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Abstract. We propose two classes of dynamic versions of the classical
Erdős-Rényi graph: one in which the transition rates are governed by
an external regime process, and one in which the transition rates are
periodically resampled. For both models we consider the evolution of
the number of edges present, with explicit results for the corresponding
moments, functional central limit theorems and large deviations asymp-
totics.
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1 Introduction

Over the past decades, networks have been the subject of an intensive research
effort. As networks offer the right framework to model e.g. social, physical, chem-
ical, biological and technological phenomena, various specific aspects have been
studied in depth. Arguably among the most studied objects is the Erdős-Rényi
graph [6,7]. In such a random graph G(n, p) there are n vertices, and each of the
N =

(
n
2

)
edges is ‘up’ with a fixed probability p ∈ (0, 1) or ‘down’ otherwise.

By now there is a sizeable literature on this type of graph, providing detailed
insight into its probabilistic properties, an example of a key result being that if
the ‘up-probability’ p is larger than log n/n, then the resulting graph is almost
surely connected.

The existing literature predominantly focuses on static graphs: the random
graph is drawn just once, and does not change over time. In many real-life situa-
tions, however, the network structure temporally evolves, with edges appearing
and disappearing. In a few recent contributions, first results on such dynamic
random graphs have been reported, but the analysis of this class of models is still
in its infancy; see e.g. [8,9,15], and [1] for an illustration of its use in engineering.

In [15] various dynamic random graph models are discussed, among them a
dynamic Erdős-Rényi graph in which all N edges evolve independently. In this
model, each edge makes transitions from present to absent and vice versa in a
Markovian manner: it exists for an exponential time with parameter μ (which we
refer to as the ‘up-rate’), and disappears for an exponential time with parameter
λ (the ‘down-rate’). For this model various metrics can be analyzed in closed
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form. In particular the distribution of the number of edges at time t, throughout
this paper denoted by Y (t), can be explicitly computed. A special case is that
in which no edges exist at t = 0: then the distribution of Y (t) coincides with the
number of edges in a static Erdős-Rényi graph G(n, p(t)) (with an up-probability
that depends on t).

In many applications the model that we just sketched is of limited relevance,
as various features that play a role in real-life networks are not covered. To
remedy this, in [15] alternative random graph processes were proposed, such as
the dynamic counterparts of the configuration model and the stochastic block
model. It is noted that a specific property that is often not fulfilled in real
networks is that of the edges evolving independently; in practice likely there will
be ‘external’ factors that affect all these N processes simultaneously, rendering
them dependent. An example is a dynamic random graph in which the values of
the up-rate and down-rate are determined by an independent stochastic process
(think of temperature in a chemical network, weather conditions in a road traffic
network, economic conditions in a financial network, etc.).

Motivated by the above considerations, the focus of this paper is on models in
which the edges evolve dependently; the main contribution is that we propose and
analyze two such models. In the first model, studied in Sect. 2, the up-rate and
the down-rate of each of the edges are determined by an external, autonomously
evolving Markov process X(t), in the sense that at time t these rates (for all
edges) are λi and μi if X(t) = i; this mechanism is usually referred to as regime
switching. In the second model, which is analyzed in Sect. 3, the up-rate and the
down-rate (say, Λ and M) are resampled every Δ > 0 time units (and these
sampled values then apply to all edges).

In more detail, our findings are the following. The focus is on the probabilis-
tic properties of the process Y (t) that records the number of edges present as a
function of time. For both models mentioned above we manage to uniquely char-
acterize its transient and stationary behavior, albeit in a somewhat implicit way:
for the first model in terms of a pde for the corresponding probability generating
function (pgf), for the second model in terms of a recursion for the pgf. Then
we use these characterizations to point out how transient and stationary means
can be computed. The next step is to consider scaling limits; under a particular
scaling, the process Y (t) satisfies a functional central limit theorem. More specif-
ically, after centering and scaling it converges to an Ornstein-Uhlenbeck (ou)
process; interestingly, in [13] it is shown that for certain dynamic Erdős-Rényi
graphs that a particular clique-complex related quantity (the ‘Betti number’) is
described by an ou process as well. Finally we discuss for both models the cor-
responding sample-path large deviations, characterizing the models’ rare-event
behavior. In Sect. 4, the results are illustrated by numerical examples.

