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Abstract. As data accumulate faster and bigger, building representa-
tional models has turned into an art form. Despite sharing common data
types, each scientific discipline often takes a different approach. In this
work, we propose representational models grounded in the mathematics
of algebraic topology to understand foundational data types. We present
hypergraphs for multi-relational data, point clouds for vector data, and
sheaf models when both data types are present and interrelated. These
three models use similar principles from algebraic topology and provide
a domain-agnostic framework. We will discuss each method, provide ref-
erences to their foundational mathematical papers, and give examples of
their use.
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1 Introduction

The potential for drowning in data has become ubiquitous across all scientific
domains. Instruments are built to collect massive amounts of data from anything
we can get our hands on. When that does not suffice, those instruments are
refined to reduce error rates and collect even more data. As data collection
methods evolve so must the models used to study the systems. The way data are
represented is important to how it is interacted with, visualized, and understood.

In many application domains, researchers have developed highly specialized
methods to represent and build models for their specific data (e.g., signature-
based malware detection in cyber security or bottom-up mass-spectrometry-
based protein identification processes in proteomics). We are not advocating for
ignoring or dismissing these targeted models. Rather, we offer three examples of
topological methods that are broadly applicable across many domains and may
allow researchers to see a new side of their data. Methods built over many years
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within specific domains are well understood and yield predictable results. We
propose these more generic topological methods to reveal hidden structure and
strengthen prior hypotheses or build new ones.

2 Hypergraphs for Relational Data

Data that describe relationships are pervasive. The famous Enron email data set
describes relationships between people via being on the same email [1]; protein
interaction data help to understand what happens when proteins encounter each
other in a cell [2]; bibliometrics tracks coauthorship relationships [3].

As one kind of relational mathematical model, graphs are popular in data
science, typically used where there are sparse connections among a large col-
lection of entities. However, graphs code pairwise associations between entities.
Thus they should be seen as a special case of multi-way associations among an
arbitrary number of entities, which are encoded by hypergraphs. In fact, some
domain scientists have argued recently that hypergraphs are more appropriate
[4–6]. As hypergraph-structured data are more general than graph-structured
data, hypergraphs formally generalize graphs as mathematical objects. There-
fore, we can conceive of hypergraphs literally as “multidimensional graphs.”
And, while hypergraph methods and applications are relatively rare, hypergraph-
structured data are relatively ubiquitous, for example, whenever information
presents naturally as set-valued, tabular, or bipartite data.

Hypergraphs typically have been studied from the network science (i.e.,
graph) perspective or in connection to each application separately. Our group is
pursuing a hybrid graph and topological treatment. This allows the generaliza-
tion from graphs to hypergraphs in a canonical, principled manner rather than
for each application, which accounts for the high-dimensional structure contained
in the multi-way relationships while remaining in agrement with network science
and graph theory. We note that in network science, authors occasionally use the
word topology to refer to graph structure or connectivity, e.g., [7]. Rather, we
mean the mathematical domains of topology [8] and algebraic topology [9].

2.1 Definitions

Hypergraphs are generalizations of graphs [10]. Formally, a hypergraph H is
a collection of subsets E , called edges, of a set of elements V , called vertices,
and we write H = (V, E). We sometimes refer to edges in an hypergraph as
hyperedges to distinguish them from graph edges. Consequently, whereas a graph
edge, (v, w), consists of precisely two vertices, a hyperedge, f ∈ E , can contain
any number of vertices, f ⊆ V . The number of edges a vertex belongs to is its
vertex degree. Conversely, the number of vertices contained within an edge is its
edge cardinality. A k-uniform hypergraph is a hypergraph where all edges have
cardinality k. In particular, a 2-uniform hypergraph is just a graph.

Research on hypergraphs, particularly in the mathematics literature, mostly
is limited to studying k-uniform hypergraphs. For instance, much work on the
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spectral theory of hypergraphs [11,12], hypergraph coloring [13], extremal prob-
lems [14], and hypergraph transversals [15] considers the k-uniform case. How-
ever, as real hypergraph data are often non-uniform, we require tools to analyze,
interact with, and understand such data.

A fundamental notion underlying a multitude of graph analytics tools is graph
distance. Oft-studied metrics such as diameter, average shortest path length, and
centrality measures are all based on measuring how “far” vertices in an network
are from each other, defined as the length of the shortest walk connecting them.
Beyond distances and diameters, walks in a graph can be used to make sense
of large data through the concept of a random walk. For example, an efficient
implementation of PageRank, one of the algorithms Google uses to rank web-
pages in search results, relies heavily on random walks in graphs [16]. However,
extending the concept of a walk to general hypergraphs introduces subtleties
that do not arise in the case of graphs.

