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Abstract. The last decade has seen a large amount of algorithmic work
analyzing wireless networks. In this paper we focus on some of the main
lessons learned when studying the physical (SINR) wireless model, with
a focus on link scheduling, without or with power control. We summarize
the results in this domain, present simplified versions of some key results,
and outline future directions along with major open questions.

1 Introduction

Wireless networks are ubiquitous. We use 802.11 Wi-Fi networks at home and
in the office, and elsewhere our mobile devices connect to, e.g., GSM, LTE,
Bluetooth. The bandwidth, latency, or error rates of wireless transmissions can
be improved by carefully adjusting various parameters such as the modulation
and coding scheme. However, apart from such point-to-point considerations, the
network itself may also influence wireless communication.

In particular, in a network with more than two devices, concurrent trans-
missions may interfere. To prevent interference, one may (i) carefully schedule
transmissions so that concurrent transmissions are separated in space or time.
In addition, one may (ii) control the transmission power in order to reduce
interference.

Increasing the transmission power of a sender will likely increase the prob-
ability that its packets are being received, but it also increases the interference
for other concurrent transmissions. Similarly, scheduling a transmission at a dif-
ferent time may improve this transmission but generate interference for the now
concurrent transmissions. Since scheduling and transmission power affect the
whole network, they are difficult to understand.

There are several classic models and model variants to represent transmis-
sions and interference in wireless networks. Here we just present two of the most
common models; for a more comprehensive survey we recommend, e.g., [52]. A
typical model to understand wireless networks is the so-called radio network
model, e.g., [3].
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Definition 1 (Radio Network Model). In the radio network model, the wire-
less network is modeled as a graph. The nodes of the graph are the wireless
devices, either base stations or mobile nodes. There is an edge between two nodes
if these nodes can communicate by wireless transmissions. In addition, edges also
model interference. A node v can only receive a wireless transmission of a neigh-
bor node u ∈ N(v) if no other neighbor w ∈ N(v) is transmitting concurrently.

The radio network model was very influential to understand wireless net-
works, but it sometimes falls short because it is a binary model: either a node
has interference or it has no interference. This is often too simplistic. In the
real world, a node v may receive a packet of neighbor u despite interference of
neighbor w if v is closer to u than w. This cannot be modeled by an unweighted
graph. Also power control is difficult to represent with a radio network model.
An improved model to understand wireless networks is the so-called disk model,
e.g., [11].

Definition 2 (Disk Model). In the geometric disk model, nodes are points in
the Euclidean plane. A transmitting node u reaches all possible points within
some radius r around u, where the radius may depend on the power that node u
is using for the transmission. Again, a transmission will be successfully received
if an intended receiver node v is inside the transmission disk of node u but not
inside the transmission disk of another concurrent transmission.

Setting the radii correctly, the disk model may be accurate enough to model
some wireless phenomena, but it is still “too binary” to model reality well. Maybe
a transmission can withstand a single concurrent interfering transmission if it
is reasonably far away. But can it withstand multiple concurrent transmissions?
Interference of electromagnetic waves is additive, and to truly understand wire-
less transmission and interference our model must be additive as well. Moreover,
electromagnetic waves get weaker with distance – physics tells us that a signal
drops at least quadratically with distance. If a receiver is closer to a sender, it
may withstand more interference.

About a decade ago, researchers studying wireless network algorithms started
dropping the radio network, the disk graph, and various other binary models in
favor of a model that seemed to represent reality better: the so-called physical
model, e.g., [47].

2 Physical Model

Definition 3 (Physical Model, Signal-to-Interference Ratio). In the
physical model, there is a gain between every pair of nodes u, v. The gain may
be non-symmetric, i.e. the gain from u to v may be different from the gain from
v to u. The gain describes how much the power of a transmission at u decreases
on the way from u to v. If node u transmits with power pu, node v will receive
the signal with power S = pu · g(u, v), where g(u, v) is the gain from u to v.
Interfering transmissions behave exactly the same, so a concurrent interfering
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transmission of node w will arrive at node v with interference power pw ·g(w, v).
Interference is additive, so all the interfering transmissions W accumulate to
I =

∑
w∈W pw · g(w, v). Whether or not node v can correctly receive u’s trans-

mission depends on the signal-to-interference ratio S/I. If this ratio is at least
some constant β, node v will receive the transmission correctly. The physical
model is also known as the signal-to-interference-ratio model.

The ratio β is hardware and coding dependent. For inexpensive hardware the
signal should be stronger than the interference, i.e., β ≥ 1. However, reasonably
good hardware and/or coding may drive the value of β below 1.

Sometimes, we add a constant ambient noise term N to the interfer-
ence of concurrent transmissions; the reception test then becomes a signal-to-
interference-plus-noise (SINR) test, i.e., we want S

I+N ≥ β.

Definition 4 (Geometric and General Physical Model). Sometimes, we
add a geometric component to this physical model by assuming that the gain is
determined by the geometric distance, i.e. g(u, v) = d(u, v)−α, where d(u, v) is
the Euclidean distance between u and v, and α is the so-called path-loss expo-
nent, typically α ≥ 2. We call this special case the geometric physical model. In
practice, wireless effects such as shadowing or reflection at walls may make the
gain non-geometric – if we have no restrictions on the gain function, the model
is simply known as general physical model.