2 Erdős-Rényi Graphs Under Regime Switching

In this section we consider the following model. Let (X(t))t�0 be an irreducible
continuous-time Markov process, typically referred to as the regime process or
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background process, living on the state space {1, . . . , d}. The transition rate
matrix corresponding to (X(t))t�0 is denoted by Q = (qij)d

i,j=1 and the corre-
sponding invariant distribution by the (column) vector π. As before, we consider
the situation of N possible edges. Let μi � 0 be the hazard rate of an existing
edge becoming inactive when the regime process is in state i; likewise, λi � 0 is
the hazard rate corresponding with a non-existing edge becoming active. Due to
the common regime process the edges are reacting to, the number of links present
(denoted by (Y (t))t�0) evolves according to an interesting dynamic structure.

2.1 Generating Function

We start our exposition by studying the (transient and stationary) pgf s

φi(t, z) := E

(
zY (t) 1{X(t)= i}

)
, φi(z) := E

(
zY 1{X = i}

)
.

We do so by first analyzing pi(m, t) := P(Y (t) = m,X(t) = i), by following
classical procedures; later we also point out how pi(m) := P(Y = m,X = i) can
be found. Setting up the Kolmogorov equations, with qi := −qii > 0,

pi(m, t + Δt) =
∑

j �=i

pj(m, t)qji Δt

+ pi(m + 1, t)μi(m + 1)Δt + pi(m − 1, t)λi(N − m + 1)Δt

+ pi(m, t)
(
1 − qiΔt − μi mΔt − λi (N − m)Δt

)
+ o(Δt),

leading to the linear system of differential equations

p′
i(m, t) =

d∑

j=1

pj(m, t)qji + pi(m + 1, t)μi (m + 1)

+ pi(m − 1, t)λi (N − m + 1) − pi(m, t)μi m − pi(m, t)λi (N − m),

where pi(−1, t) and pi(N + 1, t) are set to 0. Multiplying by zm and summing
over m = 0 up to N , we arrive at the pde

∂

∂t
φi(t, z) =

d∑

j=1

φj(t, z)qji + μi(1 − z)
∂

∂z
φi(t, z) +

λiN(z − 1)φi(t, z) + λiz(1 − z)
∂

∂z
φi(t, z).

In stationarity, the left-hand side of the previous display can be equated to 0,
thus leading to an ode. We obtain

0 =
d∑

j=1

φj(z)qji + μi(1 − z)φ′
i(z) + λiN(z − 1)φi(z) + λiz(1 − z)φ′

i(z).
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2.2 Moments

Following a standard procedure, we can find explicit expressions for all (factorial)
moments. To this end, we define ei,k := E((Y )k1{X=i}), with (x)k denoting
x(x − 1) · · · (x − k + 1). We obtain the factorial moments by differentiating with
respect to z and plugging in z = 1: in self-evident matrix/vector notation, with
Λ := diag{λ} and M := diag{μ},

0T = eT
1 Q − eT

1 M + πTΛN − eT
1 Λ.

This leads to EY = eT
1 1, with eT

1 = N · πTΛ(Λ + M − Q)−1; observe that the
mean is proportional to N , as expected. This procedure provides a recursion for
all factorial moments: by differentiating k times and inserting z = 1, we obtain,
for k = 2, 3, . . . , N ,

0T = eT
k Q − k eT

k M + kN eT
k−1Λ − k eT

k Λ − k(k − 1)eT
k−1Λ,

and consequently

eT
k = k (N − k + 1) · eT

k−1 Λ(kΛ + kM − Q)−1.

Observe that this recursion can be explicitly solved, as we know eT
1 ; the following

result now straightforwardly follows.

