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Abstract. This paper addresses the following problem: how to recon-
struct a given binary self-similar fractal image through iterated functions
systems. This means to obtain an iterated function system (IFS) whose
attractor is a good approximation of the input image. This problem is
known to be a very difficult multivariate nonlinear continuous optimiza-
tion problem. To tackle this issue, this paper introduces a new hybrid
method comprised of a modification of the original cuckoo search method
for global optimization called improved cuckoo search (ICS) along with
the Luus-Jakoola heuristics for local search. This hybrid methodology is
applied to three fractal examples with 3, 4, and 26 contractive functions.
Our experimental results show that the method performs very well and
provides visually satisfactory solutions for the instances in our bench-
mark. The numerical values of the similarity index used in this work also
show that the results are not optimal yet, suggesting that the method
might arguably be further improved.
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1 Introduction

Fractals are one of the most challenging and intriguing mathematical shapes
ever defined. Basically, they are geometric figures created by repeating a simple
process over and over so that it yields a self-similar pattern across different scales.
Interestingly, in the case of fractals, the scale factor of this replicating pattern
is not an integer number, but a real one. Such a number is called the fractal

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
L. Iliadis et al. (Eds.): AIAI 2018, IFIP AICT 519, pp. 495–506, 2018.
https://doi.org/10.1007/978-3-319-92007-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-92007-8_42&domain=pdf


496 A. Gálvez and A. Iglesias

dimension and it is usually larger than the topological dimension of the fractal
[3,9]. Fractals have become ubiquitous objects in popular culture, particularly
since the 80s of last century, owing to the technological advances in hardware and
software and the widespread availability of personal computers. They are also
very popular in science due to their ability to describe many growing patterns
and natural structures commonly found in real-life objects: branches of trees,
river networks, coastlines, mountain ranges, and so on. Furthermore, fractals
have found remarkable applications in computer graphics, scientific visualization,
image processing, dynamical systems, telecommunications, medicine, biology,
arts, and many other fields [1,3,9,11,12].

There are several methods described in the literature to obtain fractal images.
They include the Brownian motion, escape-time fractals, finite subdivision rules,
L-systems, strange attractors of dynamical systems, and many others [1,3]. One
of the most popular methods is the Iterated Function Systems (IFS), originally
conceived by Hutchinson [13] and popularized by Barnsley in [1]. Roughly, an
IFS consists of a finite system of contractive maps on a complete metric space.
It can be proved that the Hutchinson operator over the set of all compact sub-
sets of this space has a unique non-empty compact fixed set for the induced
Hausdorff metric, called the attractor of the IFS. The graphical representation
of this attractor is (at least approximately) a self-similar fractal image. Con-
versely, each self-similar fractal image can be represented by an IFS. Obtaining
the parameters of such IFS is called the IFS inverse problem. Basically, it con-
sists of solving an image reconstruction problem: given a fractal image, compute
the IFS whose attractor approximates the input image accurately.

This IFS inverse problem has shown to be extremely difficult. In fact, the
general case is still unsolved and only partial solutions have been reached so
far. In this paper we propose a new approach to address this problem for the
case of binary fractal images. Our methodology consists of the hybridization of
a bio-inspired metaheuristics based on the cuckoo search algorithm for global
optimization and a local search procedure. In particular, we consider a modifi-
cation of the original cuckoo search method called the improved cuckoo search
(ICS), which is based on the idea of allowing the method parameters to change
over the generations [16]. This method is hybridized with the Luus-Jakoola (LJ)
heuristics, a search method aimed at improving the local search step to refine
the quality of the solution.

The structure of this paper is as follows: Sect. 2 introduces the basic concepts
and definitions about the iterated function systems and the IFS inverse problem.
Then, Sect. 3 describes the original and the improved cuckoo search algorithms.
Our proposed method is described in detail in Sect. 4, while the experimental
results are briefly discussed in Sect. 5. The paper closes with the main conclusions
and some ideas about future work in the field.
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2 Basic Concepts and Definitions

2.1 Iterated Function Systems

An Iterated Function System (IFS) is a finite set {φi}i=1,...,η of contractive maps
φi : Ω −→ Ω defined on a complete metric space M = (Ω,Ψ), where Ω ⊂ R

n

and Ψ is a distance on Ω. We refer to the IFS as W = {Ω;φi, . . . , φη}. For
visualization purposes, in this paper we consider that the metric space (Ω,Ψ)
is R

