Library for Approximate
Nearest Neighbours (FLANN) [36]. The necessity of evaluating both matchers
for this task will be posteriorly explained.

The current algorithm, after the bundle has been created and loaded, is
applied to each frame from the mobile device camera as follows: (1) A num-
ber of the most significant keypoints are retrieved (filtered) and the respective
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descriptors computed; (2) Optimal matches are found and filtered; (3) Pose esti-
mation is performed after discarding the defective homography; (4) Polygons
corresponding to the matched templates are superimposed on the frame.

Beginning with Step (1), all the keypoints (using the BRISK keypoint detec-
tor) found from the frame provided are ordered by their response, which defines
the ones with stronger information, and only an amount of keypoints is main-
tained, which in our case was NumKP = 385 (this number was empirically com-
puted, see Sect. 4.1). More keypoints will not improve results and it increases
computational time. If this number is decreased significantly, many “template
(wall) - frame” matches are lost. Afterwards, the respective descriptor for each
keypoint is computed using the BRISK descriptor.

In Step (2), before searching through all the stored templates, it is verified
if the location of the user is known through the previous frames, thus allowing
for the matching search to begin with the surrounding templates. The method
used for matching was K-Nearest Neighbours (the same as in Sect. 3), with K =
2, either by BF matching, or using FLANN. While the BF compares all the
retrieved markers’ descriptors from the frame with the stored markers from the
templates, it was created an index with FLANN that uses multi-probe LSH [35].
The parameters used were 6 hash tables, with 12 bits hash key size, and 1 bit to
be shifted to check for neighbouring buckets. The number of times we defined
for the index to be recursively traversed was 100, as we observed a good balance
between additional processing time and the increased precision. It is important
to refer that, as opposed to BF, FLANN does not return a complete matching
between the markers, but instead it gives an approximate correspondence. The
remaining matches are filtered through the Lowe’s ratio test, where we discard
the pairs with close matching distances (65% ratio), allowing only the more
distinct ones to remain. Subsequently, if at least 10 good matches are found,
then the perspective transform is retrieved through the homography refinement
using the RANSAC method, where the original pattern of keypoints from the
templates are compared with the ones from the frame, considering the ones with
the same configuration as inliers, and the others as outliners.

Regarding Step (3), for the pose (wall) estimation templates to be properly
found, the perspective matrix must be found valid. It should be noted that the
existing planes across the provided frames will be randomly presented with acute
perspective angles, or at deeper distances. Concerning the templates’ format,
for this sub-module we chose to include the desired full wall delimitations to be
found, even if the regular walls did not offer relevant information to be retrieved,
with the keypoints gathered in clusters along the museums’ objects, see in Fig. 3.

The chosen template format after the pose estimation returned the approx-
imated horizontal limits of the walls. In order to improve accuracy and perfor-
mance, it was necessary to discard the non relevant perspective matrices. To do
so, we analysed the matrix extracted from the homography and applied a group
of tests. We calculated the determinant of the top left 2 × 2 matrix and limited
the output between 1 and 100, given that, with the perspective transform, if
the values of said determinant were to be negative there would be an inversion,
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and as the templates were created for the expected projection, there should be
none. The limit of 100 was imposed because in case there was a large value
for the determinant, then the aspect ratio would have been overly deformed.
Furthermore, after finding the coordinates, their order is compared against the
original template, e.g., if the (x0, y0) of the template is on the top left and the
(x1, y1) on the lower left; then, after the perspective transform, this orientation
should remain. Afterwards, it is verified if the angles between each 3 points are
not overly convex, as they are expected to be nearly perpendicular. Finally, as
the environment/room is “regular”, which means the presence of vertical walls
without deformations (no circular walls) or extensive 3D artwork, all the non
vertical resulting polygons with and error of 15% are discarded.

Fig. 4. Example of a sequence of frames with matched templates. See also Fig. 6.