Proposition 1. For k = 1, . . . , N ,

eT
k = k! (N)k · πTΛ(Λ + M − Q)−1Λ(2Λ + 2M − Q)−1 · · · Λ(kΛ + kM − Q)−1,

whereas eT
k = 0 for k = N + 1, N + 2, . . ..

Following standard techniques, we can now evaluate all stationary probabil-
ities as well. First, pi(N) follows from the identity ei,N = E((Y )N1{X=i}) =
N ! pi(N). We can recursively find the other probabilities pi(m); applying

ei,N−1 = E((Y )N−11{X=i}) = (N − 1)! pi(N − 1) + N ! pi(N),

we can express pi(N − 1) in terms of pi(N) (and ei,N−1 and ei,N ). In general
pi(m) can be found from pi(m + 1), . . . , pi(N) using

ei,m =
N∑

k=m

(k)mpi(k).

Remark 1. In addition, the transient factorial moments E((Y (t))k 1{X(t)=i}) can
be (recursively) found; in every step of the recursion a system of linear differential
equations (rather than a linear-algebraic equation) needs to be solved; see [12]
for a similar procedure in the context of infinite-server queues under regime
switching.
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2.3 Diffusion Results Under Scaling

In this subsection we impose the scaling Q �→ N δQ, entailing that the regime
process is sped up by a factor N δ, with the objective to prove a functional central
limit theorem for the resulting limiting process. To get a feeling for how this
scaling affects the system’s behavior, we first compute the mean and variance of
the stationary number of edges. To this end, we use the following lemma, which
is proven in the appendix. In the sequel D := (1πT − Q)−1 − 1πT denotes the
deviation matrix. Also x� := xTπ for x ∈ R

d and Γ := diag{γ} = Λ + M . Let
γ := λ + μ be componentwise positive.

Lemma 1. Define FN,k := (k Γ − NQ)−1 for k ∈ N. Then, as N → ∞,

FN,k =
1
k

1
γ�

1πT +
1
N

E + O(N−2), E :=
(

I − 1
γ�

1πTΓ

)
D

(
I − 1

γ�
γ πT

)
.

Let us first evaluate the mean of Y under this scaling; in the steps below we use
πTΛ1 = λ� and D1 = 0. From the above lemma, we find, with 	̄ := λ�/γ�,

EY = NπTΛ(Λ + M − N δQ)−11 = NπTΛFNδ,11

= NπTΛ

(
1
γ�

1πT1 + N−δ E1 + O(N−2δ)
)

= N 	̄ + O(N1−δ).

Along the same lines,

(EY )2 = N2	̄ 2 − N2−δ 2
γ�

πT(Λ − 	̄ Γ )D 	̄ Γ1 + o(Nmax{1,2−δ}).

In addition, ignoring sublinear terms,

EY (Y − 1) = 2N(N − 1)πTΛ(Λ + M − N δQ)−1Λ(2Λ + 2M − N δQ)−11

= 2N(N − 1)πTΛFNδ,1 ΛFNδ,21

= 2N(N − 1)πTΛ

(
1
γ�

1πT +
1

N δ
E

)
Λ

(
1

2γ�
1πT +

1
N δ

E

)
1.

Using the following equalities

πTΛ

(
1
γ�

1πT

)
Λ

(
1

2γ�
1πT

)
1 =

	̄ 2

2
,

πTΛEΛ

(
1

2γ�
1πT

)
1 =

1
2γ�

πT(Λ − 	̄ Γ )D(Λ − 	̄ Γ )1,

πTΛ

(
1
γ�

1πT

)
ΛE1 = − 1

γ�
πT(Λ − 	̄ Γ )D 	̄Γ1,

we arrive at

EY (Y −1) = N(N −1) 	̄ 2+N2−δ 1
γ�

πT(Λ− 	̄ Γ )D(Λ−3 	̄ Γ )1+o(Nmax{1,2−δ}).
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By virtue of the identity Var Y = EY (Y − 1) + EY − (EY )2, we thus find

Var Y = N 	̄(1 − 	̄) + N2−δ v + o(Nmax{1,2−δ}), (1)

with
v :=

1
γ�

πT(Λ − 	̄ Γ )D(Λ − 	̄ Γ )1.

