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Abstract. A key aspect of computer network defense and operations
is the characterization of network behaviors. Several of these behaviors
are a result of indirect interactions between various networked entities
and are temporal in nature. Modeling them requires non-trivial and scal-
able approaches. We introduce a novel approach for characterizing net-
work behaviors using significant co-occurrence discovery. A significant
co-occurrence is a robust concurrence or coincidence of events or activi-
ties observed over a period of time. We formulate a network problem in
the context of co-occurrence detection and propose an approach to detect
co-occurrences in network flow information. The problem is a general-
ization of problems that are encountered in the areas of dependency
discovery and related activity identification. Moreover, we define a set
of metrics to determine robust characteristics of these co-occurrences.
We demonstrate the approach, exercising it first on a simulated network
trace, and second on a publicly-available anonymized network trace from
CAIDA. We show that co-occurrences can identify interesting relation-
ships and that the proposed algorithm can be an effective tool in network
flow analysis.
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1 Introduction

Characterizing network behavior can help inform the operation and state of
a networked computing environment. Characterization is a process of describ-
ing attributes and activities. There are a number of existing characterizations
that illuminate a system’s relationship to a network [13], role [17], and activi-
ties [4,18]. Characterizations improve situation awareness, helping network oper-
ators and cyber practitioners understand purpose and intent of the component,
along with its relation to the network. In this paper we introduce a novel network
behavior characterization method based on discovering significant co-occurrence
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within network flow information. A significant co-occurrence is a robust concur-
rence or coincidence of events or activities observed over a period of time. As
the definition suggests, the analysis occurs in the temporal plane, examining for
correlation of events or activities.

The method discussed in this paper came from our research into depen-
dency discovery. Advanced network defenses such as application reconfiguration
and network address hopping often need to understand dependencies to main-
tain network and service function. Dependencies between components can be a
surprisingly complex web of relationships. Direct dependencies (e.g., web ser-
vice requires a database to store and retrieve data) were documented by archi-
tects and owners, but indirect relationships (e.g., the database would admit
connections slowly if it could not reverse map the network address to a quali-
fied hostname) were unnoticed or overlooked. Automated methods to discover
these relationships are needed to overcome this gap in knowledge. Dependencies
exhibit both topological and temporal characteristics and we found it difficult
to meaningfully combine both aspects into existing graphical representations.
We modified our approach to first extract temporal structure, before performing
any type of topological analysis. We tried an approach based on Self-Organizing
Maps (SOMs), an unsupervised, two-dimensional artificial neural network [14],
to extract temporal relationships from sets of time-encoded event vectors. The
result was that the SOM would overgeneralize relationships, learning aspects of
the data not relatable to the problem. We believe this is a natural consequence of
the low information content of network flow. Each record is a 13-tuple, and while
a single record has informational merit, a set of records is highly redundant. This
results in component analysis focusing on elements that have high entropy but
little interest, such as linearly incrementing or randomly chosen port numbers
or unmeaningful differences in network addresses. We finally fell to an approach
that discovers significant co-occurrences between aggregates of data.

Later research identified that significant co-occurrences are useful for detect-
ing related activity, such as coordinated interactions over remote shell sessions.
This is useful because: (1) identified behaviors are coordinated both in time and
topology, and (2) it permits identification of relationships in the time domain
that cannot be inferred from graph representations.

This paper is organized as follows. In Sect. 2, we describe a characterization
problem and formulate it as significant co-occurrence discovery. We introduce
a robust algorithm to discover significant co-occurrences in Sect. 3 and we then
evaluate our approach in Sect. 4. In Sect. 5, we discuss the outcomes of the evalu-
ation, additional measures that we investigated, and work to enrich the models.
We then conclude in Sect. 6.

Related Work. In earlier work, we examined flow information to discover net-
work service and application dependencies. We introduced the idea of encoding
network flow information into time series [6]. We then used cross-correlation to
identify dependencies as a function of the lag between classes of time series. This
showed an improvement in sensitivity and specificity when compared to earlier
approaches. We then refined this approach by contextualizing flow behavior [7].
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This is done by aggregating flow series based on a set of frequently occurring
patterns of elements. We did not guarantee long-term stationarity (that is, mean
and variance does not change with time) in the time series, which is an underly-
ing assumption of the cross-correlation methodology. The approach proposed in
this paper employs a cross-correlation analog that is not sensitive to stationarity.