The last Step (4), the retrieved coordinates are converted into polygons that
are superimposed upon the original frame for each of the matched templates,
corresponding to the expected surface of the wall in the environment; a sequence
of the output results can be seen in Fig. 4. With this outcome it is possible to
project content not only replacing the walls, as presented before in [43], but also
to present floating AR content. It is important to stress that when the angle
between the wall and the mobile user is “too sharp” is not yet possible to find
the boundaries of the wall, which can be shown if Fig. 4 bottom row.
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4.1 Tests

In order to test de reliability of the algorithm, test were done before converting
the algorithm to the mobile platform; nevertheless, all the videos used for the
tests were acquired by mobile devices (smartphones and tablets). The tests were
done using a desktop computer with an Intel CPU i5-6300 running at 2.4 GHz
with the algorithm limited to run in single-thread. The videos consisted on a
total amount of 4.306 frames of expected user navigation through the museum,
with both the horizontal and vertical orientations used. An additional video
containing persons in between the camera and the walls also showed good results,
as seen in Fig. 6. It is important to note that it is expect that this sub-module will
not always detect and recognize the environment in all the frames; therefore, the
most important measure of success is the amount of frames with valid matches
found.

The tests were conducted in following ways: the templates’ width size between
320px and 640px; the frame’s width size between 640, 480 and 320px; and increas-
ing the number of minimal good matches, starting with 10 and using steps of 5.
All the tests were performed using BF and FLANN.

Regarding the variation of the minimal good matches between markers to
begin the template matching, as expected, with the increase of this threshold
the amount of frames with a found template match were dramatically reduced,
while it was observed the maintenance of a similar processing time, either for
each frame as for each matched frame, showing little to no variation. The results
in terms of “pose” estimation of the polygons over the output frame were also
improved. Upon reviewing this results we decided to use the minimal value of
10, given that it returned the highest number of frames matched without overly
increasing the undesired results; for example, changing this value to 15 reduced
the frames matched by 35−40%. With the variation of the templates width size,
it was expect to add additional detected matches for when the wall is distant and
is presented smaller on the frame. The results showed that even when it occa-
sionally happens, it doesn’t justify adding different scales of templates for this
sub-module at the current version in exchange of processing time performance,
as it was presented in [48].

The obtained processing times for the current algorithm, while reducing the
templates and frames width, decreased from 28, 3±13, 8ms to 17, 9±5, 9ms with
BF, and from 33, 2 ± 14, 2ms to 24, 1 ± 17, 8ms. Even though it presented some
improvement on the time performance, the amount of frames matched dropped
73 – 63% respectively.

Considering the necessity a higher rate of matching, the performance of differ-
ent templates and frames sizes were compared. The illustration in Fig. 5 presents
the amount of frames matched with the colour black within the total frames of
different expected user interaction videos. On the left is shown the frame num-
ber (1,..., 4306), and on the right, the histogram of matched template-frame
along the different widths and matching algorithms, namely FLANN and BF.
The intent of this comparison, other than reporting the total of matched frames
for each different test, was to analyse if the scale factor would introduce new
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Fig. 5. Illustration of the number of matched frames (in black) with templates, chang-
ing the widths of both, i.e., from A-F is shown for each pair Flann (A, C and E) and
BF (B, D and F) the matched templates with a width of 640px, the frames’ width
varies from 640 (A and B), to 480 (C and D) and 320px (E and F). From G-L the
same but now with the template with the width of 320px. At right, an histogram of
the total of matches for each frame is shown.

results, either by reducing the frame width while retaining a larger template
width, which is shows from A-F, or by reducing the template width, while again
changing the size of the frame, as can be seen from G-L, with a template width
of 320px. The test were also divided in FLANN (A, C, E, G, I and K) and BF (B,
D, F, H, J and L). The variation of frames’ width is organized as 640 (A and B),
480 (C and D) and 320px (E and F), with the same from G-L.

Using the illustration shown in Fig. 5 it becomes easier to analyse the effect of
the different parameters, being one of the main comparisons the use of FLANN or
BF for feature matching. Is it relevant to note that, as BF needs a complete cer-
tainty for matching, which would be achieved more easily if the desired matching
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template was in full frame, FLANN does not, which introduces the possibility of
the existence of false positives. As a continuous outputs of false positives from
the same template is uncommon, it became easier to discard them. Although
FLANN versus BF is usually restricted to a large amount of keypoints, in our
case for 640px templates the average was 384.5 ± 119.48 keypoints per image,
where FLANN surpasses BF in processing time performance, for our case it was
primarily used with the intend of retrieving additional matched frames. Regard-
ing the obtained results, FLANN returned additional matched frames with 38%
of the total number of 4.306 frames matched, and BF returned 32% for 640px
templates, while for 320px we obtained 20% and 15%, respectively. Although
there is an increase in processing time for FLANN in order of 17% facing BT,
when analysing the results shown in Fig. 5, it is possible to verify a more sparse
occurrence of matched frames for FLANN versus BF, allowing for a higher prob-
ability of matching while the user navigates the museum, which will be used in
order to recalibrate (in the future) the user localization and focus, improving
the projection of content tracking and stability.