It can be checked that this formula is symmetric, in the sense that it is invariant
under swapping λ and μ, which is in line with Var Y = Var (N − Y ); note that
Λ − 	̄ Γ = (1 − 	̄)Λ − 	̄M .

Upon inspecting the asymptotic shape of Var Y , we observe a dichotomy.
For δ > 1 the regime process jumps so fast that all edges essentially behave
independently, experiencing an ‘effective up-rate’ of λ�, and an ‘effective down-
rate’ of μ�, so that in this regime Y is approximated with a Binomial random
variable with parameters N and 	̄. For δ < 1 the regime process is relatively
slow, and hence affects the variance (which is, as a result, superlinear in N).

We now prove a functional central limit theorem. For the moment we focus
on the case δ = 1; in Remark 3 we comment on what happens when δ > 1 or
δ < 1. Let P1(·) and P2(·) be two independent unit-rate Poisson processes. With
Zi(s) := 1{X(s)=i}, and Y (0) = 0 (remarking that any other starting point can
be dealt with similarly),

Y (t) = P1

(
d∑

i=1

∫ t

0

λiZi(s)(N − Y (s))ds

)

− P2

(
d∑

i=1

∫ t

0

μiZi(s)Y (s)ds

)

. (2)

The first step is to verify that Y (t)/N converges to y(t), defined as the solution
of the integral equation

y(t) = λ�

∫ t

0

(1 − y(s))ds − μ�

∫ t

0

y(s)ds,

i.e., y(t) = 	(t) := 	̄ · (1 − e−γ�t). Define

Ȳ (t) :=
Y (t) − N	(t)√

N
; (3)

our objective is to prove that Ȳ (·) converges to a Gaussian process (and we
identify this process). As we follow [2, Sect. 5], which in turn uses intermediate
results of [10], we restrict ourselves to the most important steps.

We know from (2) that, for some martingale K(t),

dY (t) = λT Z(t)(N − Y (t))dt − μTZ(t)Y (t)dt + dK(t),

and therefore

dȲ (t) =
√

N
(
(1−	(t))λT−	(t)μT

)
Z(t)dt−γTZ(t)Ȳ (t)dt+

dK(t)√
N

−
√

N	′(t)dt.
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Now define W (t) := eZ+(t)Ȳ (t), where Z+(t) :=
∫ t

0
γTZ(s)ds, so that,

dW (t) = eZ+(t)

(√
N

(
(1 − 	(t))λT − 	(t)μT

)
Z(t)dt +

dK(t)√
N

−
√

N	′(t)dt

)
.

Observing that
(
(1 − 	(t))λT − 	(t)μT

)
π = 	′(t), and recalling that γ = λ + μ,

the equality in the previous display simplifies to

dW (t) = eZ+(t)

(√
N

(
λT − 	(t)γT

)
(Z(t) − π)dt +

dK(t)√
N

)
.

We now consider the two terms in the previous display separately. As was estab-
lished in [2,10], for the first term, as N → ∞,

∫ ·

0

√
NeZ+(s)

(
λT − 	(s)γT

)
(Z(s) − π)ds →

∫ ·

0

eγ�sdG(s),

where G(·) satisfies

〈G〉t = g(t) := 2
∫ t

0

πT(Λ − 	(s)Γ )D(Λ − 	(s)Γ )1ds. (4)

Also as in [2,10], the second term obeys, as N → ∞,
∫ ·

0

1√
N

eZ+(s)dK(s) →
∫ ·

0

eγ�sdH(s),

where H(·) satisfies (using the relation between K(·) and the Poisson processes
P1(·) and P2(·))

〈H〉t = h(t) :=
∫ t

0

λ�(1 − 	(s))ds +
∫ t

0

μ�	(s)ds. (5)

Combining the two terms studied above, it thus follows that, as N → ∞, W (·)
weakly converges to W∞(·), which is the solution to the stochastic differential
equation, with B(·) a standard Brownian motion,

dW∞(t) = eγ�t
√

g′(t) + h′(t) dB(t). (6)

Translating this back in terms of a stochastic differential equation, again mim-
icking the line of reasoning of [2,10], we obtain the following result.