Wireless networks offer a wide range of challenging algorithmic problems.
One family of problems stands out, however: the so-called scheduling/capacity
problem. Let us define this family of problems formally.

Definition 5 (Link). A wireless communication link l is defined by a sending
node s and a receiving node r, i.e., l = (s, r). The length of l is the distance
d(s, r) from sender to receiver, which we shall overload with the notation l.

Definition 6 (Feasible Link Set, Link Scheduling). We use gain as intro-
duced in Definition 3. A traffic demand is given by a set L of links. We want
to choose a subset L′ ⊆ L such that all links in L′ are feasible, i.e., all links
can be scheduled concurrently. A subset L′ is feasible if all links l ∈ L′ have a
signal-to-interference ratio of at least β. More formally, for any l = (s, r) ∈ L′,
we want Sl/Il ≥ β, where Sl = ps · g(s, r) and Il =

∑
l′∈L′\{l} ps′ · g(s′, r) with

l′ = (s′, r′) being a link in L′ \ {l}.
The link scheduling problem has three main dimensions:

– Gain: Geometric or general gain as discussed in Definition 4.
– Power control: We will introduce power control in Definition 12.
– Objective: Finding the largest possible (weighted) subset L′ is only one pos-

sible objective. Alternatively, we might want to partition all links L into as
few as possible subsets L1, L2, . . . , Lk, such that each subset is feasible, and
then schedule the subsets sequentially. Finding a single subset L′ is known as
the one-shot problem, finding a partition is simply known as the scheduling
problem.
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The capacity problem is a close relative of the link scheduling problem, inher-
iting these three dimensions.

Definition 7 (Wireless Capacity). The input to the wireless capacity problem
is a set of nodes. On top of these nodes we need to specify a traffic pattern. We
want to measure how much concurrent traffic is possible.

On top of the link scheduling dimensions mentioned above, wireless capacity
has additional parameters:

– Traffic Pattern: Typical traffic patterns include, e.g. every node must send a
packet to every other node, or every node must send to a random node. Other
classic traffic patterns form trees, e.g., all nodes must collect the average or
median temperature at a specific node known as the sink.

– Node Distribution: Early capacity computations only worked if the nodes
were distributed in some peculiar way, e.g. Poisson distributed nodes. Later,
researchers studied best or worst case node distributions. Algorithmic analy-
ses are able to handle arbitrary node distributions.

– Multi-Hop: Nodes may forward traffic for other nodes in a multi-hop fashion.
Sometimes the routes are given, sometimes routing is part of the problem.

The scheduling/capacity problems measure how efficiently we can use a wire-
less network in the physical model. For wireless networks this is the core problem,
as higher layers are generally not different from wireline networks.

Practically, link scheduling and wireless capacity will tell us how we should
organize media access on the link layer, as it answers questions about optimal
scheduling and power control. In wireless networks, link and network layers can-
not be separated as nicely as in wireline networks as network issues will influence
the link layer.

3 Link Scheduling Algorithms

We first explore algorithms for the one-shot uniform-power geometric-gain link
scheduling problem, as introduced in Definition 6.

Short links are naturally preferable for maximizing the number of links: their
signal is still relatively strong at the receiver, making them more tolerant to
interference. We therefore start by sorting the input L = {l1, l2, . . . , ln} into a
non-decreasing order of length.

Greedy algorithms often work well for subset maximization. In our context,
this leads to the natural approach of Algorithm1.

Unfortunately, Algorithm1 is too greedy. Suppose the second shortest link
l2 is just barely feasible when joined with the shortest link l1, i.e. the signal-to-
interference ratio of l2 is exactly β. Then we cannot add any other link without
violating the signal-to-interference ratio of l2. In contrast, if the other links are
well separated in space, the optimal set may contain all of them.

We should therefore be slightly less “greedy”! Before we present a greedy-
like algorithm that works, we first introduce a convenient way of quantifying the
impact of interference.
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Algorithm 1. Too Näıve Greedy Algorithm for Link Scheduling
1: R ← ∅
2: for i = 1 to n do
3: if R ∪ {li} is feasible then
4: R ← R ∪ {li}

Interference matters only in relation to the strength of the signal that is
to be received. According to Definition 6, a transmission is received correctly if
the strength of the interference is small enough relative to the strength of the
signal. We ignore the effect of the ambient noise by setting N = 0. Noise can be
included, but it complicates the treatment.

Definition 8 (Affectance). Consider a link l = (s, r) and an interfering link
l′ = (s′, r′). The signal strength of l (as received at r) is p/lα = p/d(s, r)α,
where p is the uniform power used by all senders. Similarly, the interference of
l′ is p/d(s′, r)α. Then, the relative interference of l′ on l is 1

β · p/d(s′,r)α

p/d(s,r)α . For
technical reasons, to define affectance we cap this relative interference of a single
link at 1:

affectance al′→l := min
(

1
β

· d(s′, r)−α

l−α
, 1

)

.

For convenience, let al→l = 0.

The key feature of affectance is that it is cumulative. The affectance of a set
S of links on a given link l is the sum of the individual affectances.

