
Keywords-To-Text Synthesis Using Recurrent
Neural Network

Nikolaos Kolokas(&), Anastasios Drosou, and Dimitrios Tzovaras

Center for Research and Technology Hellas, Thermi, Thessaloniki, Greece
{nikolokas,drosou,dimitrios.tzovaras}@iti.gr

pitygonos@gmail.com

Abstract. This paper concerns an application of Recurrent Neural Networks to
text synthesis in the word level, with the help of keywords. First, a Parts Of
Speech tagging library is employed to extract verbs and nouns from the texts
used in our work, a part of which are then considered, after automatic elimi-
nations, as the aforementioned keywords. Our ultimate aim is to train a
Recurrent Neural Network to map the keyword sequence of a text to the entire
text. Successive reformulations of the keyword and full text word sequences are
performed, so that they can serve as the input and target of the network as
efficiently as possible. The predicted texts are understandable enough, and their
performance depends on the problem difficulty, determined by the percentage of
full text words that are considered as keywords (ranging from 1/3 to 1/2), and
the training memory cost, mainly affected by the network architecture.

Keywords: Deep machine learning � Sequence modeling
Natural language processing � Text mining

1 Introduction

Keywords-to-text synthesis appertains to the general field of the well known Natural
Language Processing (NLP). NLP regards the understanding of a human language by
the computer, and also, conversely, the ability of the computer to synthesize text or
speech. Examples of applications include speech recognition, machine translation,
text-to-speech synthesis, Parts Of Speech (POS) tagging and text summarization [1].

NLP research generally started in the 1950’s, but machine learning techniques for
NLP were firstly employed in the 1980’s, when the tasks started to be solved by
statistical inference instead of the former disadvantageous handwritten rules. Even
more especially, deep learning was involved very recently [1, 2]. Most approaches are
supervised, but recently semi-supervised and unsupervised approaches are investigated
as well. In this paper the supervised option is preferred, because it demands less data to
achieve desirable performance.

In this work the problem of keywords-to-text synthesis is addressed. Especially, our
main goal is to provide a tool which, taking a keyword sequence as input, is able to
produce a full text containing the keywords, or synonyms of them, in the same order.
This synthesis facilitates the text composition, since it demands less typing by the user.
The Recurrent Neural Network (RNN) is chosen as such a tool, since RNNs are

© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
L. Iliadis et al. (Eds.): AIAI 2018, IFIP AICT 519, pp. 85–96, 2018.
https://doi.org/10.1007/978-3-319-92007-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92007-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92007-8_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92007-8_8&domain=pdf

particularly appropriate for sequence modeling problems and they have many appli-
cations related to NLP, knowledge representation, reasoning and question answering
[1, 3]. This paper concerns a supervised learning method and some full texts are used as
a data set. As for the keywords, here they are defined as the least necessary words from
which a unique full text can be inferred. Since such words are almost always verbs and
nouns, the verbs and nouns are extracted from the texts using an available POS tagging
algorithm. Finally, for the automatic synonym matching, a library containing a dic-
tionary which includes synonyms for each of its words is used.

In this paper a relatively simple family (among those presented in [1, 2]) of an RNN
is eventually employed. It is empirically confirmed that our text synthesis goal does not
demand gated RNNs [e.g. Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU)], which deal with long-term dependencies, something rather irrelevant to this
problem, where for a word production the present and a few neighboring input key-
words and full text predicted words obviously suffice, as also shown by the results.

The remainder of the paper is organized as follows. In Sect. 2 related work is cited
and the uniqueness of ours is briefly described. In Sect. 3 the preprocessing of our data
set before training is presented, and in Sect. 4 our experimental results from several
training approaches are shown and discussed. Finally, Sect. 5 summarizes our work
and proposes possible next steps.

2 Previous Work and Motivation

In this section previous work is presented, related to the two coarse phases of ours: the
keywords extraction from texts and the reproduction of the texts (text synthesis) from
these keywords.