Theorem 1. Ȳ (·) converges weakly to Ȳ∞(·), which is the solution to the
stochastic differential equation

dȲ∞(t) = −γ� Ȳ∞(t) dt +
√

g′(t) + h′(t) dB(t), (7)

with g(·) and h(·) given by (4) and (5), respectively.
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Remark 2. Using the behavior of g′(t) and h′(t) for t large, we conclude that for
large values of t (‘in stationarity’), this stochastic differential equation reads

dȲ∞(t) = −γ� Ȳ∞(t) dt +
√

2γ� 	̄ (1 − 	̄) + 2γ� v dB(t),

which defines an ou process with mean 0 and variance 	̄ (1 − 	̄) + v; note that
this aligns with what we found, plugging in δ = 1, in (1).

Remark 3. When δ < 1, the
√

N in the definition of (2) needs to be replaced by
N δ/2; it is readily checked that in the limiting stochastic differential equation (7)
we then just have g′(t) below the square-root sign. On the contrary, if δ > 1 then
the definition of (2) remains unchanged, but below the square-root sign in (7)
we only have h′(t).

2.4 Large Deviations Results Under Scaling

Where we above discussed the diffusion behavior of the process under study, we
now consider rare events. We again focus on the scaling corresponding to δ = 1,
following the setup of [11]. Intuitively, the rare-event behavior is decomposed
into the effect of the regime process, and that of the edge dynamics conditional
on the regime process.

Let g(·) be in UT , defined as the set of non-negative d-dimensional functions
such that the gi(s) sum to 1, for all s ∈ [0, T ]. Then

JT (g) :=
∫ T

0

sup
u�0

(

−
d∑

i=1

(Qu)i

ui
gi(s)

)

ds.

In addition,

Λx,g (ϑ) :=
d∑

i=1

gi

(
xμi(e−ϑ − 1) + (1 − x)λi(eϑ − 1)

)
.

Based on the findings in [11], one anticipates a sample-path ldp (of ‘Mogulskii
type’; cf. [4, Theorem 5.2]), with local rate function

Ix,g (y) := sup
ϑ

(ϑy − Λx,g (ϑ)) .

This concretely means that, with Y ◦(t) := N−1Y (t) and t ∈ [0, T ], and under
mild regularity conditions on the set A,

lim
N→∞

1
N

logP(Y ◦(·) ∈ A) = − inf
f∈A

IT (f),

with

IT (f) := inf
g(·)∈UT

(∫ T

0

If(s),g(s)(f ′(s))ds + JT (g)

)

.

A formal derivation of this ldp is beyond the scope of this paper.
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3 Erdős-Rényi Graphs with Resampling

An alternative dynamic Erdős-Rényi model (in discrete time) can be defined as
follows; we refer to it as a Erdős-Rényi graph with resampling. Let the N edges
alternate between two states: the edge has the value 0 when the corresponding
edge is absent and 1 when it exists. In slot m, let the transition matrix of the
presence of any of the N edges be given by

(
Pm 1 − Pm

1 − Rm Rm

)
,

where the sequence (Pm, Rm)m∈N consists of i.i.d. vectors in (0, 1)2; we note that
Pm and Rm (for a given time m, that is) are not necessarily assumed independent.
It is stressed that the samples in slot m, i.e., Pm and Rm, hold for any of the
edges—as a consequence, the individual edges (each of them alternating between
absent and present) evolve dependently, as intended.

In this section we find the counterparts for the resampling model of all results
that we derived for the regime switching model of Sect. 2. To make notation
compact, let (P,R) denote a generic sample of (Pm, Rm).