Definition 9 (Set Affectance). Define

aS→l =
∑

s∈S

as→l and al→S =
∑

s∈S

al→s.

Crucially, the question of whether a link l is feasible concurrently with set S of
links is equivalent to the condition that aS→l ≤ 1.

Definition 10 (Symmetric Affectance). Let a(x, y) = ax→y + ay→x be the
symmetric version of affectance, and define a(S, l) =

∑
s∈S a(s, l) as in Defini-

tion 9.

Besides avoiding being too greedy, we could also allow infeasible intermediate
solutions. Algorithm 2 from [29] combines these two approaches, using a stricter-
than-absolutely-necessary criteria to add a link, yet allowing the already added
links to accumulate more than affectance 1. A key feature is to bound not only
the total affectance on the incoming link from the previous links, but also its
total affectance on the previous links (by the same amount). Afterwards, we
eliminate those that exceed their affectance budget.

We show here that the algorithm achieves a constant-factor approximation
in the one-dimensional setting (when links are positioned on the line), utilizing
some arguments of Kesselheim [41]. We first define some concepts.
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Algorithm 2. Algorithm for Link Scheduling
1: R ← ∅
2: for i = 1 to n do
3: if a(R, li) < 1/2 then
4: R ← R ∪ {li}
5: return X := {l ∈ R : aR→l ≤ 1}

Definition 11 (Bi-feasible). A set S of links is bi-feasible if it is feasible
(aS→l ≤ 1 for each l ∈ S), and if al→S ≤ 2, for each l ∈ S.

Lemma 1. Each feasible set S contains a bi-feasible subset of at least half the
links.

Proof. We use that aS→l ≤ 1 for each l ∈ S. Hence,

|S| ≥
∑

l∈S

aS→l =
∑

l∈S

∑

l′∈S

al′→l =
∑

l∈S

al→S .

In other words, the average “out-affectance” al→S of each link l is also at most 1.
Since affectance is non-negative, less than half the links l ∈ S can have affectance
al→S more than twice the average.

Lemma 2. With uniform power, two feasible links on a line cannot overlap if
β ≥ 1.

Proof. Suppose there are links l = (s, r) and l′ = (s′, r′) that overlap. There are
two cases as to their configuration. In one case, sender s′ is located inside the
link l. But then, l′ generates too much interference on l, and so with β ≥ 1 we
have al→l′ = 1. In the other case, the order of the nodes on the line is s, r′, r, s′.
Then, either s is closer to r′ than s′ is, or s′ is closer to r than s is; either way,
at least one of the links is infeasible.

Lemma 3. Let m be a link and S be a bi-feasible set of links not smaller than
m, with m /∈ S. Then, a(S,m) ≤ 10.

Proof. Thanks to Lemma 2 we know that links in S do not overlap. Let l (r)
be the link in S whose receiver is closest to m’s receiver on the left (right),
respectively. Let Sl (Sr) be the links of S to the left of l (right of r), respectively.
Since l (r) is no smaller than m, and closer to each link in Sl (Sr), it receives more
affectance from links in Sl (Sr) than m, respectively. Thus, aSl→m ≤ aSl→l ≤ 1
and aSr→m ≤ aSr→r ≤ 1. Since the affectance of single links is bounded by 1
(Definition 8), we get

aS→m = al→m + ar→m + aSl→m + aSr→m ≤ 4.

Similarly, we can bound am→S ≤ 6. Let x (y) be the link in S whose sender
is closest to m’s sender on the left (right), respectively. Let Sx (Sy) be the links



Wireless Network Algorithmics 147

of S to the left of x (right of y), respectively. Since x (y) is closer to each link in
Sx (Sy), it creates more affectance on links in Sx (Sy) than m does, respectively.
Thus, am→Sx

≤ ax→Sx
≤ 1 and am→Sy

≤ ay→Sy
≤ 1. Since the affectance on a

single link is bounded by 1 and S being a bi-feasible set (Definition 11), we get

am→S = am→x + am→y + am→Sx
+ am→Sy

≤ 1 + 1 + 2 + 2 ≤ 6.

Theorem 1. Algorithm2 is a constant approximation algorithm for one-
dimensional one-shot uniform-power geometric-gain link scheduling problem,
independent of α.

Proof. Assume that all links are of different length, with symmetry broken arbi-
trarily. First, let us compare the sizes of the sets R and X found by Algorithm
2 on a given instance. The selection criterion in line 3 measures the affectance
between the new link and all links in set R so far. At the end of the loop, each
link r ∈ R has been symmetrically affected exactly once by every other link
r′ ∈ R, i.e.

∑

r∈R

a(R, r) =
∑

r∈R

∑

r′∈R

a(r′, r) <
1
2
|R|.

Thus, on average the value of a(R, r) is less than 1/2. At least half the items in
a non-negative set have a value within twice the average value. It follows that
at least half the links r ∈ R satisfy aR→r ≤ a(r,R) < 1; i.e. |X| ≥ |R|/2.

We now compare R with a maximum cardinality feasible set OPT . As we
observed in Lemma 1, there is a bi-feasible subset O of OPT of size at least
|OPT |/2. Split O into two parts: O1 = O ∩ R, and O2 = O \ R. Since O1 ⊆ R
we have |O1| ≤ |R|, but it remains to bound the size of O2.