Considerable work on keywords extraction and text summarization is found in the
bibliography, e.g. in [4–8]. The criteria of defining/selecting keywords, or even the
goal, differ among references, so the methodologies are not directly linked and com-
parable with each other and with ours. The work of [4] is somehow relevant to ours,
because in that paper the keywords are considered as the nouns (as characterized by a
POS tagging algorithm) that imply many other nouns in the same sentence. However,
the final aim in that work is not the text synthesis from the extracted keywords, which
constitute a percentage of the total word number that is too small to serve such a goal.
Thus, despite our inspiration by the cited keywords extraction methodology, it needed
to be modified in our work. In [5] the purpose of keyword extraction is the classifi-
cation (annotation) of texts, so words are evaluated by the number of families in which
they appear and their mean frequency in them. In [6] keywords are defined according to
their frequency and extracted from abstracts and titles. Finally, in [7, 8] keywords [7] or
whole key-sentences [8] are extracted from texts according to several criteria, with the
purpose of summarization. Particularly, in [7] a supervised and an unsupervised
approach (both graph-based) are introduced for the extraction.

References about text synthesis regard mainly text-to-speech, speech-to-text and
text-to-image synthesis. Regarding keywords-to-text synthesis, there is some work
found about text generators based on keywords [9–11], where the meaning of the
keywords or a categorization of them is necessary for their appropriate mapping to the

86 N. Kolokas et al.

full texts. Also, in those works the input of the text generator is either too complex for
manual assignment [9, 10] or domain-specific [11]. In this paper the mapping model
has been defined with the help of neural network (especially RNN) training, so that the
manual specification of the meaning, category or part of speech of the input keywords
is not necessary. In our methodology the input used for text synthesis is very simple;
just a sequence of keywords, from the domain used in training, which may be any
desired. So, a user may benefit from the provided tool even by assigning the input
manually. Also, it is experimentally observed that our goal cannot be addressed by a
standard encoder-decoder sequence-to-sequence architecture [1, 2, 12], which is too
complex for our problem and not well-suited enough to it. (This is discussed more
extensively in Sect. 3.5.) Other pieces of work on RNNs (some of which regard NLP)
appear in [1].

3 Preprocessing Methodology

Apparently, the first step of the experiment is the definition of the data set. It should
consist of texts of similar content, for the sake of sufficient training and appropriate
evaluation. A family of steak recipes is constructed according to [13] and considered as
such a data set, but any other content could have been selected. The used texts are 15,
with a total length of 761 words. The first 9 of them are treated as the training set and
the rest 6 as the test set. Two examples are shown below. Observe similarities and
dissimilarities.

• “Mix garlic and oil in a bowl. Pour marinade into a resealable plastic bag over the
steaks. Later squeeze excess air and seal bag. Afterwards marinate beef in the
refrigerator for 4 h. Preheat grill for medium-high heat and bribe grate. Then
remove meat from the marinade and shake off excess. Later discard marinade and
afterwards cook steaks on preheated oven to desired degree for about 8 min.”

• “In a bowl combine garlic, oil, sauce and sugar. Pour marinade into a resealable
plastic bag over the beef. Later in the fridge marinate meat for 8 h. Preheat grill for
high heat and then bake steaks to desired degree for about 60 min.”

In the following, the dot and the comma are considered as separate words and all
letters are treated as capitals.

In the rest of this section all preprocessing steps, included also in Fig. 1, are
described in detail, as executed for our recipes data set. As mentioned above, first the
verbs and nouns from all texts are extracted with POS tagging [14]. Afterwards,
synonyms are detected and unified using an appropriate library containing a dictionary
[15], and then some of the remaining verbs/nouns are automatically selected as key-
words. Later, according to the extracted keywords, the texts are (also automatically)
separated into chunks. Finally, the data are reformulated in a form acceptable by the
network, which is taught using the training set. Our trained model is evaluated using
mainly the test set.

Keywords-To-Text Synthesis Using Recurrent Neural Network 87

3.1 Detecting Verbs and Nouns with Parts of Speech Tagging

In any of the employed texts the predicted nouns and verbs by the POS tagging
algorithm (which was already available in [14]) plus the adjectives “high”,
“medium-high” and the numerical adjectives are initially treated as keywords. The
participles with suffix “-ing” or “-ed” and the indefinite article “a” are prohibited from
being considered as keywords, because it has been observed that they do not play a key
role in a sentence. Therefore, no stemming by unifying words with the same prefix has
been performed.