3.1 Generating Function

Let us now analyze the object ϕk(z) := E
(
zYm |Ym−1 = k

)
. Realize that Ym is

the sum of (i) the edges that were present at time m − 1 and still are at m, and
(ii) the edges that were not there at m − 1 but do appear at m. Both obey a
binomial distribution (with appropriately chosen parameters). More precisely,

ϕk(z) = E

(
N−k∑

�=0

(
N − k




)
(1 − Pm)�PN−k−�

m z� ·
k∑

�=0

(
k




)
R�

m(1 − Rm)k−�z�

)

,

which simplifies to

E

(
((1 − Pm)z + Pm)N−k · (Rmz + 1 − Rm)k

)
.

Now consider the stationary random variable Y , through its z-transform ϕ(z) :=
E zY . Based on the above computation, we have found the following fixed-point
equation:

ϕ(z) = E

(
((1 − P )z + P )N ϕ

(
Rz + 1 − R

(1 − P )z + P

))
. (8)

3.2 Moments

In this subsection, we compute the mean, variance and correlation in stationarity.

Mean. Let us first compute EY , by differentiating both sides to z and plugging
in z = 1. To this end, we define

ψ1(z) := ((1 − P )z + P )N , ψ2(z) := ϕ

(
Rz + 1 − R

(1 − P )z + P

)
.
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We first compute a number of quantities that we need in the sequel. It takes
routine calculations to conclude that

ψ′
1(z) = (1 − P )N((1 − P )z + P )N−1,

ψ′′
1 (z) = (1 − P )2N(N − 1)((1 − P )z + P )N−2,

ψ′
2(z) =

P + R − 1
((1 − P )z + P )2

ϕ′
(

Rz + 1 − R

(1 − P )z + P

)
,

and

ψ′′
2 (z) = −2

(P + R − 1)(1 − P )
((1 − P )z + P )3

ϕ′
(

Rz + 1 − R

(1 − P )z + P

)

+
(P + R − 1)2

((1 − P )z + P )4
ϕ′′

(
Rz + 1 − R

(1 − P )z + P

)
.

As a consequence,

ψ′
1(1) = (1 − P )N, ψ′′

1 (1) = (1 − P )2N(N − 1), ψ′
2(1) = (P + R − 1)ϕ′(1),

and
ψ′′
2 (1) = −2(P + R − 1)(1 − P )ϕ′(1) + (P + R − 1)2ϕ′′(1).

Regarding the first moment of Y , we obtain the equation α := ϕ′(1) = Eψ′
1(1)+

Eψ′
2(1), or equivalently α = N(1 − EP ) + α(EP + ER − 1), and hence

α = N
1 − EP

2 − EP − ER
. (9)

Variance. We now evaluate the quantity

β := EY (Y − 1) = ϕ′′(1) = Eψ′′
1 (1) + 2Eψ′

1(1)ψ′
2(1) + Eψ′′

2 (1).

We thus obtain that β equals

N(N−1)E
(
(1 − P )2

)
+2(N−1)αE ((P + R − 1)(1 − P ))+β E

(
(P + R − 1)2

)
,

and therefore

β =
N(N − 1)E

(
(1 − P )2

)
+ 2(N − 1)αE ((P + R − 1)(1 − P ))

1 − E ((P + R − 1)2)
.

As a consequence, Var Y equals

α − α2 +
N(N − 1)E

(
(1 − P )2

)
+ 2(N − 1)αE ((P + R − 1)(1 − P ))

1 − E ((P + R − 1)2)
.

It takes an elementary but tedious computation to verify that if P and R equal
(deterministically) p and r, respectively, then this variance reduces to Nπ0π1,
as desired.
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We also conclude that Var Y grows essentially quadratically in N . Indeed, it
follows by standard computations that, with P̄ := 1 − P and R̄ := 1 − R,

Var Y = γ1N
2 + γ2N, (10)

where

γ1 =
E(R̄2)(E P̄ )2 − 2E(PR)E P̄ E R̄ + E(P̄ 2)(E R̄)2

(
1 − E

(
(P̄ + R̄ − 1)2

)) (
E P̄ + E R̄

)2 ,

and

γ2 =
−E(R̄2)E P̄ + 2E P̄ E R̄ − E(P̄ 2)E R̄
(
1 − E

(
(P̄ + R̄ − 1)2

)) (
E P̄ + E R̄

) .