In a graph, a walk of length k is a sequence of vertices v0, v1, . . . , vk, each of
which is adjacent to the next via an edge. Because two adjacent vertices belong
to exactly one edge in a graph (and two incident edges intersect at exactly one
vertex), we can equivalently describe a walk as a sequence of incident edges or
adjacent vertices, i.e.,

v0, v1
︸ ︷︷ ︸

adjacent

, . . . , vk−1, vk
︸ ︷︷ ︸

adjacent

←→ e1
︸︷︷︸

{v0,v1}

, . . . , ek
︸︷︷︸

{vk−1,vk}.

A third equivalent way to represent a walk is the alternating vertex-edge form:
v0, e1, v1, e2, . . . , ek, vk. When vertices are not allowed to repeat, we call the walk
a path. These three equivalent definitions of a graph path also happen to coincide
with the topological definition of a path, i.e., a continuous map from the interval
[0, 1] ⊂ R to the graph thought of as a topological space.

In contrast, this three-way equivalence does not hold for hypergraphs: two
hypergraph edges can intersect at any number of vertices, and two vertices can
belong to any number of shared edges. This simple observation, along with the
goal to keep the correspondence with the topological definition of a path, moti-
vates two walk concepts for hypergraphs that are dual but nonetheless different:
walks on the vertex level (consisting of successively adjacent vertices) and walks
on the edge level (consisting of successively intersecting edges). For ease of pre-
sentation, we will focus on edge-level walks, keeping in mind there is a dual
concept for vertex-based walks. We define an s-walk on a hypergraph, where s
controls the size of the edge intersection, as follows:

Definition 1. For s ≥ 1, an s-walk of length k between edges f, g ∈ E is a
sequence of edges, f = e0, e1, . . . , ek = g, where for i = 1, . . . , k and Ii = ei−1∩ei,
we have |Ii| ≥ s and ei−1 	= ei.

Observe that a 1-walk on a graph corresponds to the usual graph walk,
whereas s-walks for s ≥ 2 are only possible for hypergraphs. We note that
several notions closely related to s-walks have previously appeared in the litera-
ture. In [17], Lu and Peng consider walks in k-uniform hypergraphs to build an
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s-Laplacian matrix of a hypergraph. Wang and Lee [18] consider edge intersec-
tion properties in walks unrelated to the size of the intersections. Perhaps most
pertinent to this investigation, Bermond et al. [19] introduce and analyze s-line
graphs of hypergraphs, which are graphs derived from hypergaphs by represent-
ing each hyperedge as a vertex, and link two such vertices if their corresponding
hyperedges intersect in at least s vertices. Our proposed s-walks on hypergraphs
correspond precisely to graph walks on these s-line graphs. Hence s-line graphs
may be used as auxiliary graphs for computing s-walk-based metrics.

A number of basic, yet important, properties of walks in graphs immediately
extend to s-walks on hypergraphs. Consequently, just as the length of the short-
est walk defines a bona fide distance metric for graphs, s-distance, defined as
follows, serves as a distance metric in hypergraphs.

a
d

c

b

Fig. 1. An illustration of a hypergraph with edges {a, b, c}, {a, c}, {a, d}, {c, d}, {b},
and {d}. This hypergraph has 1-diameter of 3 (which is achieved by the 1-walk
b, abc, ad, d), average 1-distance of 1.5, infinite 2-diameter, and 3-diameter of 0.

Definition 2. Let H = (V, E) be a hypergraph and Es denote the set of hyper-
edges in H with at least s vertices. Define the distance function ds : Es×Es → Z≥0

ds(f, g) =

{

length of shortest s-walk if s-walk between f, g exists
∞ otherwise

.

From this distance metric, a number of graph-theoretic concepts generalize nat-
urally, For example, s-diameter (resp. average s-distance) of a hypergraph is
the maximum (resp. average) s-distance between all pairs of hyperedges with at
least s edges. A hypergraph is s-connected if its s-diameter is finite. We illustrate
these with an example in Fig. 1.