3.2 Unifying Synonyms

The elimination of the vocabulary to be used in the RNN not only may reduce the
number of its parameters (weights), but it also decreases the size of the training set that
is required for satisfactory results. Furthermore, by reducing the percentage of full text
words that are considered as keywords, the mapping tool is rendered smarter, since less
words suffice for the full text synthesis. Thus, only one word is attempted to be used for
every group of synonyms, both in input and output/target. (The output is the prediction
of the target.) The automatic identification of synonyms for the sake of training is
subject to a library [15], which consists of a language dictionary providing meanings,
translations, synonyms and antonyms of words. In the training scope two words are
initially defined as synonyms when at least one of them is proposed by the library as
one of the (up to 5) synonyms of the other one. However, this procedure leads to
several wrong matches, so then the user is proposed to confirm which of the suggested
pairs of words (s)he desires to be considered as synonyms (something subjective and
dependent on the context, which is not taken into account by the library). This manual
verification is practical only for a small training text corpus. Also, there are pairs of
synonyms that are not identified, but this is not faced manually for training. For each
finally considered group of synonyms, a representative is automatically selected to be
used in training.

Fig. 1. Architecture of our work

88 N. Kolokas et al.

3.3 Other Keyword Elimination Measures

The preprocessing steps of the current and the following sections are programmed
mainly from scratch, i.e. without employing some package.

For the further decrease of the number of keywords with respect to the sizes of the
full texts, further elimination measures are taken for keywords. Particularly, it has been
accepted that when two or more verbs or nouns always coexist in the same sentence,
then only one of them implies the existence of the others. (An example is obvious in
Fig. 2.) So only the first one is considered as keyword. Also, when the presence of a
verb/noun always implies the presence of another verb/noun, even without the reverse
holding, and the pair of these two words appears at least 5 times (in order to avoid cases
of random coexistences), then optionally the second word is not considered as keyword
(see also the term “degree of inclusion” in [4]). After this last optional measure, the
non-distinct keywords constitute 31.8% of the total number of non-distinct words of the
full texts. In case it is not applied, the keyword rate is 47.7%. Of course, the above
implications depend on the data set. The remaining keywords are inserted into a single
list (which will generate the RNN input during the data reformulation), and the extra
keyword “.” is introduced to separate adjacent recipes.

3.4 Segmentation of Texts

In the scope of preprocessing and training all words are replaced by their synonym
group representative, and they appear in this way in the next figures.

Definition 1. A“chunk” is defined in this paper as a sequence of words (text segment)
ending at a keyword and starting at the word after the previous keyword (or, if not any,
at the first word).

According to this definition, a chunk may be seen as a part of a full text which is
generated by a single keyword.

The full texts are divided into chunks. An example is depicted in Fig. 2. Our goal is
to teach the RNN to map each input keyword to its chunk (with the additional help of
the neighboring keywords and the predicted context), so that the full texts are auto-
matically produced by concatenating the learned chunks.

3.5 Data Reformulation

Another interesting phase is to reformulate the data so that they suit an RNN.

Fig. 2. Segmentation of a part of the first recipe shown in the beginning of the section into
chunks according to the extracted keywords (colored). The noun “air” is not considered as
keyword, because it always coexists with the verb “squeeze” in the same sentence. The word
“excess” is an adjective in this context, but it has been mistakenly recognized as noun.

Keywords-To-Text Synthesis Using Recurrent Neural Network 89

The keywords and the corresponding full texts have to serve as input and output
respectively in this work. Sequence-to-sequence models with and without attention [1,
12] were initially employed, but the result was fully unsatisfactory (worse predicted
texts than the empty text, according to the measures of Sect. 4.2). A major mistake of
such a model was that it was predicting many words multiple times, although these
words were related to the respective chunks. This fact indicates that the
sequence-to-sequence model is improper for word-to-word mappings, maybe due to the
intervention of the context variable between the input and output. Therefore, a more
appropriate, tailored idea has been implemented to resolve our problem. The model
family used in this paper demands the input and output data sequences to have the same
size. However, the keywords of each text are apparently less than all of its words, and
also the chunks do not have fixed number of words. The consideration of a chunk as an
undivided entity would not be a solution, because then the fact that same words appear
in different chunks would not have been taken into account. That is, the output needs to
be predicted in the word and not in the chunk level. The above issues are overcome by
reformulating the keyword and text sequences, according to the first of the following
steps. The second step regards the appending of the previous and the next keyword to
each keyword, and the third one converts the words to vectors, so that they can be
inserted in the network. All these steps are also executed automatically. The effect of
the first two is clear in Fig. 3.