Upon further investigation, we generalized our approach as a method to
detect significant co-occurrence relationships. Work by Jalali and Jain [12] con-
siders a similar problem formulation, but uses counts and conditional probabili-
ties to extract relationships. NSDMiner [16] and Sherlock [1] use a similar count-
based approach to extract dependencies. In an evaluation comparing NSDMiner
and our approach [6], we demonstrated that cross-correlation was less sensitive
to flow volumes than count-based approaches. CloudScout [21] uses cross cor-
relation to detect dependencies, but did not consider that the cause and effect
did not occur concurrently. Tor correlation attacks take advantage of correlat-
ing traffic patterns at different locations [15]. The Tor injection and correlation
attack described in [8], which deanonymizes users, is performed over flow infor-
mation and can be thought of as an exercise of a co-occurrence detection of the
reference signal (created by the injection).

2 Problem Formulation

The completeness of network flow information is dependent on the positions of
the flow probes. It is a simple fact that a probe will only report flows that it
observes in its observation domain (not withstanding sampling policies, capture

A B

CD

Probe O

Fig. 1. The communications between systems A, B, C, and D are coordinated. Probe
O can observe communications that the dashed line cuts, which are A-B and C-D
interactions. Due to probe O’s position in the network, it cannot observe B ↔ D
communications.
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speed, resource limitations, etc.). Due to the incompleteness of data, constructed
graph topologies may be missing significant relationships, complicating the pro-
cess of computing graph walk statistics, centrality measures, graph distances,
and other graph theoretic measures.

To illustrate the problem, consider Fig. 1 where four systems, A, B, C, and
D are coordinating communications. Probe O can observe communications that
are cut by the vertical dashed line. In this example, communications between
A ↔ B and C ↔ D are observed, but the probe does not observe B ↔ D.
While the relationship between B and D cannot be observed, there may exist
temporal structure between A ↔ B and C ↔ D to infer a hidden relationship.
Specifically, if A ↔ B are recurrently co-occurring with C ↔ D, we may infer a
relationship between A ↔ B and C ↔ D. Since there are four communication
channels between A ↔ B and C ↔ D (traffic destined to A, B, C, and D), there
are four opportunities for co-occurrences (in practice this often limited as a probe
sees on direction only, either due to configuration or asymmetric routing).

The problem as formulated is the correlation in time of observable activi-
ties in network flow information and/or packet traces. The conceptual mecha-
nism is that if components exhibit some form of functional relationship, that we
should observe that network activity at one component will cause an incidence
of co-occurring network traffic at another component. In our parlance, we map
network activity to a stream of timestamped events, and then discover signif-
icant co-occurrences between the events. A co-occurrence is a concurrence or
coincidence of events, discovery of which entails observation for these types of
recurrent relationships over a time period. Significant co-occurrences are then,
given some metric, robust co-occurrences. Significant co-occurrences are of inter-
est in multiple domains as causal relationships often emit co-occurrences and
significant co-occurrences are frequently determined on the path to causal iden-
tification. In the context of our problem, co-occurrences do not strictly mean
causations. Information systems and architectures have not conventionally been
built for experimentation, that is, to allow an invention that may reduce network
redundancy and may impair system function. Moreover, passive approaches are
preferable and feasible to more data sources.

The problem as formulated has evolved with our understanding and work
on several related problems that have common threads of time structure and
practical causation/correlation (i.e., without intervention) discovery. Returning
to our prior work on dependency discovery, our insight was that significant co-
occurrences are established among aggregates of systems and components. For
instance, a dependency exists between set of clients accessing a web application
running on a cluster (a set of servers). The set of clients and set of servers
are their own event class. The dependency exists between the classes and not
necessarily among the individual elements contained therein. We encoded the
problem as the counts of connection initializations and terminations, analyzing
classes for significant co-occurrences of these events.

The problem introduced at the start has distinguishing attributes that require
modified aggregation and encoding. Moreover, aspects of collection influence the
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design. In terms of collection, connection initializations and terminations are not
reliably observed or inferred. Moreover, to reduce resource requirements, high-
speed collectors don’t maintain full connection state. Instead, they export flow
information based on resource thresholds and timers, and not necessarily at the
proper end of flow. Furthermore, we don’t expect to observe many connection
initializations (or terminations) when looking for activity relations. To provide
better quality encoding for the related activity, we aggregate flow information
by unique source and destination network address and transport attributes. We
then encode the number of bytes transferred during each period. The significant
co-occurrences are identified, which correlates variations in the time series.