From the perspective of data analytics, s-walk-based metrics may uncover
higher-order interactions among the entities that are evident neither from clas-
sical hypergraph walks which don’t control for intersection size nor the raw
relational data itself. For example, a user-group hypergraph exhibiting lower
average 1-distance than 4-distance suggests groups are more closely related via
sparse overlappings of their members. In general, depending on the hyperdata in
question, it may be the case that higher-cardinality intersections signify stronger
ties between groups, or only intersections within a certain size range are mean-
ingful due to noise or other artifacts in the data. In such cases, s-walk-based
metrics provide a framework that not only recovers classical hypergraph and
graph walks (by taking s = 1), but also allows the flexibility to filter and control
for higher-dimensional interactions as well.
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Hypergraph Visualization and Sensemaking. Understanding hypergraph
data can be significantly more difficult than understanding graph data. Adequate
hypergraph visualizations are lacking when data get large, and more intricate
interactions inevitably lead to more complex data analysis and interpretation.
However, making the move to use hypergraphs as representational models should
allow researchers to learn more about their complex relational data. Sensemak-
ing in graph data has been an active research area in recent years [20–22]. Before
that large graph visualization became prominent [23,24]. If researchers in appli-
cation domains focus more on hypergraphs over graphs, we expect that work
on sensemaking and visualization for graphs can extend into hypergraphs. For
example, Hoff et al. observe that although their latent space approach to social
network analysis and visualization is focused on binary relations (i.e., graphs),
the work can extend to more general relational data [25].

2.2 Example: Enron Email Data

Email or other mass communications are a good example of data that naturally
fit into a hypergraph structure. Originally released in 2004 by the Federal Energy
Regulatory Commission during its investigation, the Enron email data set is a
highly cited and studied corpus of emails from the inboxes of roughly 150 Enron
employees [1]. While there has been considerable research on classification and
clustering based on the email text [1,26,27], our focus is on the hypergraph
structure of user interactions implied by the set of emails.

To date, the Enron corpus has been studied overwhelmingly with graphs.
Properties such as the distance between two users or the diameter of the entire
graph can shed light on the extent to which knowledge is shared or disseminated
within the company. A graph can be built from these data by letting the vertices
be the set of users, or email addresses, in the data. Then, an edge is created
between user1 and user2 if there is an email from user1 to user2 or vice versa
(see graph type 1 in Fig. 2). This graph can help understand how information
flows through the group of users and has been well studied in the literature
[28–31]. Another potential graph model considers the set of recipients for each
email, if there are multiple, and adds all possible edges between the users in that
set (see graph type 2 in Fig. 2). Rather than flow of information, this models
shared knowledge. Connected users have some common knowledge by virtue of
receiving the same email.

This second representation lends itself most naturally to a hypergraph struc-
ture. Rather than connecting all pairs of users that receive the same email, we
create a single hyperedge for each email. The vertices in that hyperedge are all
of the recipients of that email (see hypergraph in Fig. 2). To build this hyper-
graph, we used a data set hosted by KONECT [32] that provides a set of sender,
recipient, timestamp rows. We collected all recipients that occur for any given
〈sender, timestamp〉 pair and put them into a single hyperedge. Admittedly
this assumes that only one email was sent from the given sender at the given
time. Although that may not always be true, the incidents of email collision are
probably rare.
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Fig. 2. Example creation of two types of graphs and one hypergraph from an email.
Notice that graph type 2 would be the same if only the first email were seen, while the
hypergraph representation is able to disambiguate the two emails.

It is not our goal to do a comprehensive study of the Enron email hypergraph.
Instead, we aim to show one example, s-diameter, where the hypergraph can be
more informative to a user than a traditional graph. Rather than considering
the Enron hypergraph as one single system, we break the data into two-week
subsets. Figure 3 shows the vertex and hyperedge counts over time. The maxi-
mum number of hyperedges (emails) occurs in the hypergraph representing the
two-week period October 19-November 2, 2001, which coincides with the begin-
ning of the Securities and Exchange Commission inquiry into Enron finances.
We will study the evolution of the s-diameter over time for various values of s
and how that evolution correlates with the vertex and hyperedge counts.

Fig. 3. Vertex (red) and hyperedge (blue) counts in the two-week Enron hypergraphs.
(Color figure online)