1. All training chunks are stored in groups according to their keyword, and empty
words are inserted where needed such that all chunks of the same keyword have the
same length, and same words are at the same position of the text segment (so that
their alignment with the input is more appropriate). Then, the reformulated chunks
compose the extended full texts (with the empty words inserted), which are con-
catenated, forming an undivided sequence, that will be called “verbal target”, since
it is the verbal form of the network target sequence. In the RNN input the keywords
are replicated in order to fit their chunk length. In our application the texts are
artificial, and thus there was the possibility to construct a training set containing all
the words of the test set. Auxiliary ordinal keywords are also created, indicating the
serial numbers of the positions of each chunk, so that the prediction of every word
of a chunk at the correct position is facilitated. Optionally, these numbers are
bonded with the keywords, forming new words [e.g. the pair (oil, 2) becomes oil2].

2. As soon as the extended keyword list(s) resulting from the previous step has/have
been constructed, two other auxiliary lists of the same length are created for the
network’s input, informing about the keyword of the previous and the next chunk.
This step is based on our observations about the dependence between the current
chunk and the neighboring keywords. Its advantage has also been inferred with
trials.

3. The words are converted to vectors, so that they can be used by the network. In this
step two approaches are examined and compared [1, 2] for the input and/or target
words; a. a one-hot and b. a word embedding conversion.
a. In the first one, the words are converted to one-hot vectors, (i.e. vectors with all

their entries equal to 0 except one, which equals 1). This is applied for every

90 N. Kolokas et al.

column (i.e. list) separately. Only the empty word is represented as zero vector
instead of one-hot.

b. In the second approach, the words are represented as vectors of floats instead of
one-hot vectors, as obtained by a word embedding (word-to-vector) algorithm
[16]. In this way, not only the dimension of vectors may be reduced in com-
parison with the one-hot conversion, but also the distance of representations of
all word pairs is determined by the degree of their context relevance. For the
training of the word embedding model, the chunks of the training recipes have
been used (since the training set contains all the words of the test set). Another
option was to use a pre-trained word embedding model. This was examined with
GloVe, which is considered as the most preferred by NLP practitioners [16]. As
expected, the text synthesis results were remarkably worse, since the
word-to-vector training was not based on the domain context. In case the key-
words of the first input columns are not bonded with the serial numbers, every
input word is also an output word, so word embedding may be applied both to
the whole input and to the output/target.

Fig. 3. Data reformulation corresponding to the first part of the first recipe shown in the
beginning of the section. First auxiliary words are added to both the target and the first input
column, so that they have the same length. (Empty words are represented as “nan”.) Then, the
serial numbers of the positions of the data segments defined by the chunks are appended as the
second input column, and finally two other input columns are created (3, 4), giving information
about the precedent and the upcoming keyword.

Keywords-To-Text Synthesis Using Recurrent Neural Network 91

With the above reformulation steps, the sequences of the RNN input (x(t)) and
target (y(t)) are created. That is, y(t) is the vector representation of the (t + 1)-th word of
the verbal target sequence (assuming that t starts from 0), and x(t) is the concatenation
of the representations of the (t + 1)-th words of the input sequences. Although the
argument t does not really stand for time in our case, it will be mentioned as such,
because the data are sequential. The examined RNN predictive models belong to the
family

ypred tð Þ ¼ f x t � ið Þ : i 2 If g; ypred t � jð Þ : j 2 J
� �� �

; ð1Þ

where I, J are finite subsets of {0,1,…}, {1,2,…} respectively. Particular assumptions
have been made for the multidimensional function f [17, 18].

4 Recurrent Neural Network Training and Results

After the preprocessing of the data so that they suit the network architecture, training is
ready to start.

4.1 Training Details

The Mean Square Error is used as cost function. It is proportional to the Sum of Square
Errors, i.e.

SSE ¼
X

t2Ttrain y tð Þ � ypred tð Þ� �2 ð2Þ

where Ttrain denotes the set of “time points” of the training set.
A 2nd order iterative optimization algorithm (e.g. Levenberg-Marquardt,

Broyden-Fletcher-Goldfarb-Shanno) is practical in our problem only in case of suffi-
cient word embedding, due to its usually extreme memory cost (resulting from the
Hessian approximations and the big input and output dimensions). Thus, a 1st order
algorithm is employed otherwise.

Better results are achieved by setting the initial values of the model parameters to 0
than with random initialization. This is explained rather in the one-hot approach by the
sparsity (big percentage of zeros) of the optimal model, which is anticipated due to the
one-hot (or zero) encoding of the input and target.