3 Approach

Our proposed approach is founded on co-occurrence detection, followed by identi-
fying significant co-occurrence relationships. A co-occurrence is a repeated obser-
vation of (concurrent or delayed) “first this, then that.” A co-occurrence relation-
ship is revealed through time and is a primitive aspect of causal relationships.

Returning to Fig. 1, our approach is tooled to detect the co-occurrence of A-
B communications with C-D communications. More specifically, we are looking
for co-occurrences of changes in datarate, that is, the changes in A-B datarate
co-occur with changes in C-D datarate. We conceive of a mechanism where
the systems are organized such that A-B interactions result in effects along a
series of systems, which eventually transits C-D. As we observe relative changes
in A-B datarate, we expect to observe relative changes in C-D datarate. This
mechanism fits where information is being passed from one node to the next,
such as what occurs in Tor and other low-latency virtual/overlay networks and
the chaining of remote terminals.

Flow
Information

Aggregate Aggregates Encode
Time
series

Discover
Co-occurrences

Co-occurrences
Assess

Significance
Significant

Co-occurrences

Fig. 2. Diagram of the analytic workflow. A rectangle represents a process, a parallel-
ogram shows an input or output.

We break our approach to detect significant co-occurrence relations in net-
work flow information into four stages:

1. Aggregate flow information,
2. Encode aggregates as time series,
3. Detect co-occurrences within the time series, and
4. Identify significant co-occurrence relationships over the time dimension.
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The relationships of the stages and the corresponding inputs and outputs are
diagrammed in Fig. 2. The combined effect of State 1 and 2 is to represent the
flow information as time series. This input is then consumed by Stage 3 to analyze
for co-occurrences. Lastly, the significance of the co-occurrences are assessed. We
now describe the stages in full.

3.1 Aggregation

The analysis workflow begins by dividing the set of flows into flow aggregates.
The flows in an aggregate share common features, such as all are sourced from or
destined to the same endpoint. The exact details of the procedure are dependent
on the causal mechanism and its effects. Once understood, rules can be defined
to categorize flows into aggregates. In our previous work [6,7] we investigated
dependencies in enterprise computing networks. A dependency exists between
component a (say, a web server) and b (say, a database), if a’s function is impaired
when b becomes impaired (i.e., fails, faults, or is degraded). For this case, flows
that have destination address, protocol, and destination port in common are
merged into a single aggregate. For the question introduced in this paper, the
dynamics are not expressed en masse but are expressed singularly between pairs
of endpoints. Consequently, we create aggregates based on common source and
destination addresses, protocol, and destination port.

3.2 Encode

Next, we encode aggregates as time series. A feature of interest from the flows
in the aggregate is accumulated along an equally-spaced time dimension. We
choose equally-spaced time series over other time series representations as it
promotes efficient computation of correlation to be performed in the next step.
In one encoding, the number of flow starts or completions are accumulated as a
count in the respective time bin. In another possible encoding, we use the byte
(flow volume) or packet count to model data rates. In this encoding, the count
is accumulated in the bins representing the time interval the flow was active.
Before accumulating, the count is divided by the number of bins. The primary
encoding discussed in this paper is based on byte counts.

Assuming we have bt bytes in the t time period, we compute the log ratio as
follows:

rt = log
(

bt + 1
bt−1 + 1

)
, (1)

which gives the normalized datarate changes. Computing the log compresses the
dynamic range of the ratio, preventing false positive results that result from high
dynamic range.

3.3 Co-Occurrence Detection

We correlate the time series to detect co-occurrence relationships between flow
aggregates. To determine the correlation between each pair of time series, we
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used an alternative coefficient presented by Erdem et al. [9]. This coefficient
effectively captures the cross-dependence of the two time series over time, but
does not have the requirement of stationarity of the time series, in contrast to the
more commonly applied Pearson’s product moment correlation coefficient (see [2]
for more information about Pearson’s). We quickly appreciated the alternative
coefficient as we could not guarantee stationarity over the length of the time
series in prior work.

Given two time series, X and Y , the Erdem coefficient ρO is defined as:

ρO =
αxy√

αxx
√

αyy
,

where αxy = E [(Xt − Xt−1) (Yt − Yt−1)] , αxx = E
[
(Xt − Xt−1)

2
]
, and αyy =

E
[
(Yt − Yt−1)

2
]
. Expanding the definition, we observe that

αxy =
1

T − 1

T∑
t=2

(Xt − Xt−1) (Yt − Yt−1) ,

is the first-order autocorrelation of Xt and Yt [3]; the definitions of αxx and αyy

directly follow. The definition as specified is for the case when the cause and effect
simultaneously occur at the same time t. We can generalize the definition for a
delay model, for which the effect lags � time periods behind the cause. For � =
0,±1,±2, . . . , the lagged variant of the coefficient is ρO [�] = αxy [�] /

√
αxx

√
αxy,

where:

αxy [�] =

{
1

T−1

∑T−�
t=2 (Xt − Xt−1) (Yt+� − Yt+�−1) � = 0, 1, 2, . . .