Notably, it is not difficult to show that if the 1-diameter of a hypergraph is d,
then the diameter of the associated graph is either d− 1, d or d+1. Specifically,
if we consider the graph where each hyperedge is replaced with graph edges for
all pairs of vertices within that hyperedge, then its graph diameter would be
roughly equal to the 1-diameter of the hypergraph. The question is: is there
added value to calculating the s diameter for any value of s > 1? Do we learn
any new information that the 1-diameter could not tell us? In the case of the
Enron email hypergraph, the answer appearss to be: yes.
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We consider the s-diameter of only the largest s-connected component of
each hypergraph (rather than saying that s-diameter is ∞ if the hypergraph is
not s-connected). In Fig. 4(a), we show the 1-diameter of the Enron hypergraph
over time. Although there are two maxima roughly around the same times as
two of the peaks in the vertex and hyperedge counts, there is a slight downward
or flat trend in the 1-diameter (slope of a linear fit is −3 × 10−8). The Pearson
correlation between the 1-diameter and the number of vertices (resp. hyperedges)
is 0.34 (resp. 0.35). If this were a graph, we would be forced to stop here and
perhaps conclude that the diameter, or largest path distance between two users,
of the Enron graph is only slightly correlated to the number of users or emails,
i.e., connection distance does not seem to grow as the company grows. However,
because of the richer structure contained in the hypergraph, we are able to look
further at s-diameter for s > 1. When we do this, it becomes clear that the larger
values of s change our perception of the distances in the system. As s grows so
does the correlation between s-diameter and both vertex and hyperedge count.
Figure 4(c) shows how the correlation between the s-diameter and the vertex
(resp. hyperedge) counts increases as s increases, reaching a maximum at s = 14
(resp. s = 12) before decreasing slightly. In Fig. 4(b), we show the 12- and
14-diameters over time. The resemblance of these to the corresponding vertex
and hyperedge counts in Fig. 3 is clearly much higher than the 1-diameter, as
expected by a correlation of nearly 0.9. This indicates that as we force the
intersection size (s) to be larger, we must travel farther to form a path between
two users. This, by itself, is unsurprising as putting more constraints on the
intersections could never require shorter paths. However, what is surprising is
that paths exist at all when intersections are required to be large.

To validate that high correlation of the s-diameter with vertex and hyperedge
counts for large values of s does not stem from random chance, we created a
sequence of random hypergraphs using a Chung-Lu model [33]. This sequence of
random hypergraphs has the same vertex degree and edge size distributions (in
expectation) as the sequence of two-week Enron hypergraphs. In these random
hypergraphs, the 1-diameter has slight negative correlation with the vertex and
hyperedge counts (−0.34 and −0.24 respectively), but by s = 4, there are no s-
paths. In other words, all intersections between hyperedges in the random model
are of size 3, at most. This means that the existence of s-paths for large s in the
Enron hypergraphs along with the high correlation with vertex and edge size is
significant. There is more value in considering the Enron data as a hypergraph
than as a graph.

3 Topological Analysis of Vector Data

We pivot now from complex relational data to high-dimensional numeric data.
This type of data, which can be thought of as a high-dimensional point cloud,
is common and often studied under the lens of dimensionality reduction tools,
such as principle component analysis (PCA) or nonnegative matrix factorization
(NMF). However, these techniques can introduce loss of information and may
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(a) 1-diam. (b) 12-diam. (blue) and 14-diam. (red)

(c) Correlation of s-diameter with vertex
count (red) and hyperedge count (blue).

Fig. 4. (a), (b) s-diameters versus time for the two-week Enron hypergraphs. (c) Cor-
relation of s-diameter versus s. (Color figure online)

make attribution of anomalies difficult. Instead, our group, and others, have
worked with data’s intrinsic high dimensionality using persistent homology, a
technique within topological data analysis (TDA). Persistent homology skirts
around the curse of high computational times that often come along with high-
dimensional data by considering only distances between points rather than the
ambient dimensionality.

3.1 Definitions

Topology is the study of geometric properties that are unaffected by bending
or stretching a space (such properties are called invariants). TDA approaches
identify changes in a system of interest by tracking topology that describes the
system. Because topological properties are invariant under scaling, they ignore
noise and only identify true fundamental changes to the underlying system.

Most TDA methods operate on (topological spaces derived from) numerical
point clouds, so the first step must be to construct vectors x ∈ R

n that represent
the system state. In some cases, data come in the form of vectors natively.
For example, if the system is a biological sample, the measured data could be
protein abundance values, i.e., an ordered list of measured values for each protein
found in the sample. This list becomes the vector representing the biological
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sample state. However, there are other systems where a numerical vector is
not the measured data. Consider a cyber network where the data describing the
system is collected by a packet analyzer (also called a network analyzer or packet
sniffer). This computer program or piece of hardware can intercept traffic as it
passes over a digital network or part of a network. As data streams flow across
the network, the sniffer captures each packet and generates a corresponding
log. The information recorded in each log can vary with the packet analyzer,
but it almost always contains time intercepted, source Internet Protocol (IP)
address, destination IP address, source port, destination port, protocol, number
of packets, and number of bytes. Thus, given a set of flow logs, some natural
quantitative statistics to compute include number of source/destination IPs,
number of packets, number of bytes, number of (source IP, destination IP) pairs,
and number of protocols.