Focusing on the 640px width templates, it is possible to observe the expected
lower matching while reducing the frames’ width, for the total of available mark-
ers for each frame was reduced against the templates average number of extracted
keypoints. With the 320px templates, the results showed a different outcome.
While the total matched frames was also reduced, it became almost invariable
across the tests, which means that with a lower processing time the same results
would be achievable. One interesting point is noticeable near the medium point,
where there was more matched frames acquired with lower templates’ width.
This is explained with the distance of the matching template, i.e., if the frame’s
width is 640px and the templates’ 320px, if the respective location of the tem-
plate is inside the frame at distance, it will be closest to the lower templates’
width than the larger, and as we are using BRISK descriptors, even if they are
invariant to scale, there is a threshold to the maximum of that invariance. In
conclusion, for these results it can be seen that in the future the implementa-
tion of different scales of templates to improve the localization tracking may be
needed.

As referred before, for this module a BRISK descriptor was used instead of
ORB. Although the amount of frames with matched templates was similar in
between, ORB performed slightly better, with 771 frames with match against 726
of BRISK, from a total amount of frames of 1.857. The outcome of said matches
presented worse projected polygons, meaning that even with the homography
additional sanity tests, the occurrence of bad homographies increased. Further-
more, an increase in the occurrence of false positives with a factor of ten times
between ORB and BRISK was observable, which largely contributed to the bad
homographies received. The performed times from ORB to BRISK lowered from
37.8±9.5ms to 27.1±10.4ms while using FLANN, and 36.7±9.6ms to 26.0±8.5ms
with BF. Is important to observe that for our tests using ORB, FLANN does not
seem to affect the performance times. Lastly, the amount of average keypoints
retrieved from the templates actually decreased from ORB to BRISK, with a
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total of 5.824 keypoints, with an average of 485.3± 24.4 keypoints per template,
to a total of 4.614 keypoints, with an average 384.5 ± 119.5, which shows ORB
being more consistent than BRISK for the amount retrieved, although it did not
prove that with the additional keypoints the results would improve.

As the objective of this sub-module is the recognition and detection of the
walls throughout the visit within some rooms of the museum, it is expected a
loss of tracking/recognition and its recovery at a slightly different location or
angle, which demands that the recognized template shape be the as close as
possible to the desired, every time there is a match within frames. Since the
amount of good expected results with BRISK surpassed the ORB descriptor,
we decided to perform the current algorithm using only the BRISK descriptor,
while the algorithm for object detection shown at Sect. 3 remains using ORB.
The different outcomes between both the descriptors for this challenge could be
due to the fact that the BRISK descriptor is invariant to scale, while the ORB
is not. Furthermore, while for object detection we used scaled versions of the
templates for matching, as the object is expected to fill the screen of the mobile
device, with this module there was an additional inclusion of different scales, as
it should be considered that the user will be navigating the different rooms of
the museum; therefore, the templates, in this case the walls, will appear on the
mobile device with different geometric shapes and distances; see also [43].

Additional examples of results obtained can be observed in Fig. 6, where is
possible to see on top the algorithm working with vertical frames and some of
the still occurring bad outcomes retrieved from faulty perspectives transforms
from the homography. On the 2nd row, results of the current algorithm can be
observed, while the view is partially obstructed with people. Additionally, it is
important to remark that this module is being ran only from the frames obtained,
without additional sensors or 3D information, an so, the results obtained with
obstructed views are a welcoming result for the current implementation.