1
T−1

∑T+�
t=2 (Yt − Yt−1) (Xt−� − Xt−�−1) � = 0,−1,−2, . . .

(2)

Using the log ratio defined in (1), we can rewrite (2) to

αxy [�] =

{
1

T−1

∑T−�
t=2 rxtryt+� � = 0, 1, 2, . . .

1
T−1

∑T+�
t=2 rytrxt−� � = 0,−1,−2, . . .

(3)

Using the fast Fourier transform (FFT) to compute the discrete frequency
transform (DFT) of the time series, convolution in the frequency domain can
be used to compute the coefficients ρO [�] for all lags � = 0,±1,±2, . . . , n pro-
viding significant computational speedup and improved precision over the näıve
approach computed in the time domain. Prior to performing the FFT, the time
series is doubled in length by padding with zeros. Convolution allows us the
opportunity to smooth the results. We continue to have success using Lanczos’
σ factors [10, “Lanczos’ σ factors” and “The σ Factors in the General Case”] in
increasing the magnitude of the coefficient of true correlations:

σi =

{
1 i = 0,
sin(2πi/2(T−1))

2πi/2(T−1) i = 1, 2, . . . , 2 (T − 1)
(4)
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3.4 Significant Co-Occurrence

A significant co-occurrence is a robust pattern found in the observations. In
order to identify these significant co-occurrences, we developed several criteria.
Fundamentally, we associate significance with values of ρO. As ρO approaches
one, we assume a greater significance. Unfortunately, our time series encoding
combined with the character of the problem produces a sparse representation,
where many elements of the time series are zero. We developed additional criteria
to measure the amount of information in an encoded time series, which supports
the interpretation of ρO and significance conclusions. The intuition for the cri-
teria is as follows. Assume that two co-occurrences are measured to have equal
ρO, we consider the time series with more non-zero elements to be of greater
significance. Additionally, we have found the zeroes between the first and last
non-zero elements to also support the claim of significance. Given equal quantity
of non-zero elements, the longer this length, more significant the co-occurrence.
We developed two measures of this criteria: span and occupancy. For an encoded
time series, we define span as the length of the run of the first to last non-zero
elements, while occupancy is the quantity of non-zero elements. Formally, we
define span as:

s = j − i,

where i and j are the indices of the first and last non-zero elements, respectively.
Occupancy is defined as:

o = count{xi|xi �= 0}. (5)

To speed the computation and increase scalability, encoded time series must
satisfy minimum span and occupancy conditions. The time series that satisfy
these conditions are then submitted for correlation computation. The distri-
bution of ρO is then examined and a threshold determined. Finally, we were
interested in novel pairings. To find these, we sorted the IP/port pair labels and
counted the number of occurrences. We then kept records that had a count of 2
or less. The last step was necessary as certain time series were characterized by
low variance. The correlation coefficient can be considered a measure of covari-
ance between two time series; this has the effect of driving the value of ρO higher
if one or both time series has a low variance. Therefore, time series with a low
variance will tend to falsely present as significant co-occurrences with multiple
pairings.

4 Evaluation

We evaluated our proposed approach using two methods. For the first method,
we build a simple mechanism in a testbed to coordinate remote shell sessions.
The goal is to prove out the analysis for unambiguous, optimal series of coordi-
nated interactions. For the second, we apply the approach to a publicly-available
dataset to identity significant co-occurrences. Unlike the first evaluation, there
isn’t additional available information to support conclusions.
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VNC SSH1 SSH2 · · ·

Fig. 3. A diagram of the first evaluation’s setup. The setup comprised twelve virtual
machines, coordinating a VNC session and ten SSH remote shell sessions in a series
circuit.

Table 1. Significant co-occurrence coefficients for the first evaluation. The table has
been compressed to save space. Observe that closer the sessions are in the sequence,
higher the correlation coefficient.