4.2 Evaluation

As follows by the above, this work aims to resolve a classification problem using a
regression model, so the continuous output has to be converted to a class (a word of the
target vocabulary in our case). In the one-hot approach the output is converted to a
one-hot vector by setting the maximum value of the output vector to 1 if the output
vector’s sum exceeds 0.5 (which indicates that possibly a non-empty word corresponds
to that position), and to the zero vector otherwise. In the word embedding approach the
output is converted to the closest vector representation of the target vocabulary.

92 N. Kolokas et al.

The modified output is then compared to the target for the sake of evaluation and text
production.

For vocabulary diversity in predictions, each predicted word is randomly mapped to
one of its synonyms or itself. For the sake of evaluation, the pairs of synonyms that
have not been identified by the library have been manually defined as synonyms.

For the evaluation of the model’s performance, the following measures are used for
each of the training and the test set. Both aim at quantifying the quality/correctness of
the predicted texts, which are compared to the ground truth (i.e. actual) ones. However,
these metrics do not consider the case of multiple correct syntaxes of a sentence, so
they may admit a bit worse quality than real.

• Mean Word Error Rate (MWER): The widely known Word Error Rate (WER),
common for NLP problems, is computed for each text (recipe) separately and the
mean is taken as the evaluation measure. The WER equals the also well known
Levenshtein distance between the ground truth and the predicted text divided by the
number of ground truth non-empty text words.

• Mistake Rate (MR): This is a simple, heuristic measure similar to WER, but it never
rewards the prediction of the correct word in the false position, even if the
non-empty words are predicted in the correct order. It is the number of wrong
predictions (in terms of time) for all texts divided by the number of ground truth
non-empty words of all texts. A mistake is considered as single when an empty
word is predicted as non-empty or vice versa, and as double when a non-empty
word is predicted as another non-empty word. Apparently, the empty predicted text
corresponds to an error of 1, as in the WER case.

4.3 Selecting Recurrent Neural Network Mapping Model

With intuitive trial and error and after search of several shallow and deep architectures
(including also LSTM and GRU [17]), there is a general conclusion that one of the best
models is the linear simple RNN with input delay 0 and output (direct) delays from 1 to
5, i.e. the shallow model

ypred tð Þ ¼ Ux tð Þþ
X5

j¼1
V jypred t � jð Þþ b; ð3Þ

where U, Vj, b contain the weights. (The first 5 predictions are set as equal to the target
values.) This intuition results from the fact that a word of a full text is dependent on the
present and the neighboring keywords, as well as a few previous full text words. The
use of even one hidden layer has proven to be completely helpless, since it leads to
training and test errors comparable with those of the empty text. Consequently, the best
architecture is found very easily. As for shallow gated RNNs, LSTM has comparable,
but often slightly poorer performance, whereas GRU is even worse. Maybe LSTM
would be the best if the average chunk length were higher (or, in other words, if the
keyword rate were smaller).

Keywords-To-Text Synthesis Using Recurrent Neural Network 93

4.4 Results and Discussion

In Table 1 the results of training the selected simple RNN of (3) [18] are summarized
and compared to the best of LSTM [17] (shallow, stateful network with dropout and
recurrent dropout equal to 0.01 and no feedforward activation), according to all possible
approaches discussed above. In each case, one of the best numbers of iterations has been
chosen. The optimization time of these executions ranges from a few seconds to a few
minutes, and depends on the RNN type and dimensionality, the optimizer and the
chosen number of iterations. It is worth mentioning that there are 66 distinct non-empty
full text words after the unification of synonyms among the initial 73 distinct non-empty
full text words. Word embedding, especially on the output/target, reduces the number of
weights significantly. For example, all shallow simple RNNs have O(n2 + nm)
parameters, where m, n are the input and the output/target dimensions respectively. This
would be particularly important in case that more (and more complex) texts were used,
where the need to save memory and computational time would emerge.

A general remark is that the results worsen as the problem requirements (in terms of
keyword rate -resulting from Sect. 3.3- and number of weights) strengthen. It can be
subjectively inferred that when the keyword rate is 31.8% (which is the most useful and
challenging scenario), the best choice is to apply embedding only on the output and not
on the input, so that the first two input columns can be bonded (6th row of the table).

Word embedding training with the skip-gram instead of Continuous-Bag-Of-Words
algorithm and use of hierarchical softmax yield the best results here.