2 along with the Euclidean distance d2, which is a complete metric space.
Note, however, that our method can be applied to any other complete metric
space of any dimension without further modifications. In this two-dimensional
case, the affine transformations φκ are of the form:[
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or equivalently: Φκ(Ξ) = Θκ.Ξ + Σκ where Σκ is a translation vector and
Θκ is a 2 × 2 matrix with eigenvalues λκ

1 , λκ
2 such that |λκ

j | < 1. In fact,
μκ = |det(Θκ)| < 1 meaning that φκ shrinks distances between points. Let us
now define a transformation called the Hutchinson operator, Υ , on the compact
subsets of Ω, H(Ω), by:

Υ (B) =
η⋃

κ=1

φκ(B) (2)

with B ∈ H(Ω). If all the φκ are contractions, Υ is also a contraction in H(Ω)
with the induced Hausdorff metric [1,13]. Then, according to the fixed point
theorem, Υ has a unique fixed point, Υ (A) = A, called the attractor of the IFS.

Consider a set of probabilities P = {ω1, . . . , ωη}, with
∑η

κ=1 ωκ = 1. There
exists an efficient method, known as probabilistic algorithm, for the generation
of the attractor of an IFS. It follows from the result {Ξj}j = A provided that
Ξ0 ∈ Ω, where: Ξj = φκ(Ξj−1) with probability ωκ > 0, see [2]. Picking an
initial point Ξ0, one of the mappings in the set {φi, . . . , φη} is chosen at random
using the weights {ω1, . . . , ωη}. The selected map is then applied to generate a
new point, and the same process is repeated again with the new point and so on.
As a result of this stochastic iterative process, we obtain a sequence of points
that converges to the fractal as the number of points increases [1,10].

2.2 The Collage Theorem

The Collage Theorem basically says that any digital image I can be approx-
imated through an IFS [1,10]. In particular, it states that given a non-empty
compact subset I ∈ H(Ω), the Hausdorff metric H(.,.), a non-negative real
threshold value ε ≥ 0, and an IFS W = {Ω;φi, . . . , φη} on Ω with contractivity
factor 0 < s < 1 (the maximum of the contractivity factors sκ of maps φκ),

if H (I, Υ (I)) = H

(
I,
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φκ(I)
)

≤ ε then H (I,A) ≤ ε

1 − s
, where A is the

attractor of the IFS. That is: H (I,A) ≤ 1
1 − s

H
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I,
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)
.
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2.3 The IFS Inverse Problem

Suppose that we are given an initial fractal image F�. The Collage Theorem
says that it is possible to obtain an IFS W whose attractor has a graphical
representation F� that approximates F� accurately according to a similarity
function S, which measures the graphical distance between F� and F� [1]. Note
that once W is computed, F� = Υ (I�) for any (not necessarily fractal) initial
image I�. Mathematically, this means that we have to solve the optimization
problem:

minimize
{Θκ,Σκ,ωκ}κ=1,...,η

S (F�, Υ (I�)
)

(3)

The problem (3) is a continuous constrained optimization problem, because all
free variables in {Θκ,Σκ, ωκ}i are real-valued and must satisfy the condition
that the corresponding functions φκ have to be contractive. It is also a multi-
modal problem, since there can be several global or local minima of the simi-
larity function. The problem is so difficult that only partial solutions have been
reported so far, but the general problem still remains unsolved to a large extent.
In this paper we address this problem by using a hybrid approach based on the
cuckoo search algorithm described in next paragraphs.

3 The Cuckoo Search Algorithms

3.1 Original Cuckoo Search (CS)

The Cuckoo search (CS) is a powerful metaheuristic algorithm originally pro-
posed by Yang and Deb in 2009 [18]. Since then, it has been successfully applied
to difficult optimization problems [5,14,17,19]. The algorithm is inspired by the
obligate interspecific brood-parasitism of some cuckoo species that lay their eggs
in the nests of host birds of other species to escape from the parental investment
in raising their offspring and minimize the risk of egg loss to other species, as
the cuckoos can distributed their eggs amongst a number of different nests.