In this work, we concentrate on time series data, but other organizing prin-
ciples, such as geographic area or biological family, can be used to group data.
To vectorize time series data, there are two main approaches. The first, which
can be thought of as a feature vectorization, is to construct a vector of statistics
for each time window, from t to t + ε. For example, for a cyber network given
all network flow logs in the time window we could construct a vector xt ∈ R

4 as

xt = (# of source IPs seen, # of destination IPs seen,
total # of packets sent, total # of bytes sent).

Then, a collection of time windows yields a set of feature vectors; a point cloud.
An example of this is featured in Sect. 3.2.

Another way to vectorize a time series is to use a Takens embedding. Given
a time series X(t), fix a lag parameter η > 0, and a dimension m ∈ Z>0. The
Takens embedding of the time series then is a lift to the map

t → xt = (X(t),X(t − η),X(t − 2η), . . . , X(t − (m − 1)η)).

In other words, the time series sequence X(0), . . . , X(N) becomes a set of m-
dimensional points x(m−1)η, . . . , xN , or another point cloud. Takens proved that
under the correct choice of m and η, this embedding represents the underly-
ing dynamics of the dynamical system [34]1. In particular, if the time series is
periodic, the Takens embedding will contain a cycle (see example in Sect. 3.3).

Both vectorization methods for time series provide mathematical abstrac-
tions, or representations, for the data that are domain agnostic. Specifically,
once the transformation to a point cloud has been made, the analysis proceeds
only based on those values not on the original domain of the data.

The main tool in TDA for analyzing a point cloud is persistent homology,
a topological invariant that distinguishes spatially robust topological features
from smaller ones more likely to be noise. Broadly speaking, persistent homol-
ogy takes a point cloud; constructs a sequence of topological spaces over the
1 There are ways to intelligently choose m and η. For example, Khasawneh and Munch

in [35] use false nearest neighbors to choose m and the first zero of the autocorrelation
function to choose η.
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point cloud by considering a filtration of spatial resolutions; and computes a
set of 2-dimensional points, called a persistence diagram, where each point (b, d)
delineates the birth and death of an important topological feature in the filtra-
tion sequence of topological spaces. Shorter-lived features can be thought of as
noise, while longer-lived ones represent the more robust features in the space,
representative of the true shape of the underlying space.

Given a point cloud, V ⊂ R
n, the two natural topological filtrations that

can be constructed are the Čech filtration and Vietoris-Rips filtration. For both,
one starts by placing a ball of some small radius ε around each data point. The
Čech complex, Cε, is constructed by taking all subsets of points whose associ-
ated balls have a nonempty intersection. On the other hand, the Vietoris-Rips
complex, Rε, is constructed by taking all subsets of points whose associated balls
have nonempty pairwise intersections. The two constructions are demonstrated
geometrically in Fig. 5, where two-element sets are shown with a line connecting
the two elements, three-element sets are filled-in triangles, and four-element sets
are filled-in tetrahedra. Notice that the Vietoris-Rips complex has a filled-in tri-
angle connecting the three points on the right, whereas the Čech complex has
an open triangle. This is because the corresponding circles overlap pairwise but
not all together. The triangle and tetrahedron on the left are present in both
because of the respective 3- and 4-way intersections. A filtration is formed by
increasing ε and growing the complexes accordingly.

Given a filtration, the persistence diagram can be computed for topological
features of different dimensions (see Fig. 6). Features in dimension 0 are con-
nected components; in dimension 1 they are loops (e.g.,the open triangle or
longer cycles); in dimension 2, (not pictured), they are voids such as a hollow
tetrahedron. Topological features in dimensions larger than two become difficult
to conceptualize. For a rigorous discussion of the persistent homology method-
ology, the interested reader is directed to [36–38].

Fig. 5. A point cloud (left) can be completed to a C̆ech complex Cε (lower right) or to
a Vietoris-Rips complex Rε (upper right) based on a resolution parameter ε (center).