On each pair of links r ∈ R and o ∈ O2, define the weight function

w(r, o) =

{
a(r, o) if o is longer than r

0 else

The weight function w only considers the symmetric affectance between shorter
links in r and longer links in O2.

Let us consider the point in time when Algorithm2 decided not to include
link o ∈ O2 to the set R in line 3; it did so because a(R, o) ≥ 1/2. Since R
contains then only links shorter than o, we have (i) w(R, o) = a(R, o) ≥ 1/2. On
the other hand, Lemma 3 implies that (ii) w(O2, r) ≤ 10, for every r ∈ R. With
(i) and (ii) we get

1
2
|O2| ≤

∑

o∈O2

w(R, o) =
∑

r∈R

∑

o∈O2

w(r, o) =
∑

r∈R

w(O2, r) ≤ 10|R|.

It follows that |O2| ≤ 20|R|. Since |O1| ≤ |R|, we get that |OPT | ≤ 2|O| =
2|O1 + O2| ≤ 42|R| ≤ 84|X|.
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Some observations are in order. Note that the approximation ratio is com-
pletely independent of α. This has not been observed before, but crucially needs
the one-dimensional setting.

We also note that the performance analysis does not vitally utilize the defi-
nition of affectance, we only need a weak sense of monotonicity: ax→z ≤ ay→z,
if x is further away from z than y is. Thus, signal strength can be an arbitrary
function of distance and the transmitter that is monotone in the distance.

Several heuristic variations are possible without affecting the performance
ratio. The affectance threshold “1/2” can be any positive constant less than
1. Also, the greedy set can be formed more gradually, e.g., by eliminating the
highest affectance links first.

Moreover, similar algorithms exist for different variants of the problem, mul-
tiple dimensions and also arbitrary power link scheduling can be solved similarly,
using slightly more geometry in the proofs. We will summarize the most impor-
tant results in Sect. 5.

The parameter β indicates how large the signal-to-interference-ratio must be
for a signal to be decodable. This is a function of the technology used, both
hardware (e.g. antenna design) and software (e.g. modulation, coding, error cor-
rection). One natural question is how much impact the value of β has on link
scheduling and wireless capacity. Increasing β clearly makes decoding more chal-
lenging, but could there be some kind of threshold at which point the problem
jumps from being very easy to very hard?

The answer is negative: Scaling β by a constant factor can only lengthen the
schedule by a constant factor.

Theorem 2. Let L be a set of links with affectance at most a, i.e., either aL→l ≤
a or a(L, l) ≤ a for l ∈ L. Then, for any b > 0, L can be partitioned into �2a/b�2
sets, each with affectance at most b.

Proof. Let ρ = �2a/b�. Process the links in L in an arbitrary order, assigning
each link l to some set Li, i ∈ {1, 2, . . . , ρ}, where l’s affectance from the previous
links in Li is at most b/2. Such a set must exist, since otherwise the affectance
on the link l is larger than ρ · b/2 ≥ a.

Now process each set Li in the opposite order, forming sets Li,j , j =
1, 2, . . . , ρ. The affectance on each link l is again at most b/2 from the earlier
links, with the same argument. Since we processed the links in opposite order,
the total affectance on link l is at most b in total.

A linear bound of �2a/b� was given in [6] using linear algebra. The implica-
tion to changing β applies when the noise term can be ignored. When noise is
dominant because throughput can mostly be achieved by weak links, Theorem2
still tells us that we can increase requirements for the spatial separations of links
in a solution by paying only a constant factor.

4 Power Control

One of the most versatile tools for increasing throughput in wireless networks
is the use of power control. Power control is a double-edged sword though:
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Increasing the transmission power may make decoding easier at the intended
receiver, but it also causes more interference for all other links.

Definition 12 (Power Assignment). There are three types of power assign-
ment:

– Uniform power does not depend on the length of the link.
– Oblivious power only depends on the length of the link. This includes linear

power lα and mean power lα/2, for links of length l.
– Arbitrary power can depend on all other links that are simultaneously trans-

mitting.

A tantalizing question is whether power control matters in a non-trivial way?
How much gain is possible by using power control, as opposed to being limited
to uniform power?

Theorem 3. Power control matters. Mean power can be arbitrarily more effi-
cient than uniform or linear power.

Proof. Consider the following prototypical example, known as the exponential
chain. Nodes are positioned on a line at locations 20, 21, . . . , 2n from left to
right. There are bi-directional links between all adjacent nodes; i.e., for each i =
1, . . . , n, there is a link (2i−1, 2i) and the opposite link (2i, 2i−1). With uniform
power, at most one node can transmit successfully to its left-hand neighbor: the
left-most link will overpower any other transmission. Namely, if senders 2i and
2j transmit concurrently, where i < j, then the signal from 2j at receiver 2j−1

is weaker than the signal from 2i since d(2i, 2j−1) < d(2j , 2j−1).
Another popular and useful power assignment strategy is linear power, where

links of length l transmit with power proportional to lα. This strategy has the
benefit of being frugal, in that the received power of each link is the same.
Perhaps surprisingly, linear power fails equally badly on the exponential chain.
Namely, at most one node can transmit successfully to its right-hand neighbor,
and the right-most link will overpower any other transmission.