This interesting and surprising breeding behavioral pattern is the metaphor
of the cuckoo search metaheuristic approach for solving optimization problems.
In the cuckoo search algorithm, the eggs in the nest are interpreted as a pool of
candidate solutions of an optimization problem while the cuckoo egg represents
a new coming solution. The ultimate goal of the method is to use these new (and
potentially better) solutions associated with the parasitic cuckoo eggs to replace
the current solution associated with the eggs in the nest. This replacement,
carried out iteratively, will eventually lead to a very good solution of the problem.

In addition to this representation scheme, the CS algorithm is also based on
three idealized rules [18,19]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
2. The best nests with high quality of eggs (solutions) will be carried over to

the next generations;
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Table 1. Cuckoo search algorithm via Lévy flights as originally proposed in [18,19].

3. The number of available host nests is fixed, and a host can discover an alien
egg with a probability pa ∈ [0, 1]. In this case, the host bird can either throw
the egg away or abandon the nest so as to build a completely new nest in
a new location. For simplicity, this assumption can be approximated by a
fraction pa of the n nests being replaced by new nests (with new random
solutions at new locations).

The basic steps of the CS algorithm are summarized in the pseudocode shown
in Table 1. Basically, the CS algorithm starts with an initial population of n host
nests and it is performed iteratively. The initial values of the jth component of
the ith nest are determined by the expression xj

i (0) = rand.(upj
i − lowj

i )+ lowj
i ,

where upj
i and lowj

i represent the upper and lower bounds of that jth component,
respectively, and rand represents a standard uniform random number on the
interval (0, 1). With this choice, the initial values are within the search space
domain. These boundary conditions are also controlled in each iteration step.

For each iteration t, a cuckoo egg i is selected randomly and new solutions
xt+1

i are generated by using the Lévy flight. According to the original creators
of the method, the strategy of using Lévy flights is preferred over other simple
random walks because it leads to better overall performance of the CS. The
general equation for the Lévy flight is given by:

xt+1
i = xt

i + α ⊕ levy(λ) (4)
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where t indicates the number of the current generation, and α > 0 indicates the
step size, which should be related to the scale of the particular problem under
study. The symbol ⊕ is used in Eq. (4) to indicate the entry-wise multiplication.
Note that Eq. (4) is essentially a Markov chain, since next location at generation
t + 1 only depends on the current location at generation t and a transition
probability, given by the first and second terms of Eq. (4), respectively. This
transition probability is modulated by the Lévy distribution as:

levy(λ) ∼ t−λ, (1 < λ ≤ 3) (5)

which has an infinite variance with an infinite mean. From the computational
standpoint, the generation of random numbers with Lévy flights is comprised
of two steps: firstly, a random direction according to a uniform distribution is
chosen; then, the generation of steps following the chosen Lévy distribution is
carried out. The authors suggested to use the Mantegna’s algorithm for sym-
metric distributions (see [19] for details), which computes the factor:

φ̂ =

⎛
⎝ Γ (1 + β̂).sin

(
π.β̂
2

)

Γ
((

1+β̂
2

)
.β̂.2

β̂−1
2

)
⎞
⎠

1
β̂

(6)

where Γ denotes the Gamma function and β̂ =
3
2

in the original implementation

by Yang and Deb [19]. This factor is used in Mantegna’s algorithm to compute
the step length ς as: ς = u

|v|
1
β̂

, where u and v follow the normal distribution

of zero mean and deviation σ2
u and σ2

v , respectively, where σu obeys the Lévy
distribution given by Eq. (6) and σv = 1. Then, the stepsize ζ is computed
as ζ = 0.01 ς (x − xbest). Finally, x is modified as: x ← x + ζ.Δ where Δ
is a random vector of the dimension of the solution x and that follows the
normal distribution N(0, 1). The CS method then evaluates the fitness of the
new solution and compares it with the current one. In case the new solution
brings better fitness, it replaces the current one. On the other hand, a fraction
of the worse nests (according to the fitness) are abandoned and replaced by new
solutions so as to increase the exploration of the search space looking for more
promising solutions. The rate of replacement is given by the probability pa, a
parameter of the model that has to be tuned for better performance. Moreover,
for each iteration step, all current solutions are ranked according to their fitness
and the best solution reached so far is stored as the vector xbest.