The results with a Mean WER of about 0.3 can be characterized as quite satis-
factory, because the meaning of the text is almost understandable. For an illustrative
example, the prediction. “Preheated oven bake meat to desired extent for about
30 min.” of the text “Preheat oven and then bake beef to desired extent for about
30 min.” has WER = 0.29.

Table 1. Evaluation of best RNNs with test errors. IE/OE = Input/Output Embedding (+size),
ICB = Input Columns 1 & 2 bonded, SRNN = Simple RNN with direct delays of orders from 1
to 5. The percentages in the headings denote keyword rate.

IE OE ICB MWER
31.8%
SRNN

MWER
31.8%
LSTM

MWER
47.7%
SRNN

MWER
47.7%
LSTM

MR
31.8%
SRNN

MR
31.8%
LSTM

MR
47.7%
SRNN

MR
47.7%
LSTM

10 10 no 0.608 0.640 0.375 0.410 0.924 0.892 0.605 0.680
no 10 no 0.697 0.619 0.285 0.351 1.042 0.917 0.483 0.573
no 10 yes 0.319 0.311 0.111 0.168 0.378 0.373 0.203 0.220
20 20 no 0.354 0.489 0.262 0.342 0.479 0.627 0.407 0.515
no 20 no 0.378 0.501 0.233 0.325 0.484 0.651 0.400 0.494
no 20 yes 0.239 0.273 0.106 0.163 0.265 0.295 0.186 0.195
10 no no 0.340 0.403 0.157 0.211 0.423 0.427 0.233 0.203
no no no 0.295 0.461 0.060 0.212 0.357 0.477 0.075 0.199
no no yes 0.229 0.335 0.017 0.069 0.232 0.357 0.017 0.071

94 N. Kolokas et al.

The variety of the keywords’ order in some input sequence among recipes not only
does not cause significant problem in training, but also results to an aesthetically
appealing variety in the chunks order, which changes correspondingly.

5 Conclusion and Future Work

In this work a tailored and quite simple algorithm which, with a sequence of known
keywords as input, is able to produce full text containing these keywords, or synonyms
of them, in the same order, has been developed. This automatic mapping relies on an
RNN model, based on some training texts, from which the keywords are automatically
extracted with the help of a POS tagging algorithm and a dictionary library. The results,
which depend on the problem difficulty, are rather satisfactory, because the meaning of
the predicted text is almost clear.

So far it seems that the proposed methodology is applicable to any domain/
vocabulary, although the used texts have to be quite similar (maybe after deliberate
editing), especially if they are few. A basic limitation is that when the test set contains
words neither included in the training set nor synonymous of a training word, then the
word embedding may be based only on a pre-trained word-to-vector model, which is
then necessary to determine the chunk length of a new keyword as that of a training
neighboring one. The new words need to belong to the domain of the training texts for
effective training as well.

The text synthesis work done for steak recipes is going to be repeated for a data set
from another domain, containing much more distinct and non-distinct words. By
increasing the amount and diversity of texts, it will be interesting to examine the
necessary word embedding size to yield fairly good results. Furthermore, there is an
ambition that our program will be useful for everyday applications, like news
production.

Acknowledgements. This work has been partially supported by the European Commission
through project Scan4Reco funded by the European Union Horizon 2020 programme under
Grant Agreement No. 665091.

References

1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016).
http://www.deeplearningbook.org

2. Goldberg, Y.: A Primer on neural network models for natural language processing. J. Artif.
Intell. Res. 57, 345–420 (2016). https://www.jair.org/media/4992/live-4992-9623-jair.pdf

3. Sutskever, I., Martens, J., Hinton, J.: Generating text with recurrent neural networks. In:
Proceedings of the 28th International Conference on Machine Learning, Bellevue, WA, USA
(2011). http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.
pdf

4. Shah, P., Perez-Iratxeta, C., Andrade, M.: Information extraction from full text scientific
articles: where are the keywords? BMC Bioinform. BioMed Central 4, 20 (2003). https://doi.
org/10.1186/1471-2105-4-20

Keywords-To-Text Synthesis Using Recurrent Neural Network 95

http://www.deeplearningbook.org
https://www.jair.org/media/4992/live-4992-9623-jair.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Sutskever_524.pdf
http://dx.doi.org/10.1186/1471-2105-4-20
http://dx.doi.org/10.1186/1471-2105-4-20