VNC SSH1 SSH2 SSH3 · · · SSH8 SSH9 SSH10

VNC — 0.977 0.977 0.976 · · · 0.976 0.976 0.977

SSH1 0.977 — 1.000 1.000 · · · 1.000 0.999 0.999

SSH2 0.977 1.000 — 1.000 · · · 1.000 0.999 0.999

SSH3 0.976 1.000 1.000 — · · · 1.000 0.999 0.999

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
SSH8 0.976 1.000 1.000 1.000 · · · — 1.000 1.000

SSH9 0.976 0.999 0.999 0.999 · · · 1.000 — 1.000

SSH10 0.977 0.999 0.999 0.999 · · · 1.000 1.000 —

The purpose of the first synthetic test is to evaluate the analysis on unam-
biguous, optimal series of coordinated remote shell session interactions. A dia-
gram of the setup is shown in Fig. 3. In a testbed environment, twelve Linux
virtual machines were created. A harness was constructed that would begin
with a VNC sessions and then login via SSH into a series of ten remote hosts
(the first host executes the VNC viewer, connecting to the VNC server). On the
downriver host, a command was executed that would mirror input to output.
A script would arbitrarily generate input that would traverse the series of hosts
and then return to be displayed in the VNC viewer. We captured the packets
on the network, recording network traffic for a duration of one hour. The YAF
tool suite [11] was used to transform the trace into unidirectional flow informa-
tion. The active timeout (or hard timeout, where the flow entry is exported once
expired) and the idle timeout (the flow entry is exported if no traffic is received
before timeout) were each set to 10 s. Flow was aggregated and encoded into
30 s interval time series by payload length. Time series representing inbound and
outbound traffic were then merged into a single time series. A summary of results
is given in Table 1. All coefficients were near one as, again, this was evaluated
under optimal conditions.

For the second evaluation, we applied our approach to the CAIDA
Anonymized Internet Traces 2016 Dataset [5]. This publicly-available dataset
is an hour-long packet trace that was captured on January 21st, 2016 at
the Chicago Equinix Internet Exchange. The trace, comprising network and
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Table 2. CAIDA Anonymized Internet Traces 2016 Datasets summary information.

First timestamp January 21, 2016 12:59:11.415 UTC

Last timestamp January 21, 2016 14:02:51.405 UTC

Capture length 20 B to 80 B

Unique IPv4 addresses 17,722,741

IPv4 flows 165,476,840

IPv4 byte/flow 34,629 B flow−1± 296 B flow−1

IPv4 datarate/1 min average 410.5 Gbit s−1± 3.36 Gbit s−1

Unique IPv6 addresses 476,500

IPv6 flows 3,323,221

IPv6 byte/flow 68,332.0 B flow−1± 806 B flow−1

IPv6 datarate/1 min average 21.0 Gbit s−1± 0.2 Gbit s−1

Table 3. Notable significant co-occurrences that were identified.

Pair 1 Pair 2 Coefficient

194.84.75.170 → 66.216.158.246:ssh 194.84.75.170 → 66.216.152.59:ssh 1.

209.169.193.11 → 138.38.133.180:telnet 209.169.208.163 → 138.38.133.180:telnet 1.

transport headers of incoming and outgoing packets, was collected with the
assistance of a high-speed monitor. Dataset documentation does not mention
lost or dropped packets. Summary information about the dataset is presented
in Table 2. Our objective was to identify plausibly related remote shell sessions.

We began the analysis by transforming the packet trace to flow information.
The packet trace arrives in a series of files, demarcated by direction and minute
timestamp. We merged the files by direction in increasing order of timestamp,
followed by merging the directions into a common trace. The YAF tool suite was
used to transform the trace into unidirectional network flow information. The
active timeout (or hard timeout, where the flow entry is exported once expired)
and the idle timeout (the flow entry is exported if no traffic is received before
timeout) were each set to 10 s. We next filtered the flow information by appli-
cation, keeping records characteristic of remote shell sessions, and discarding
the rest. We filtered on the combination of protocol and well-known or common
ports, preserving flows sourced or destined to TCP ports 22 (ssh), 23 (telnet),
512–514 (BSD UNIX “r” commands), 3389 (remote desktop protocol), 5900–
5963 (VNC), 5938 (TeamViewer), and 6000–6063 (X11); along with UDP 3389
(remote desktop protocol), 5938 (TeamViewer), and 60000–61000 (Mosh). Flow
was then encoded and aggregated into 30 s intervals, producing time series of
128 elements in size.