3.2 Improved Cuckoo Search (ICS)

The improved cuckoo search (ICS) method was proposed in [16] to enhance the
performance of the original CS. It is based on the idea of allowing its parameters
pa and α to change over the generations, as opposed to their fixed values in the
original CS. In ICS the parameter pa is modified as:

pt
a = paM

− paM
− pam

Λ
t (7)
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where the subscripts M and m are used to indicate the maximum and minimum
values of the parameter respectively, and Λ indicates the total number of iter-
ations. According to Eq. (7), the parameter pa is now decreased linearly with
the number of iterations from a maximum value paM

until a minimum one, pam
.

At early iterations, its value is high to enforce the diversity of solutions in the
algorithm. This diversity is decreasing over the time so as to intensify the search
using the best candidates of the population in final iterations for a better fine-
tuning of the solutions. The parameter α, also assumed constant in the CS, is
primarily used to promote exploration of the search space. Therefore, it makes
sense to modify it dynamically starting from a high value, αM , to perform a
extensive exploration and gradually reducing it until a low value, αm, to pro-
mote exploitation and eventually homing into the optimum, in a rather similar
way to the inertia weight in PSO. Consequently, it is modified as:

αt = αM Exp

⎛
⎜⎜⎝

Ln

(
αm

αM

)

Λ
t

⎞
⎟⎟⎠ (8)

4 Proposed Approach

4.1 Hybrid ICS with Luus-Jakoola Heuristics

To address the IFS inverse problem described in Sect. 2.2, we propose a new
hybrid scheme for proper balance between exploration and exploitation. Firstly,
we consider the improved cuckoo search method for global optimization described
in Sect. 3.2. This modified scheme is improved by its hybridization with a local
search procedure. In particular, we apply the Luus-Jaakola (LJ) method, a
gradient-free heuristics firstly proposed in [15] to solve nonlinear programming
problems. LJ starts with an initialization step, where random uniform values are
chosen within the search space by computing the upper and lower bounds for
each dimension. Then, a random uniform value in-between is sampled for each
component. This value is added to the current position of the potential solution
to generate a new candidate solution, which replaces the current one only when
the fitness improves; otherwise, the sampling space is multiplicatively decreased
by a factor (usually of value 95%, but other values can also be used). In practice,
we found that it is better to consider a self-adaptive size for this factor, with the
effect of speeding up the convergence to the steady state. This process is repeated
iteratively. With each iteration, the neighborhood of the point decreases, so the
procedure eventually collapses to a point.

4.2 Application to the IFS Inverse Problem

Given a 2D self-similar binary fractal image I� comprised of η functions φκ,
we apply our hybrid method to solve the IFS inverse problem. We consider an
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initial population of χ individuals {Ci}i=1,...,χ, where each individual Ci = {Cκ
i }κ

is a collection of η real-valued vectors Ci
κ of the free variables of Eq. (1), as:

Cκ
i = (θκ,i

1,1, θ
κ,i
1,2, θ

κ,i
2,1, θ

κ,i
2,2|σκ,i

1 , σκ,i
2 |ωi

κ) (9)

These individuals are initialized with uniform random values in [−1, 1] for the
variables in Θκ and Σκ, and in [0, 1] for the ωi

κ, such that
∑η

κ=1 ωi
κ = 1. After

this initialization step, we compute the contractive factors μκ and reinitialize all
functions φκ with μκ ≥ 1 to ensure that only contractive functions are included
in the initial population. Before applying our method, we also need to define a
suitable fitness function. In this paper we use the Hamming distance: the fractal
images are stored as bitmap images of 0s and 1s for a given resolution defined
by a mesh size parameter, ms. Then, we divide the number of different values
between the original and the reconstructed matrices by the total number of boxes
in the image. This yields the normalized similarity error rate index between both
images, denoted by |S|�

�
, the fitness function used in this work.

Fig. 1. Example of the rotated triangle fractal: (left) original (top) and reconstructed
image (bottom); (right) their different contractive functions with different colors. (Color
figure online)

4.3 Parameter Tuning

It is well-known that the parameter tuning of metaheuristic methods is trouble-
some and problem-dependent. The cuckoo search is specially advantageous in
this regard, as it depends on only two parameters: the population size, χ, set to
χ = 100, and the probability pa, calculated taking: paM

= 0.5 and pam
= 0.005 in

Eq. (7). Moreover, the method is executed for Λ iterations. In our simulations, we
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Fig. 2. Example of the Crystal fractal: (left) original (top) and reconstructed image
(bottom); (right) their different contractive functions with different colors. (Color figure
online)

found that Λ = 1500 is enough to reach convergence in mp all cases. Our hybrid
method also requires to define suitable values for αM and αm in Eq. (8). Similar
to [16], in this work they are set to 0.5 and 0.01, respectively. Finally, our method
requires to define the mesh size, ν, set to ν = 80 in this work.