Notice that γ1 and γ2 are symmetric in P and R, as desired, and observe that
γ1 ≥ 0 (with equality only if P and R are deterministic). We conclude that
no standard CLT applies (which would require that Var Y grows linearly in N)
unless P and R are deterministic.

Correlation. We now focus on computing the limit of covariance Cov(Ym, Ym+1)
as m → ∞. Observe that

lim
m→∞Cov(Ym, Ym+1) = lim

m→∞

N∑

k=0

kE(Ym+1 |Ym = k)P(Ym = k) − (EY )2,

which, in self-evident notation, reads

N∑

k=0

kE(Bin(k,R))P(Y = k) +
N∑

k=0

kE(Bin(N − k, 1 − P ))P(Y = k) − (EY )2.

This reduces to

ER

N∑

k=0

k2
P(Y = k) + (1 − EP )

N∑

k=0

k(N − k)P(Y = k) − (EY )2,

so that we obtain

lim
m→∞Cov(Ym, Ym+1) = (EP + ER − 1)E(Y 2) + (1 − EP )N EY − (EY )2,

which we can evaluate from the expressions for EY and Var Y .

3.3 Diffusion Results Under Scaling

We now consider the following scaling: for some δ > 0 we put

P = 1 − η/Nδ, R = 1 − ζ/Nδ, (11)
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where η and ζ are non-negative random variables. The resulting model has some
built-in ‘inertia’: for N large, the process has the inclination to stay in the same
configuration. The mean number of vertices is N 	̄, with

	̄ :=
E η

E η + E ζ
,

irrespective of the value of δ. When analyzing the variance, however, the reveal-
ing issue is that the value of δ has crucial impact. More specifically, a minor
computation tells us that Var Y essentially reads

N 	̄ (1 − 	̄ ) + N2−δ E(ζ2)(E η)2 − 2E(ηζ)E η E ζ + E(η2)(E ζ)2

2(E η + E ζ)3
.

Note that, due to the inertia that we incorporated, the variance is smaller than
in the unscaled model, where the variance was effectively proportional to N2.
Observe from the above expression that there is a dichotomy that resembles the
one we came across in Sect. 2, with some sort of transition at δ = 1. For δ > 1
the standard deviation scales as

√
N , whereas for δ < 1 it scales as N1−δ/2.

An intuitive explanation is that in the regime of relatively few transitions (i.e.,
δ > 1) the system’s inertia is so strong that its steady-state essentially behaves
as an Erdős-Rényi graph with the probability that an edge exists being given by
	̄. In the regime with relatively many transitions (i.e., δ < 1), on the contrary,
the (co-)variances play a role, in the sense that the increased variability caused
by the resampling has impact; the limiting object is not of Erdős-Rényi-type.

Along the same lines, an elementary computation yields that the covari-
ance between the numbers of edges at two subsequent epochs (in stationarity)
behaves as

Var Y

(
1 − E η + E ζ

N δ

)
;

this correlation coefficient essentially reads 1 − (E η + E ζ)N−δ (for N large).

A Related Continuous-Time Model. In the remainder of this subsection we
consider a specific explicit continuous-time model in which we can embed the
discrete-time model discussed above, and in particular the scaling (11). To this
end, we first describe the model without scaling, and then include the scaling.