On the other hand, mean power lα/2 for links of length l works well here. The
affectances from the other links form a geometric series, which converges to a con-
stant. For instance, using that the power used on link i is Pi = d(2i, 2i−1)α/2 =
2(i−1)α/2, the affectances on link i by longer links is

n∑

j=i+1

Pj/d(2j , 2i−1)α

Pi/d(2i, 2i−1)α
<=

n∑

j=i+1

2(i − 1)α/2
2(j−1)α/2

==
n−i∑

k=1

(
2−α/2

)k

<
1

1 − 2−α/2
.

We leave the case of affectances by shorter links as an exercise.
Thus, by Theorem 2, the set can be scheduled in constant number of slots.

Thus, we see here an example of linear -factor improvement in throughput, by
using the right power assignment.



150 M. M. Halldórsson and R. Wattenhofer

A natural question is whether oblivious power can be as powerful as arbitrary
power. This has been answered negatively: For every oblivious power assignment,
there is an instance with n links that is feasible under some power assignment,
but only one link can be scheduled with oblivious power [18]. There is qualitative
difference, though, in comparison to uniform power. In order to achieve these
constructions, the lengths of the links must increase doubly exponentially [27,33],
whereas our earlier construction of Theorem3 only involved a singly-exponential
chain. We compare the relative power of these power assignments in Table 1.

Table 1. Entry f(Δ) in row X and column Y represents that an optimal solution
using power assignment X is at most an f(Δ) factor worse than the optimal solution
using power assignment Y , where Δ is the link diversity, i.e., the ratio between longest
and shortest link.

Uniform Mean Arbitrary

Uniform — Θ(log Δ) [47] Θ(log Δ)

Mean O(1) [57] — Θ(log log Δ) [18,27]

4.1 A Measure of Interference Under Power Control

The advent of power control means that we cannot use affectance directly when
reasoning about links or instances, since it depends directly on the power assign-
ment. We introduce here a stand-in replacement that avoids any reference to
power, but still provides a measure of feasibility like affectance does in fixed-
power settings.

First, some additional notation. We assume a total order ≺ on the links such
that if l is shorter than l′, then l ≺ l′. To simplify notation we write dll′ = d(s, r′),
for links l = (s, r), l′ = (s′, r′). We generalize affectance to involve arbitrary
power assignment P, defining aP

l→l′ = min(1, P (l)/dα
ll′

P (l′)/(l′)α ). We also combine it
with set notation as before, and define aP(l, l′) = aP

l→l′ + aP
l′→l. A set S of links

is bi-feasible under power assignment P if it is feasible and aP
l→S ≤ 2 for each

link l ∈ S.
Define the function W such that W (l, l′) = min

{
1, lα

min(dll′ ,dl′l)
α

}
if l ≺

l′, while W (l, l′) = 0, otherwise. For set X and link l, define W (X, l) =∑
l′∈X W (l′, l) and W (l,X) =

∑
l′∈X W (l, l′).

A key insight is that W lower bounds affectance under arbitrary power assign-
ment. The term lα/dα

ll′ corresponds to the affectance of the shorter link l on the
longer link l′ using linear power, while lα/dα

l′l matches the affectance of the longer
link l′ on l using uniform power. Both of these are minimal requirements for fea-
sibility, modulo constant factors. We need the following bound that follows from
the classic theorem of the geometric and arithmetic means.

Observation 4. For any positive γ, x, y, it holds that γx + 1
γ y ≥ 2

√
xy.
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Lemma 5. For any links l and l′ and power assignment P, W (l, l′)+W (l′, l) ≤
3α/2aP(l, l′).

Proof. Assume without loss of generality that l ≺ l′. Then, W (l′, l) = 0. Let
dmin = min(dll′ , dl′l) and dmax = max(dll′ , dl′l). By the triangle inequality,
dmax ≤ dmin + l + l′ ≤ 3 · max(l′, dmin). Since dll′dl′l = dmindmax,

l · l′

dl′ldll′
≥ l

dmin
· l′

3max(l′, dmin)
≥ 1

3
W (l, l′)1/α min(1,

l

dmin
) =

W (l, l′)2/α

3
.

Applying Observation 4 with γ = Pl′/Pl, x = (l/dl′l)
α and y = (l′/dll′)

α,

aP(l, l′) =
Pl′

Pl

(
l

dl′l

)α

+
Pl

Pl′

(
l′

dll′

)α

≥
√(

l

dl′l

l′

dll′

)α

≥
(

1
3

)α/2

W (l, l′).

Close links cannot coexist in the same (highly) feasible set.

Lemma 6. For links l, l′ in a 3α-feasible set, d(l, l′) ≥ 1
2 min(dll′ , dl′l).

Proof. Assume without loss of generality that l ≺ l′. Suppose the claim is false.
Let dmin = min(dl,l′ , dl′,l) and dmax = max(dl,l′ , dl′,l). By the triangle inequality
and the supposition,

dmin ≤ l + d(l, l′) < l +
1
2
dmin ≤ 2l. (1)

By the strong feasibility, 3−2α ≥ aP
l→l′ · aP

l′→l =
(

l·l′
dl·dl′

)α

. Thus,

dmax · dmin = dl,l′ · dl′,l ≥ 9ll′

Applying Inequality (1), we get that dmax > 9
2 l′. But, by the triangle inequality,

dmax ≤ d(l, l′) + l + l′ ≤ 3l + l′ ≤ 4l′, which is a contradiction.