In Fig. 6 bottom row it is possible to observe the results of part of the former
algorithm [43] applied to the retrieved frames. While with the former implemen-
tation the process would begin by elimination of all non relevant lines, or in our
former case, all the non vertical, horizontal and vanishing lines, the future fusion
of both developments will be more focused in only retrieving the nearest lines
to the already extracted polygons through the Hough Transform [26], improving
the polygons veracity to the actual walls’ shapes and adding a level of longer
distance detection, either by additional calculations through the use of the van-
ishing point together with the vertical and horizontal lines, as can be seen in [43],
or with an eventual introduction of a pre-known room shape, which, combined
with the user localisation, would achieve better results, presenting the oppor-
tunity for the use of indoor 3D models, further increasing the user immersion
with AR.

On the next section we introduce an initial study for the detection and seg-
mentation of the human shape.



Mobile Augmented Reality Framework - MIRAR 115

Fig. 6. Top row, examples of different vertical matching outcomes. Middle row, initial
results of matching while the view is obstructed by persons. Bottom row, examples of
the Hough Transform [26] applied to different frames.

5 Human Shape Detection

Human shape detection, as mentioned in the Introduction, already presents its
challenges; furthermore, for this sub-module we have to consider the detection in
real-time on a mobile device, while the user is moving trough six degrees of free-
dom (6DOF), which will increase the level of complexity [5,42]. Recent researches
approach the human shape detection either by a top-down or a bottom-up
method. Top-down means that the persons’ shape are first detected and after-
wards an estimation of their poses is achieved [23,24,41], while with bottom-up
the humans’ limbs are individually detected, generating groups of body parts
in order to form humans’ poses [7,17]. For the initial study of this module we
used a top-down approach, being the objective the detection and segmentation
of the humans’ shapes, allowing for the projection of AR content over it, as for
example, the ability “to dress” the museums’ users with clothes corresponding
to the desired surrounding epoch of the museums’ objects.

In order to overcome the complex challenges imposed by the detection of
human shapes in video, captured by a moving camera of a mobile device, we
used a convolutional neural networks (CNN), built in TensorFlow [21]. To detect
human shapes in a video feed with reasonable rate of fps we used a single shot
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Fig. 7. Top row-left, example of human detection with SSD-Mobilenet. Right, the
result of human segmentation by GrabCut. Bottom row, from left to right, original
image (frame), human segmentation, computed optical flow of two consecutive frames
and overlap of segmentation and optical flow (the two former images).

detection (SSD) network, and we used the MobileNet model for the neural net-
work architecture; as its name suggests, it is designed for mobile applications
[27]. The other technique used in the process of human detection/segmentation
is the GrabCut algorithm [42]. It has a limitation where it needs to define the
foreground and background areas; hence, we propose a fully-automatic human
segmentation method by using the bounding box as a basis for the foreground
and background areas.

The algorithm for this module is executed for each frame following these
steps: (1) Apply SSD-Mobilenet [29], used for human detection, which outputs
a bounding box around the detected humans (see Sect. 5.1 for the justification).
(2) Resize the extracted bounding box by an increase of 10%; the original bound-
ing box would cut some parts of the human shape in some image conditions, thus
this improves the foreground precision. Step (3) follows with a cut of the input
image, the cut is made with twice (2x) the size of the initial bounding box, with
the same centre, and inside, the cropped area is used as background. Finally,
(4) we use the GrabCut [49] algorithm for human shape segmentation.

5.1 Tests

Three models were tested in the mobile device for the human shapes detection,
SSD-Mobilenet [28], YOLO [45], and DeepMultiBox [15]. Empirical tests were
done in a Museum (Faro Municipal Museum) using an ASUS Zenpad 3S 10
tablet, showing that in real world conditions the SSD-Mobilenet presented a
better accuracy and speed, validating what is mentioned in [28]. Initially, we
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used COCO [10] frozen pre-trained weights for SSD-Mobilenet. The evaluation
setup, as mentioned, consisted on a ASUS Zenpad 3S 10 tablet and a windows
machine with an Intel i7-6700 CPU @ 3.40 GHz. A total of 86 frames of data were
run 15 times through the network, with their performance being recorded. The
resolution of the input frames was 640px and the spatial size of the convolutional
neural network was 320px. To filter out weak detections we use a confidence
threshold of 0.25. Our tests for this model, using the tablet, returned an average
processing time of 346.0ms, while the computer achieved 33.7ms, being these
values only regarding Step (1).