5 Experimental Results

Our method has been applied to several examples of fractals. Only three of
them are included here because of limitations of space: rotated triangle, Crystal,
and the AIAI-2018 fractal (especially created for this paper). They are shown
in Figs. 1, 2 and 3, respectively. The input fractal images are displayed twice in
each figure, one in red and another with one color for each individual contractive
function. As the reader can see, the three fractals are comprised of 3, 4, and 26
functions, respectively. The application of our method to these input images
returns the IFS minimizing the |S|�

�
index, which are then used to render the

reconstructed fractal images, shown in blue and with different colors as above.
As the reader can see, although the matching is not optimal, our method

captures the underlying structure of the fractal images with good visual quality.
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Fig. 3. Example of the AIAI-2018 fractal (from top to bottom): original image in red,
original image with different colors for each contractive function, reconstructed image
in blue, and reconstructed image with different colors for each contractive function.
(Color figure online)

This is a remarkable result because our initial population is totally random,
meaning that their corresponding images at early generations are all totally
different from the given image. Our method is able to obtain a final image that
replicates well the input image and is also a self-similar fractal for all instances
in our benchmark. Our graphical results indicate that our method performs very
well, as it provides visually satisfactory solutions for the IFS inverse problem.

This good visual appearance is confirmed by our numerical results, reported
in Table 2. For each fractal example (in rows), the table shows (in columns):
number of contractive functions η, number of free variables of the optimiza-
tion problem, and best and mean value of the |S|�

�
index for 20 independent

executions of the method. As the reader can see, the similarity index for the
best execution yields errors ranging from 20% to 30%, depending on the exam-
ple. Although the reconstructed images are perfectly recognizable in all cases,
this similarity error increases with the complexity of the model, with the third
example exhibiting the larger value. This result is very reasonable because this
example requires to solve an optimization problem with many more variables
than the other two examples. In addition, the numerical values of the similarity
index used in this work indicate that the results are not optimal yet, suggesting
that the method might arguably be further improved.
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Table 2. Numerical results of the best and mean values of the |S|�� index for the
examples in Figs. 1, 2 and 3 with the proposed method.

Example η #free variables |S|�� (best) |S|�� (mean)

Rotated triangle fractal 3 21 0.1952 0.2113

Crystal fractal 4 28 0.2038 0.2194

AIAI-2018 fractal 26 182 0.2974 0.3125

All computations in this paper have been performed on a 2.6 GHz. Intel
Core i7 processor with 16 GB of RAM. The source code has been implemented
by the authors in the native programming language of the popular scientific
program Matlab version 2015a and using the numerical libraries for fractals in
[4,6–8]. Regarding the CPU times, they depend on the complexity of the model
and its number of contractive functions. In general, we noticed that the method
is slow and time-consuming. For illustration, each single execution takes about
25–45 min for the first two examples, and more than 1 h for the third one.

6 Conclusions and Future Work

In this paper we introduced a new hybrid method to solve the following opti-
mization problem: given any binary self-similar fractal image, the goal is to
determine an IFS whose attractor is a good approximation of this input image.
This problem, called the IFS inverse problem, is known to be a very difficult mul-
tivariate nonlinear continuous optimization problem. In this new hybrid method,
a modification of the original cuckoo search method for global optimization
called improved cuckoo search (ICS) is coupled with the Luus-Jakoola heuristics
for local search. This hybrid methodology is applied to three fractal examples:
rotated triangle, crystal, and the AIAI-2018 fractal. The method replicates the
input images very well, yielding visually satisfactory results in all cases.

The numerical results show however that our final solutions are not optimal
yet, so the method might be improved in several ways. On one hand, we want
to modify our fitness function to obtain a better measure of the quality of the
reconstructed fractal. On the other hand, we would like to obtain automatically
the optimal value of the number of contractive functions for the IFS. We also
wish to extend our results to the cases of images that are neither binary nor
self-similar. Reducing our CPU times is also one of our future goals in the field.
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