The following lemma is the counterpart of Lemma 3 for power control.

Lemma 7. Let X be bi-feasible under some power assignment P and let l be a
link (not necessarily in X). Then, W (l,X) = O(1).

Proof. We may assume without loss of generality that l ≺ l′ for all links l′ ∈ T ,
since W (l, l′) = 0 otherwise. Apply Theorem 2 to partition T into (2·3α)2 = 4·9α

sets Ti, each of which is strongly feasible in the sense that aP
Ti→v ≤ 3−α, for each

i and each link lv ∈ Ti. We argue a bound for each Ti separately and add them
up to obtain a bound on X.

Let T = Ti be one of the strongly feasible subsets. Let d(la, lb) denote the
shortest distance between a node on link la and a node on link lb.

Let lx be the link in T containing a node that is closest to a node on l, i.e.
d(lx, l) = minl′∈T d(l′, l). Let l′ ∈ T \ {lx}. By the triangle inequality, d(lx, l′) ≤
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d(lx, l)+d(l, l′) ≤ 2d(l, l′). Using this and Lemma 6, min(dlxl′ , dl′lx) ≤ 4d(l, l′) ≤
4min(dll′ , dl′l). Thus,

W (l, l′) = min
(

1,
lα

min(dll′ , dl′l)α

)

≤ min
(

1,
min(lx, l′)α

4α min(dlxl′ , dl′lx)α

)

≤ 4α(W (lx, l′) + W (l′, lx)) ≤ 3α/24αaP(lx, l′), (2)

using the definition of W and Lemma 5. Summing over all l′ in T ′ we have,

W (l, T ) = W (l, lx) + W (l, T \ {lx}) ≤ 1 + 4α · 3α/2aP(lx, T ).

Finally, summing over the subsets Ti of X yields

W (l,X) ≤ 4 · 9α + 4α3α/2aP(lx,X) ≤ 4 · 9α + 4α · 3α/2+1,

using the bi-feasibility of X.

4.2 Power Control Algorithm

A constant-approximation algorithm for the one-shot link scheduling problem
with arbitrary-power of Kesselheim [40] is given as Algorithm 3. The first part is
equivalent to the first pass of Algorithm 2, but using the measure W instead of
uniform-power affectance. The second pass assigns the links power in decreasing
order of length, designed to assign each link just a little more power than is
needed to overcome the interference from the longer links. Note that if the noise
N is zero, the first (longest) link can be assigned arbitrary power.

Algorithm 3. One-Shot Link Scheduling with arbitrary power control
1: Given: A set L of links
2: Let S = ∅ and let τ = 1

2β(1+3α+1)

3: for lw ∈ L in order of increasing length do
4: if W (S, lw) ≤ τ then
5: S ← S ∪ {lw}
6: for lv ∈ S in order of decreasing length do
7: Pv ← 2βlαv (N +

∑
lw∈S,lv≺lw

Pw/dα
wv)

Theorem 4. Let τ be as in Algorithm3. If S is a set of links that satisfies, for
each link l ∈ S, W (S, l) ≤ τ , then S is feasible. Moreover, the set S computed
by Algorithm3 is feasible with the power assignment computed.

Proof. Let lv be a link in S. The total interference received by lv is I−
v + I+v ,

where I−
v =

∑
lw∈S,lw≺lv

Pw/dα
wv is the interference received by shorter links and

I+v = N +
∑

lw∈S,lv≺lw
Pw/dα

wv is the ambient noise plus interference received
by longer links. Note that I+v = Pv/(2βlαv ), by the definition of Pv (in line 7).
So, the focus is on bounding I−

v , the interference from shorter links.
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We first expand I−
v using the assigned powers:

I−
v =

∑

lw∈S
lw≺lv

Pw

dα
wv

= 2β
∑

lw∈S
lw≺lv

⎛

⎜
⎜
⎝Nlαw

1
dα

wv

+
∑

lu∈S
lw≺lu

1
dα

wv

(

Pu
lαw

dα
uw

)
⎞

⎟
⎟
⎠ . (3)

The first term is bounded by 2βNτ , by the condition in line 4 of Algorithm3
that defines S. Let Xuv = {lw ∈ S : lw ≤ min(lv, lu)}, for any link lu ∈ S. By
rearranging indices, we continue from (3) with

I−
v ≤ 2βNτ + 2β

∑

lu∈S

∑

lw∈Xuv

Pulαw
dα

wvdα
uw

. (4)

Let lu be a link in S. Since W (lw, lv) ≤ W (X, lv) ≤ τ < 1, it holds that
lw/dwv < 1, so lw ≤ dwv and lαw/dα

wv ≤ W (lw, lv), for any link lw ∈ S. Similarly,
lw ≤ duw and lαw/dα

uw ≤ W (lw, lu).
We split the terms of the inner sum into two parts: M1 = {lw ∈ Xuv|duv ≤