Analysis was performed and 131,161 co-occurrences were identified with a
correlation coefficient greater than or equal to 0.80. Upon examination, we noted
that 122,001 results involved TeamViewer. Investigating the packet traces, we
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observed that the flows exhibited 1 min-periodic traffic pattern. A TeamViewer
protocol description [19,20] supported our suspicion that the purpose of this
communication was to maintain connectivity (keep a firewall from considering
the connection dead, among other reasons) and inform status. While these co-
occurrences were significant, they were not notable in the context of our objec-
tive. We further winnowed the results by offset (preferring alignments of −1,
0, or 1), then by uniqueness of network and transport pairs. The treatment
identified 43 co-occurrences that were deemed significant and notable. While
all 43 co-occurrences were plausible, two co-occurrences, which are identified in
Table 3, comprise two nodes connecting to a service on a third. Time of use and
the structure further supports the conclusion that these sessions were possibly
coordinating their interactions.

Once again analyzing the CAIDA dataset, we investigated for significant
co-occurrences of HTTP communications. HTTP operates using TCP on well-
known ports 80 and 443, and alternate ports 4433, 8000, 8008, 8080, 8443, and
8888. A significant co-occurrence opens up the possibility that the channel is
used for something other than strictly document transfer, such as anonymiz-
ing network traffic. Using the aggregation and encoding approach as described
in the treatment of the remote shell session, we identified 1172 significant co-
occurrences among the 27,789,076 flow records. For this problem we defined
significance as correlations with ρO ≥ 0.8, an offset of zero, occupancy greater
than or equal to ten, and equal occupancy and span of the aggregate time series.
After reviewing the significant co-occurrences, we argue that they are plausible.
Additional measures need to be defined to assess notability, that is, the interest
of an analyst to the problem.

The evaluation demonstrates approach finding significant co-occurrences that
could be interesting to cyber practitioners and analytics. The datasets themselves
have limitations that prohibit further validation. As the packet trace does not
provide payloads and the data itself was passively collected from an anonymous
population, it is difficult to improve our confidence in the results. Significance is
built with repeated observations: given more data observed over a longer dura-
tion we would improve our confidence in the results. We are further evaluating
the approach using internal datasets, where it continues to show promise.

5 Discussion

We utilized several measures and metrics to identify significant correlations. As
is evident from the evaluation and prior work, specific aggregations, encodings
and measures are required to model aspects of the temporal behaviors exhibited
by complex systems. The span and occupancy measures were found to be useful
for filtering the time series during the encoding phase. Additional measures and
metrics were used during the significant correlation detection stage. As discussed
below, some of those metrics explored did not prove to be useful to the context of
the problem in hand and further work is required to explore additional metrics.
Additionally, the relationship calls being made do not have any directionality or
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order associated to them. Further exploration to address the directionality and
“causal” nature of relationships is underway. Additional attributes can be added
to the generated models to make them more useful to analysts.

5.1 Measures and Metrics

During initial attempts at significant correlation detection, we investigated sev-
eral metrics to identify “interesting” characteristics of co-occurring time series.
We considered a time series to contain more significant information if it has more
non-zero entries or a wide span of non-zero entries.

Attempts to identify significant correlations involved scaling the cross corre-
lation peaks using span and occupancy. Peaks between time series with a high
occupancy and/or span were weighted more heavily than sparsely populated
time series. Two different weighting factors were developed from the ratio of the
occupancy and the span of a time series to its total length. The peak cross corre-
lation value is then scaled using the weighting factors of both contributing time
series. A pair of time series with full span and occupancy have a weighting of
one; thus, the weighting does not reduce the peak. Significant correlations were
defined to be outliers based on the Interquartile Range (IQR) of all peak values.

However, these weighting metrics significantly compressed the dynamic range
of all peak values. This led to difficulty in identifying outliers. Significant co-
occurrence relationships were occasionally compressed to the point where they
were unidentifiable. This led us to conclude that these measures were not use-
ful in this context. However, the basic concepts of span and occupancy proved
useful in initial filtering of time series. Encoded time series are not submitted
to correlation calculations unless they meet a minimum threshold of both span
and occupancy.

5.2 Model Enrichment

Additional attributes and statistics may be calculated to enrich the generated
models and improve their significance and understandability to end users. For
example, identification of recurrent patterns in either the encoded time series or
the occurrence of significant relationships can provide experts with information
on the typical behavior of a system. Recurrent patterns are behaviors that have
a periodicity to their occurrence; these events may take place hourly, daily, or
weekly.