5. Andrade, M.A., Valencia, A.: Automatic extraction of keywords from scientific text:
application to the knowledge domain of protein families. Bioinformatics 14(7), 600–607
(1998). https://doi.org/10.1093/bioinformatics/14.7.600

6. HaCohen-Kerner, Y.: Automatic extraction of keywords from abstracts. In: Palade, V.,
Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp. 843–849. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45224-9_112

7. Litvak, M., Last, M.: Graph-based keyword extraction for single-document summarization
(2008). https://dl.acm.org/citation.cfm?id=1613178

8. Al-Hashemi, R.: Text summarization extraction system (TSES) using extracted keywords.
Int. Arab J. e-Technol. 1(4), 164–168 (2010). https://core.ac.uk/download/pdf/25749874.pdf

9. Kasper, R.: A flexible interface for linking applications to Penman’s sentence generator. In:
Proceeding HLT 1989, Proceedings of the workshop on Speech and Natural Language,
pp. 153–158 (1989) https://doi.org/10.3115/100964.100979

10. Feiner, S., McKeown, K.: Automating the generation of coordinated multimedia explana-
tions. Computer, 24(10), 33–41 (1991). https://doi.org/10.1109/2.97249. http://ieeexplore.
ieee.org/abstract/document/97249/

11. Bernauer, J., Gumrich, K., Kutz, S., Lindner, P., Pretschner, D.P.: An interactive report
generator for bone scan studies. In: Proceedings of the Annual Symposium on Computer
Application in Medical Care, pp. 858–860 (1991). https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2247652/pdf/procascamc00004-0868.pdf

12. Brownlee, J.: How to develop an encoder-decoder model for sequenceto-sequence prediction
in keras. https://machinelearningmastery.com/develop-encoder-decoder-model-sequence-
sequence-prediction-keras/

13. allrecipes - Beef Steak Recipes. http://allrecipes.com/recipes/475/meat-and-poultry/beef/
steaks/

14. Natural Language Toolkit (NLTK). http://www.nltk.org
15. PyDictionary 1.3.4. https://pypi.python.org/pypi/PyDictionary/1.3.4
16. Brownlee, J.: How to develop word embeddings in python with gensim. https://

machinelearningmastery.com/develop-word-embeddings-python-gensim/
17. Keras Documentation - Models - Sequential. https://keras.io/models/sequential/
18. Atabay, D.: pyrenn: a recurrent neural network toolbox for python and matlab. Institute for

energy economy and application technology, Technische Universität, München. http://
pyrenn.readthedocs.io/en/latest/

96 N. Kolokas et al.

http://dx.doi.org/10.1093/bioinformatics/14.7.600
http://dx.doi.org/10.1007/978-3-540-45224-9_112
https://dl.acm.org/citation.cfm?id=1613178
https://core.ac.uk/download/pdf/25749874.pdf
http://dx.doi.org/10.3115/100964.100979
http://dx.doi.org/10.1109/2.97249
http://ieeexplore.ieee.org/abstract/document/97249/
http://ieeexplore.ieee.org/abstract/document/97249/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2247652/pdf/procascamc00004-0868.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2247652/pdf/procascamc00004-0868.pdf
https://machinelearningmastery.com/develop-encoder-decoder-model-sequence-sequence-prediction-keras/
https://machinelearningmastery.com/develop-encoder-decoder-model-sequence-sequence-prediction-keras/
http://allrecipes.com/recipes/475/meat-and-poultry/beef/steaks/
http://allrecipes.com/recipes/475/meat-and-poultry/beef/steaks/
http://www.nltk.org
https://pypi.python.org/pypi/PyDictionary/1.3.4
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/
https://keras.io/models/sequential/
http://pyrenn.readthedocs.io/en/latest/
http://pyrenn.readthedocs.io/en/latest/

	Keywords-To-Text Synthesis Using Recurrent Neural Network
	Abstract
	1 Introduction
	2 Previous Work and Motivation
	3 Preprocessing Methodology
	3.1 Detecting Verbs and Nouns with Parts of Speech Tagging
	3.2 Unifying Synonyms
	3.3 Other Keyword Elimination Measures
	3.4 Segmentation of Texts
	3.5 Data Reformulation

	4 Recurrent Neural Network Training and Results
	4.1 Training Details
	4.2 Evaluation
	4.3 Selecting Recurrent Neural Network Mapping Model
	4.4 Results and Discussion

	5 Conclusion and Future Work
	Acknowledgements
	References