After the human detection, and for the remaining Steps (2–4) in our algo-
rithm, with the use of GrabCut for segmentation, we achieved an average pro-
cessing time of 127.3ms using the computer. In Fig. 7 top row is possible to
observe the output frame showing promising results regarding human segmen-
tation. An observable disadvantage for this module within the museum environ-
ment can also be observed with a painting of a person being detected as living
person. Although it is a good feature, for this task it is an undesirable result.
Furthermore, in Fig. 7 bottom row is possible to inspect that, when the condi-
tions provide a discriminative foreground and background areas, the GrabCut
algorithm can perform with high precision.

To solve the problem caused by mis-segmentation of the limbs of a segmented
person, as for example in the left image, where the arms are indistinguishable
from the torso, we started to apply Gunnar Farneback?s algorithm to compute
dense optical flow between two consecutive frames [18,20]. This allows to com-
plement the GrabCut segmentation process by using the consistency of pixel
values in two frames. Using Farneback?s algorithm allows to estimate the opti-
cal flow in a sequence of frames, and it is possible to use it to locate the borders
of limbs that do not appear in the GrabCut segmentation. The algorithm shows
an optical flow field with distinguished values between torso and arms because
they have different speed movements, see Fig. 7 bottom right.

6 Conclusions

This paper presents the current Mobile Image Recognition based Augmented
Reality (MIRAR) framework architecture. Even in its current state, MIRAR had
already presented good results in the object detection, recognition, and tracking
sub-modules. The integration with the new approach for the wall detection and
recognition shows satisfactory results, taking in consideration that it is still a
work in progress. For the human shapes detection, initial results were shown;
nevertheless, more consistent tests need to be performed in different museum
conditions.

For future work, the recognition of 3D objects is an immediate focus in
terms of creating a robust bank of tests, and so is the refinement of the object
recognition and tracking module. This can be achieved by refining the matches
with homography and trying to find an optimised set of keypoints from multiple
scales. For the wall detection, the focus will be on improving the stability and
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further filtering the occasional bad results, introducing pre-tuned templates to
increase the range of detection, while preserving performance, the inclusion of
a tracking system, and a merger with the previous work presented on edges
detection for geometric prediction to stabilise the resulting polygons, reaching
for a predictive localization of the surrounding indoor environment. The current
different choices of descriptors between objects and wall detection will also be
addressed.

For the human shapes detection, the segmentation done with the use of
the GrabCut algorithm needs to be complemented in order to acquire a good
human segmentation, since it will allow the projection of contents onto those
shapes/persons. In the future we plan to use optical flow estimation (with initial
results already shown) in the final segmentation process in order to improve the
segmentation results. Additional work needs to be done to reduce the execution
times of the detection and segmentation.

As a final conclusion, the MIRAR shows, even in this current stage, promising
results, and it is expected to be an excellent tool to give a more impactful relation
between the museum’s user and the museum’s objects.
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tion using local structure-specific shape and appearance context. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2080–2087. IEEE
(2013)

7. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estima-
tion using part affinity fields. In: CVPR, vol. 1, no. 2, p. 7 (2017)

8. Catchoom.: Catchoom (2017). http://catchoom.com/. Accessed 16 Nov 2017
9. Cheng, K.-H., Tsai, C.-C.: Affordances of augmented reality in science learning:

suggestions for future research. J. Sci. Educ. Technol. 22(4), 449–462 (2013)
10. COCO.: COCO - common objects in context (2018). http://cocodataset.org/.

Accessed 14 Jan 2018

http://www.spic.pt
http://artoolkit.org/
http://catchoom.com/
http://cocodataset.org/


Mobile Augmented Reality Framework - MIRAR 119

11. Duan, W.: Vanishing points detection and camera calibration. Ph.D. thesis, Uni-
versity of Sheffield (2011)

12. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I.
IEEE Rob. Autom. Mag. 13(2), 99–110 (2006)

13. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern
Anal. Mach. Intell. 40(3), 611–625 (2017)

14. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014.
LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10605-2 54

15. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using
deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2147–2154 (2014)

16. Estimote.: Create magical experiences in the physical world (2017). https://goo.
gl/OHW04y. Accessed 04 Apr 2017

17. Fang, H., Xie, S., Lu, C.: RMPE: Regional multi-person pose estimation. arXiv
preprint (2017)
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