To topologically compare two point clouds using persistent homology, their
persistence diagrams are compared using a distance metric. The most intuitive
and widely used persistence diagram distance metric is the Wasserstein distance.
Roughly speaking, this metric details the minimum movement required to move
points in one persistence diagram to those in another diagram where points are
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Fig. 6. Example Vietoris-Rips filtration and corresponding persistence diagram for a
point cloud. Blue points in the persistence diagram (and the red square) correspond to
0-dimensional features, and orange points correspond to 1-dimensional features. Note
that there is always one feature in dimension 0 with infinite death time (the red square)
corresponding to the one connected component that does not die once fully connected.
(Color figure online)

allowed to move to the diagonal (where birth = death) if no better choice exists.
The exact formulation of the Wasserstein distance is not required to understand
the concept, so we refer the reader to Sect. 3 in [39].

To use persistent homology for anomaly detection, assume we are given a sys-
tem baseline representing normal behavior (if this is not the case, a baseline can
be learned from an initial time period within the data). All data are broken into
overlapping widows, and a numerical vector is associated to each window using
one of the procedures already described. Collecting the vectors from the baseline
windows provides a point cloud, B, which represents normal system behavior.
Computing persistent homology on B provides a reference barcode, C. Then, for
each new window, construct its numerical vector x using the same procedure.
Compute the persistence barcode, C ′, for B ∪ {x} and the distance between C
and C ′. This distance affords a measure of how much the system changed by
adding this one new window. For a detailed description of this anomaly detec-
tion procedure, see [36]. One advantage to this technique is an interpretation via
the persistence stability theorem [40,41]. In short, this theorem says that if the
distance between the barcodes is large, then there must be a large distance in
the point clouds. Because of how we created our two point clouds, this means
that a large distance in the barcodes can only come from x being far away from
the baseline point cloud.

Interpretability and Interaction. This method of transforming data from its
raw form into a high-dimensional point cloud may seem to be such an abstrac-
tion that interpretability is lost. However, the opposite seems to be true. The
topological summary through the lens of persistent homology simplifies the data
by cutting through the noise (by way of the persistence stability theorems) to
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find the most robust features [42]. Additionally, keeping the data in its natu-
ral high-dimensional setting rather than using dimension reduction techniques
allows for root cause analysis once anomaly scores have been calculated.

While not discussed herein, Mapper [43] is another tool worth mentioning
because of its wide use to visualize and interpret high-dimensional data. Map-
per uses local clustering behavior to reconstruct global data shape. It has been
used in a variety of domains to provide new interpretations of data sets and
discover previously unknown clustering behavior [44]. A “users guide” for TDA
is provided in [45] that offers more detail into practical uses, interpretations, and
specific implementations of both persistent homology and Mapper.

3.2 Cyber Kill Chain

Here, we provide an example of using our TDA anomaly detection algorithm to
identify malicious behavior in a cyber network. It is not our goal to describe the
cyber background in detail. Rather, we hope to show the method’s flexibility.
For more detail on cyber kill chains and attacks, see [46]. The data for our case
study were simulated by a cyber security team at Pacific Northwest National
Laboratory. The experimental network consisted of 16 virtual machines: 15 Linux
workstations and one web server. Each workstation ran a Markov chain script to
simulate browsing the external web and the corporate network site. The entire
experiment ran in four phases for a total of 52 min:

Phase 1: 15 min of baseline network traffic
Phase 2: Network reconnaissance using nmap port scans
Phase 3: Normal network traffic to simulate an attacker “planning”
Phase 4: Remote buffer overflow, gain privileged shell, change root password.

We ran our persistent homology anomaly detection algorithm with two dif-
ferent feature vectorization strategies. For the first, we constructed a vector of
length 9 with the following entries:

• # distinct source IPs (SIP) • # distinct destination IPs (DIP)
• # distinct (SIP, DIP) pairs • # distinct protocols
• total # bytes • total # packets
• # distinct (SIP, Source Port) pairs • # distinct (DIP, Dest Port) pairs
• # records

Then, each entry in the vector was normalized by the window length (60 s in our
case). The second scheme was similar to the first. Slightly different statistics were
targeted to specific protocols and normalized by the number of the records in
each window. For each protocol p ∈ {ICMP, TCP, UDP}, let |p| be the number
of records in the window with protocol p. Then, the vector contains:

– |p|/(total number of records)
– (number of packets in protocol p)/|p|
– (number of bytes in protocol p)/|p|
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– (bytes in protocol p)/(packets in protocol p)
– |p|/(bytes in p/packets in p)

Figure 7 shows the anomaly scores for each window. We see that both have
clear spikes, but they pick up on different phases of the attack. The first vec-
torization (Fig. 7(a)) measures the average statistical properties for each record.
Notice that this flags anomalies during the later phase of the scenario. Specif-
ically, it picks up on the remote buffer overflow exploit when more data are
being sent per record than one would expect. Likewise, the second vectorization
(Fig. 7(b)) measures the average statistical properties per unit time. This flags
the reconnaissance phase because a port scan is generating many more records
than usual.