Recurrent Events. Recurrent events are event classes that occur with some
periodicity. For example, connections to a time card certification system may
peak on the day that certifications are due. Identification of recurrent events
informs experts on when they can expect a given event class to typically occur.
In turn, this allows them to develop rules for other applications or detect unusual
behaviors.
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Identification of recurrent events follows naturally from the calculation of
cross-correlation coefficients described in Sect. 3.3. Given flow records, we may
encode time series based on occurrence count, byte or packet counts. The bin
sizes are chosen based on the periodicity being explored. Once the time series
is encoded, we may slightly modify the Erdem coefficient ρ0 to calculate the
autocorrelation.

Substituting a time series X into (3) for both the X and Y inputs gives:

αxx [�] =
1

T − 1

T−�∑
t=2

rxtrxt+� � ∈ (0,∞) (6)

Analogously to the original cross-correlation approach, this coefficient
describe the covariation of a time series with itself at various lag and is contained
within the range [−1, 1]. A coefficient closer to 1 indicates a strong positive cor-
relation, or that the time series tends to change in a similar manner over time.
By its definition, the autocorrelation coefficient will always equal 1 at the zero
lag because a time series is always correlated with itself.

When autocorrelation is performed on a time series, a resulting peak indicates
the period at which the event class tends to occur. For example, if data is binned
by the minute and there is a peak in the autocorrelation at lag 10, this event
tends to reoccur every 10 min. The lack of a peak in the autocorrelation implies
that the event class does not display any recurrent behavior at the current level
of granularity. However, care should be taken to verify that periodicity cannot
be identified at a different granularity.

Recurrent Correlations. It may be of further interest to explore recurrent
correlation present within the dataset. A recurrent correlation is a significant
co-occurrence that will occur at regular time intervals. For example, an individ-
ual may initiate a remote session connection once a day. Identification of these
patterns allow experts to determine typical joint behaviors of event classes.

Determination of a recurrent correlation follows similar steps as those for
recurrent events. The difference exists in the encoded time series that is the
input to the autocorrelation function. For this case, the time series are encoded
based on the presence of significant relationships. The time series bins contain
counts of significant co-occurrences during that time interval. A peak in the
resulting autocorrelation indicates that there is periodicity in this relationship.

5.3 Further Application

The work presented shows how Erdem’s coefficient can be expanded to find
lagged correlations between time series. This approach furthers experts’ under-
standing of relationships within a network. An understanding of significant corre-
lations can aid in related domains, such as mission assurance. When contemplat-
ing the risks involved in completing an organization’s mission, it is necessary to
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understand the underlying dependencies in the networks that support the orga-
nization. Unexpected relationships may lead to additional considerations when
evaluating the criticality of mission support systems.

6 Conclusion

This paper presents a general method to characterize network behaviors that
manifest in the temporal domain. The characterized behaviors describe inter-
actions between networked components. By analyzing the data in the temporal
domain, indirect relationships (an indirect relationship is one in which no graph
path exists between components) may be inferred. The proposed method employs
significant co-occurrences detection which is a generalization of our prior work
on dependency discovery. Formulations of different mechanisms governing inter-
actions, influence the design of aggregation and encoding stages. We showed the
method can be applied on flow information to related problems such as coupled
remote shell sessions. Further analysis can be applied to determine the notability
of the co-occurrence to network defenders and operators.

Acknowledgment. Portions of the research were funded by PNNL’s Asymmetric
Resilient Cybersecurity (ARC) Laboratory Research & Development Initiative. This
work was performed while Satish Chikkagoudar was at Pacific Northwest National
Laboratory. The views expressed in this paper are the opinions of the Authors and
do not represent official positions of the Pacific Northwest National Laboratory, the
Department of the Navy, or the Department of Energy.

References

1. Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, D.A., Zhang, M.:
Towards highly reliable enterprise network services via inference of multi-level
dependences. In: Proceedings of the ACM SIGCOMM Conference on Data Com-
munications (SIGCOMM), pp. 13–24 (2007)

2. Box, G.G.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and
Control, 4th edn. Wiley, Hoboken (2008)

3. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer,
Heidelberg (1991). https://doi.org/10.1007/978-1-4899-0004-3

4. Bruillard, P., Nowak, K., Purvine, E.: Anomaly detection using persistent homol-
ogy. In: Proceedings of the Cybersecurity Symposium (CYBERSEC). IEEE (2016)

5. CAIDA: The CAIDA Anonymized Internet Traces 2016 Dataset (2016). http://
data.caida.org/datasets/passive-2016/README-2016.txt. Accessed 29 Mar 2016