3duw} and M2 = Xuv \ M1. For each lw ∈ M1, using the definition of M1 and
the assumed bound on W ,

∑

lw∈M1

lαw
dα

wvdα
uw

≤ 3α

dα
uv

∑

lw∈M1

lαw
dα

wv

≤ 3α

dα
uv

W (M1, lv) ≤ 3α

dα
uv

τ. (5)

For each lw ∈ M2, we have by the triangle inequality that duv ≤ duw + lw +
dwv ≤ duw +2dwv. By the definition of M2, duv > 3duw, so duv ≤ 1

3duv +2dwv ≤
3dwv. Hence, using the assumed bound on W ,

∑

lw∈M2

lαw
dα

wvdα
uw

≤ 3α

dα
uv

∑

lw∈M2

lαw
dα

uw

≤ 3α

dα
uv

W (M2, lu) ≤ 3α

dα
uv

τ. (6)

Applying Inequalities (5) and (6), along with the definition of Pv,

∑

lu∈S,
lv≺lu

∑

lw∈Xuv

Pulαw
dα

wvdα
uw

≤ 2 · 3ατ
∑

lu∈S,
lv≺lu

Pu

dα
uv

≤ 2 · 3ατ
Pv

2βlαv
, (7)

and, using also the definition of I−
v ,

∑

lu∈S,
lu≺lv

∑

lw∈Xuv

Pulαw
dα

wvdα
uw

≤ 2 · 3ατ
∑

lu∈S,
lu≺lv

Pu

dα
uv

= 4β · 3α · τ · I−
v . (8)

Plugging (7) and (8) into Eq. (3) gives,

I−
v ≤ 2βNτ + 3ατ · Pv/lαv + 4β3ατ · I−

v .

Solving for I−
v , cancelling τ and using the bound 2βN ≤ Pv/lαv ,

I−
v ≤ 2βN + 3α · Pv/lαv

1/τ − 4β3α
≤ (1 + 3α)Pv/lαv

1/τ − 4β3α
=

1
2β

· Pv

lαv
, (9)
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after plugging in the value of τ . Thus, the total interference on lv is bounded by
I−
v + I−

v ≤ 1
β Pv/lαv , implying the required SINR for lv, as desired.

Observe that the constant-approximation bound now follows from exactly
the same arguments as in Theorem 1, just using W and Lemma 7 instead of a
and Lemma 3.

Theorem 5. Algorithm3 is a constant approximation algorithm for one-shot
arbitrary-power geometric-gain link scheduling problem.

5 Bibliography

Gupta and Kumar [25] proposed the geometric version of the SINR model,
where signal decays as a fixed polynomial of distance; it has since been the
default model in analytic and simulations studies. They also initiated average-
case analysis of network capacity, giving rise to a large body on “scaling law”
results. Moscibroda and Wattenhofer [47] initiated the first algorithmic (worst-
case) analysis in the SINR model.

The first algorithmic result on link scheduling for arbitrary link sets was by
Moscibroda et al. [49]. This result was soon superseded by the first approxi-
mation results [8,22]. These early approaches involved (directly or indirectly)
partitioning links into length groups, which results in performance guarantees
that are at least logarithmic in Δ, the link diversity [9,16,22,27]. NP-hardness
was established in [22]. Constant approximation for the One-shot Link Schedul-
ing problem were given for uniform power [21], linear power [19,58], fixed power
assignments [29], and arbitrary power control [40]. This was extended to dis-
tributed learning [4,16], admission control in cognitive radio [30], link rates [41],
multiple channels [7,59], spectrum auctions [35,36], changing spectrum avail-
ability [13], jamming [14], and MIMO [61]. Numerous works on heuristics are
known, as well as exponential time exact algorithms, e.g., [54].

Our treatment for uniform power is based on the algorithm of [29] and sim-
plified arguments of [41]. Theorem 2 on signal-strengthening is due to [34]; an
improved bound using linear algebra is given in [6]. Algorithm 3 for power con-
trol is due to [40,41]; the proof given here holds for general metric space, but is
significantly shorter than the one in [41].

A related problem is the scheduling problem where we want to partition the
given set of links into fewest possible feasible sets. Early work on this problem
includes [8,12,17]. Constant approximations for one-shot link scheduling imme-
diately imply a O(log n)-approximation for scheduling, where n is the number
of links. Another approach is to solve links of similar lengths in groups, which
results in a O(log Δ)-approximation [20,22,27]. NP-completeness results have
been given for different variants [22,38,44], but as of yet no APX-hardness
or stronger lower bounds are known. The weighted version of One-shot Link
Scheduling – where the links have positive weights and the objective is to find a
maximum weighted feasible set – behaves similar computationally as scheduling.
Recently, a O(log∗ Δ)-approximation algorithm was given for arbitrary-power
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scheduling and weighted One-shot Link Scheduling [32], by transforming the
physical model into a conflict graph.

A problem of fundamental importance to sensor networks is connectivity : how
efficiently can the nodes be connected into a strongly connected structure. This
is an issue that affects the network as well as the link layer of the networking
stack, as one must select the links in a spanning tree, choosing their power and
scheduling them. The first analytic result in the SINR model showed that with
the right power control, any set of nodes can be connected into a tree that can
be scheduled in polylogarithmic, O(log4 n), number of slots [47]. This was soon
improved to O(log2 n) [46,50] and later to O(log n) [31].