Fig. 7. Anomaly scores (y axis) over time (x axis) for our cyber kill chain data set.

3.3 Power Grid Demand Data

Operating a power grid is a careful balance between generating enough power
to satisfy consumer demand without generating too much power that cannot
be stored and is therefore wasted. To solve this problem of unit commitment
[47], operators must constantly forecast the demand and increase or decrease
production to match the forecasted data. Understanding the cyclic patterns in
demand can be crucial to the demand forecasting problem.

The sample data used in this example was generated from a 240-bus model
of the California Independent System Operator (CAISO) electric power mar-
ket within the Western Interconnection grid. This model was developed in [48]
as an extension to earlier 225-bus [49] and 179-bus [50] CAISO models. Using
data derived from published CAISO transmission studies and Western Electric-
ity Coordinating Council’s Transmission Expansion Planning Policy Committee
to seed the model, they formed resource data for system conditions modeled
as the year 2004. Others have used this model and data to study transmission
planning, e.g., [51]. In this work, we only use the hourly demand profiles for one
of the available 21 sub-regions of CAISO to show how the Takens embedding
can help discover cyclic patterns.
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In Fig. 8(a), we show sample demand for a two-week interval (Sunday–
Saturday) in one region of the CAISO. Notice that Sunday has the lowest
demand followed by Saturday and then Friday, while Monday–Thursday have
similar demand. A two-dimensional (m = 2) Takens embedding for just Monday–
Thursday, with lag η = 5 (the first approximate zero of the autocorrelation func-
tion), is shown in Fig. 9(a) alongside its persistence diagram in Fig. 9(b)2. Points
close to the diagonal represent short-lived noisy topological features, whereas
the single point farther away from the diagonal signals that there is a one-
dimensional topological feature (a loop) in the Takens embedding. The presence
of this loop tells us there is periodicity to the data, while the maximum persis-
tence, the maximum (b−d), gives us an idea of how much this is real periodicity
versus just due to noise.

Fig. 8. Modeled demand in the “20MEXICO” region of the CAISO for two-weeks and
the full year of sample generated data. The y axis is in kilowatt hours (kwH).

If we instead take a year-long view, as shown in Fig. 8(b), it becomes clear
that there is still some periodicity within the weeks, but the demand rises and
falls with the seasons. The Takens embedding of the full year will not yield any
interesting topological features because of the seasonal variability in behavior.
Still, local Takens embeddings can be used to discover and classify different types
of local periodic behavior.

2 The persistence diagram is a 2D representation of the barcode. A bar with birth = b
and death = d is plotted at the point (b, d). Because death occurs after birth, all
points will be above the y = x diagonal.
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Fig. 9. Two-dimensional Takens embedding and corresponding persistence diagram.

4 Sheaf Models

Data may also come in a combination of relational tables and vectors. For
example protein expression information within a protein interaction network,
or employee rank and salary for people in the Enron email database. Sheaves are
a way to combine both hypergraphs and TDA to infer global information from
the local data. Whereas typically this type of data is combined in an ad hoc
manner, sheaves provide a canonical principled inference method [52,53]. The
basics of sheaf theory require too many details for this survey. Thus, we provide
only a toy example here and refer the curious reader to [52].

Consider the data shown in Table 1, which depicts what several people
reported to police when questioned as witnesses to a crime. Each observation is
local to the individual, but we ask a global question: How many perpetrators
might there be, and who agrees? This table represents a scenario where each row
corresponds to an observation, or, in this case, the story from a single witness.
Each observation consists of one or more data fields, each corresponding to a
column in the table. Each column specifies a data type, the observed property.

Table 1. Witness descriptions of crime scene details (perpetrator and incident time).

Row Height Weight Time

Alice (null) 170 lbs (null)

Bob 5’8” 170 lbs (null)

Charlie (null) 250 lbs 5:00 pm

Debbie 5’8” (null) 5:30 pm

A variety of distinct hypergraphs can be constructed from this kind of tabular
data. For this example, it is most convenient to consider the hypergraph T in
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which each row corresponds to a vertex, and each edge corresponds to a set
of rows with at least one nonempty column in common [54]. For Table 1, this
hypergraph is shown in Fig. 10(a). Notice in particular that each vertex is itself
a 1-edge. The presence of the 3-edge indicates that three witnesses (Alice, Bob,
and Charlie) reported the criminal’s weight. Although Debbie did not report the
weight, the 2-edges indicate that, like Bob, she reported the height, and, like
Charlie, she reported the time of the incident.