6. Carroll, T.E., Chikkagoudar, S., Arthur-Durett, K.: Impact of network activity
levels on the performance of passive network service dependency discovery. In:
Proceedings of the Military Communications Conference (MILCOM), pp. 1341–
1347. IEEE (2015)

7. Carroll, T.E., Chikkagoudar, S., Arthur-Durett, K.M., Thomas, D.G.: Automat-
ing network node behavior characterization by mining communication patterns.
In: 2017 IEEE International Symposium on Technologies for Homeland Security
(HST), pp. 1–7. IEEE (2017)

https://doi.org/10.1007/978-1-4899-0004-3
http://data.caida.org/datasets/passive-2016/README-2016.txt
http://data.caida.org/datasets/passive-2016/README-2016.txt


Discovering Significant Co-Occurrences to Characterize Network Behaviors 623

8. Chakravarty, S., Barbera, M.V., Portokalidis, G., Polychronakis, M., Keromytis,
A.D.: On the effectiveness of traffic analysis against anonymity networks using flow
records. In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014. LNCS, vol. 8362, pp.
247–257. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04918-2 24

9. Erdem, O., Ceyhan, E., Varli, Y.: A new correlation coefficient for bivariate time-
series data. Phys. A: Stat. Mech. Appl. 414, 274–284 (2014)

10. Hamming, R.W.: Numerical Methods for Scientist and Engineers, 2nd edn. Dover,
New York (1986)

11. Inacio, C.M., Trammell, B.: YAF: yet another flowmeter. In: Proceedings of the
24th Large Installation System Administration Conference (LISA 2010). USENIX
(2010)

12. Jalali, L., Jain, R.: A framework for event co-occurrence detection in event streams.
CoRR abs/1603.09012 (2016)

13. Joslyn, C., Cowley, W., Hogan, E., Olsen, B.: Discrete mathematical approaches
to graph-based traffic analysis. In: Proceedings of the International Workshop on
Engineering Cyber Security and Resilience (ECSaR) (2014)

14. Kohonen, T.: Self-Organization and Associative Memory, 2nd edn. Springer, Hei-
delberg (1987). https://doi.org/10.1007/978-3-642-88163-3

15. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis for Tor. In: Proceedings of the
2005 IEEE Symposium on Security and Privacy (S&P 2005), pp. 183–195. IEEE
(2005)

16. Natarajan, A., Ning, P., Liu, Y., Jajodia, S., Hutchinson, S.E.: NSDMiner: auto-
mated discovery of network service dependencies. In: Proceedings of the 31st IEEE
International Conference on Computer Communications (INFOCOMM 2012).
IEEE (2012)

17. Oler, K., Choudhury, S.: Graph based role mining techniques for cyber security.
In: Proceedings of the FloCon. CERT (2015)

18. Sayegh, N., Elhajj, I.H., Kayssi, A., Chehab, A.: SCADA intrusion detection system
based on temporal behavior of frequent patterns. In: Proceedings of the 17th IEEE
Mediterranean Electrotechnical Conference (MELECON). IEEE (2014)

19. Thomas, B.: Teamviewer authentication protocol (part 1 of 3), 31 January 2013.
https://www.optiv.com/blog/teamviewer-authentication-protocol-part-1-of-3.
Accessed 1 Jan 2018

20. Thomas, B.: Teamviewer authentication protocol (part 2 of 3), 31 January 2013.
https://www.optiv.com/blog/teamviewer-authentication-protocol-part-2-of-3.
Accessed 1 Jan 2018

21. Yin, J., Zhao, X., Tang, Y., Zhi, C., Chen, Z., Wu, Z.: CloudScout: a non-intrusive
approach to service dependency discovery. IEEE Trans. Parallel Distrib. Syst.
28(5), 1271–1284 (2017)

https://doi.org/10.1007/978-3-319-04918-2_24
https://doi.org/10.1007/978-3-642-88163-3
https://www.optiv.com/blog/teamviewer-authentication-protocol-part-1-of-3
https://www.optiv.com/blog/teamviewer-authentication-protocol-part-2-of-3

	Discovering Significant Co-Occurrences to Characterize Network Behaviors
	1 Introduction
	2 Problem Formulation
	3 Approach
	3.1 Aggregation
	3.2 Encode
	3.3 Co-Occurrence Detection
	3.4 Significant Co-Occurrence

	4 Evaluation
	5 Discussion
	5.1 Measures and Metrics
	5.2 Model Enrichment
	5.3 Further Application

	6 Conclusion
	References