Other more complex problems studied include non-preemptive scheduling
[20], joint power control, scheduling and routing [8], fixed-power multiflow [9],
multi-path flow with general demand vectors [60], stochastic packet schedul-
ing [42,56], and joint power control, routing and throughput scheduling in mul-
tiple channels [2], to name a few. Many of these rely on (weighted) One-shot
Link Scheduling as a building block.

Beyond the computational aspects covered in this survey, there are chal-
lenging issues that arise when trying to achieve communication in a distributed
setting. There is also some deep work on geometric characterizations of the
regions in which specific transmissions can be decoded under the physical model,
e.g., [37].

6 Beyond the Physical Model

6.1 Realistic Signal Propagation

The assumption of geometric gain is mathematically pleasing, but it can be
quite far from reality, even in relatively simple environments [24,45,53,55]. On
the other hand, the additivity of interference and the near-threshold nature of
signal reception has been borne out in experiments [10,45,48,55,62].

Several proposals have been suggested for extending the standard physical
model to capture the non-geometric aspects of signal propagation. The basic
model allows the pathloss constant α to vary [25], giving a first-order approxi-
mation of the signal gain. Another more general approach is to view the variation
as conforming the plane into a general metric space [18,29]. Much recent analytic
work holds in arbitrary metric spaces [29,41], while some requires them to have
a certain “bounded independence” property [32].

One practical alternative is to use facts-on-the-ground in the form of signal
strength measurements, instead of the prescriptive distance-based formula [7,24].
This might suggest the general physical model (Definition 4), but that runs into
the computational intractability monster, since such a formulation can encode
highly-inapproximable problems like maximum independent set in graphs [21].
Instead, one can characterize the performance guarantee in terms of natural
parameters of the gain matrix, such as its nearness to a metric [24]. Another
such parameter is the weighted “inductive independence” [35], which has shown
to be of wide general utility [28].
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In the world of stochastic analysis, the default assumption is to model the
variations in signal propagation by a probabilistic distribution [26]. Significant
experimental literature exists that lends support for stochastic models [51], espe-
cially log-normal distributions [62]. There is a need to better understand the
impact of such stochastic assumptions on effective algorithms.

The temporal aspect of signal variability is another dimension. The dual graph
model [43] extends the radio network model to a pair of graphs, one of which
contains the links that are unreliable, that may or may not transmit a message
by adversarial control. Stochastic models usually assume independence across
time. In such a setting Dams et al. [15] showed that temporal variations that
follow as Rayleigh distribution do not significantly affect the performance of link
scheduling algorithms, incurring only a O(log∗ n)-factor increase in performance.

6.2 Advances in Technology

In wireless communication, multiple-input and multiple-output (MIMO) is a
method for expanding the capacity of a radio link using multiple transmission
and receiving antennas [39]. MIMO is well established in practice, with several
wireless standards supporting it. MIMO has also received a lot of attention from
lower layer signal processing research and information theorists. Network wide
MIMO applications are known as multi-user MIMO (MU-MIMO) or cooperative
MIMO (CO-MIMO). These are still in research, and there are not many studies
with an algorithmic flavor, but there are exceptions, e.g. [5].

Closely related to MIMO is beamforming using antenna arrays. Beamforming
is a signal processing technique at either the transmission or the reception side. The
idea is to carefully choose the phase of the signal of the various antenna in order
to produce either constructive or destructive interference at different locations.
Again this is an active research area in information theory, less so in algorithms.

Network coding [1] on the other hand only works in the presence of a network.
While we assumed that concurrent wireless transmissions interfere, one may hope
to make use of the additive nature of concurrent wireless signals. Consider three
nodes u, v, w, with v sitting in the middle of u and w, and nodes u and w
want to exchange a message. In the first time slot, let u and w transmit their
own message concurrently. Node v may understand neither u’s nor w’s message
because of interference, but v could just retransmit the received additive signal
in the second time slot. Now both u and w receive the additive signal, and
since they know their own original message, they can simply subtract their own
message from the additive message, and consequentially get the missing message.
All this requires just two time slots. Network coding has been analyzed from an
algorithmic perspective, e.g. [23], but it is rarely used in the wild.

7 Open Questions

The last section discussed new directions that all need to be addressed better
algorithmically. We list here some of the most significant open questions regard-
ing the physical model:
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1. Is there a constant-approximate algorithm for scheduling problem with uni-
form power? Only logarithmic factors are known, even in one dimension.

2. Are there small constant approximations of one-shot link scheduling, e.g. a 2-
approximation? Can the possibility of an approximation scheme be disproved?

3. How much can the capacity of practical wireless networks be improved with
good scheduling algorithms? How much of the gain is due to power control,
and how much can be achieved already with uniform power?

4. What kind of infrastructure and/or assumptions are sufficient/necessary to
achieve efficient distributed algorithms for link scheduling?

5. How can one capture the unreliability or time-variability seen in most actual
wireless networks, to make such realistic but non-deterministic models algo-
rithmically tractable?
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