Formally, let T = (ti,j) be a data table with m rows and n columns.
Notationally, we will let i = 1, . . . ,m index rows and j = 1, . . . , n index
columns. Then, T = (V, E) is a hypergraph whose vertices V = {1, . . . , m},
and e = {i1, . . . , ik} ⊂ V is an edge if there is a j such that ti,j is nonempty for
all i ∈ e.

Observe that this hypergraph only represents which fields (columns) of the
data table are shared among observations (rows), but it does not account for the
data types of the entries nor the entries themselves. This is remedied by building
a sheaf structure on the hypergraph. As a technical matter, sheaves are not built
on hypergraphs, rather on topological spaces. However, because this hypergraph
has the property that all subsets of a given edge are also edges themselves, there
is a natural way to associate a topological space (the Alexandrov topology).

Thus, we can represent the entirety of the data by constructing a sheaf in the
following way [55]. Notice that each edge in the hypergraph implicitly specifies
a set of columns – ones that are nonempty in the rows corresponding to the
edge. For the 1-edges (which are also the rows), these are merely the nonempty
columns in each row. Hence, to each edge of the hypergraph, we associate the set
of all possible data vectors indexed over the nonempty columns corresponding
to that edge. Each of these sets of data vectors are called stalks over the edges.

Fig. 10. Underlying hypergraph and consistent sections for data in Table 1.

Given this construction, the data table entries are elements of the stalks
over the 1-edges. However, what about the stalks for the other edges? If two
edges are adjacent, they share at least one column in the data table. Thus, their
stalks contain a common subspace, which means those corresponding entries
are comparable. If those rows agree upon projecting to the common subspace,
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then this projection is what should be chosen as the element of the stalk. On
the other hand, if the data elements are not in agreement on this common
subspace, this implies that the rows themselves are in conflict. If each column
is additionally associated to a metric, a numerical value can be assigned to the
disagreement. The maximum amount of disagreement over the entire hypergraph
is called the consistency radius [52] and it can provide evidence for determining
the root cause of disagreements, e.g., noise, equipment malfunction, or a faulty
underlying hypergraph model. Additionally the consistency radius can serve as
a basis for imputing corrections to noisy data.

A collection of edges and elements from the stalks over those edges that
agree upon projection is called a section. Larger sections, consisting of more
rows, represent a more self-consistent data set, while smaller sections, those
where adding any other row causes a conflict, are less so. In the specific Table 1
example, those edges in which there is agreement are shown in Fig. 10(b), while
those in disagreement are grayed out. The largest section consists of the triple
Alice, Bob, and Debbie because Alice and Bob agree that the criminal weighed
170 lbs., and Bob and Debbie both said that he or she was 5’8”. On the other
hand, Charlie (alone) also is a section, but it cannot be extended to a larger
section without disagreement. In fact, his disagreements might indicate that
Charlie witnessed an entirely different criminal than Alice, Bob, and Debbie.

The Local-to-Global Promise of Sheaf Theory. Since its origin dates back
to the 1930s and 40s, sheaf theory is not a new mathematical discipline. However,
using sheaves in data analysis is rather new. Sheaf theory is about local-to-global
inference involving a collection of overlapping and interacting local data sources
to infer a global state. Thus, as data sources have become more universal, the
need to synthesize disparate sensors around a common theme is more important.

5 Discussion

In this paper, we have described three related models resting in the mathematics
of topology for representing and exploring data: hypergraphs for relational data,
point clouds for vector data, and sheaves when both are present and related.
Moreover, these mathematical structures each incorporate domain-agnostic anal-
ysis tools that are able to discover insights into the data that domain-specific
tools may miss through the use of higher-order structures. First, topologically
inspired paths in hypergraphs see chains of highly intersecting groups that can
shed light on how knowledge is shared through a network. Next, persistent
homology applied to point clouds uses topological structure to detect anomalies
and differentiate between noise and periodicity. Finally, sheaf theory provides a
local-to-global inference mechanism. As the Internet of things grows and sensors
become both smaller and more ubiquitous, a principled and general technique,
like sheaf theory, will be necessary to make sense of it all. Topology, on its own,
may not be able to draw declarative conclusions or confirm phenomenological
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hypotheses. However, these methods can provide a different kind of feature for
more robust classification algorithms.
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