Let, at time s, M(s) � 0 be the hazard rate of an existing vertex becoming
inactive; likewise, Λ(s) � 0 is the hazard rate corresponding with a non-existing
vertex becoming active. Here M(s) and Λ(s) are piecewise constant stochastic
processes: for some Δ > 0,

Λ(s) = Λi 1{(i−1)Δ�s<iΔ}, M(s) = Mi 1{(i−1)Δ�s<iΔ},

where (Mi, Λi)i∈N is a sequence of i.i.d. bivariate random vectors such that both
Var Λ and Var M are finite. Let Y (t) be the number of vertices at time t, and Y
its stationary counterpart. As it turns out, we can reuse quite a few results from
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the previous subsections, using the identification Y (mΔ) = Ym. In particular, it
is seen that ϕ(z) := E zY satisfies (8), with

P :=
M

Λ + M
+

Λ

Λ + M
e−(Λ+M)Δ, R :=

Λ

Λ + M
+

M

Λ + M
e−(Λ+M)Δ.

We thus obtain from (9)

EY = N E

(
Λ

Λ + M

(
1 − e−(Λ+M)Δ

))/
E

(
1 − e−(Λ+M)Δ

)

Similarly, we can compute the variance by (10).
Now we describe how to scale this model. The idea is to scale Δ �→ 1/N δ,

and to consider the regime in which we let N grow large, i.e., the transition rates
are frequently resampled (and simultaneously the number of potential edges N
grows). It is immediate that P and R fulfill (11) with η = Λ and ζ = M. We
obtain that EY tends to 	̄ := EΛ/EΓ , where Γ := Λ + M . In addition, Var Y
satisfies the expansion N 	̄ (1 − 	̄ ) + N2−δv + o(Nmax{1,2−δ}), where

v :=
1

2EΓ

(
	̄ 2

Var M − 2 	̄ (1 − 	̄ )Cov (Λ,M) + (1 − 	̄ )2 Var Λ
)

=
1

2EΓ
Var (Λ − 	̄ Γ ) .

The proof of a functional central limit theorem is very similar to the one for
the regime switching model in Sect. 2; we therefore restrict ourselves to the key
steps. With P1(·) and P2(·) as before,

Y (t) = P1

(∫ t

0

Λ(s)(N − Y (s))ds

)
− P2

(∫ t

0

M(s)Y (s)ds

)
,

so that, for some martingale K(t),

dY (t) = Λ(t)(N − Y (t))dt − M(t)Y (t)dt + dK(t).

Then Ȳ (t) is defined as in (3), with 	(t) := 	̄ · (1− exp(−tEΓ )). We define, with
Γ (s) = Λ(s) + M(s),

W (t) := eΓ+(t)Ȳ (t), with Γ+(t) :=
∫ t

0

Γ (s)ds.

After a few steps, this leads to the stochastic differential equation,

dW (t) = eΓ+(t)

(√
N ((Λ(t) − EΛ) − 	(t)(Γ (t) − EΓ )) dt +

dK(t)√
N

)
.

Consider the two terms in the previous display. For the first term, as N → ∞,
∫ ·

0

√
NeΓ+(s)

(
(Λ(s) − EΛ) − 	(s)(Γ (s) − EΓ )

)
ds →

∫ ·

0

esEΓ dG(s),
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where G(·) satisfies

〈G〉t = g(t) :=
∫ t

0

Var (Λ − 	(s)Γ )ds; (12)

to see this note that, almost surely, uniformly on compacts, as N → ∞,

eΓ+(s) = exp

(
1
N

sN∑

i=1

(Λi + Mi)

)

→ exp (sEΓ ) ,

and use this in combination with the (classical) functional central limit theorem
for the random walk with i.i.d. increments [14, Theorem 4.3.5]. For the second
term, as N → ∞, due to the definition of the martingale K(·),

∫ ·

0

1√
N

eΓ+(s)dK(s) →
∫ ·

0

eγ�sdH(s),

where H(·) is such that

〈H〉t = h(t) := EΛ

∫ t

0

(1 − 	(s))ds + EM

∫ t

0

	(s)ds. (13)

Combining the two terms studied above, it thus follows that, as N → ∞, W (·)
weakly converges to W∞(·), which is the solution to the stochastic differential
equation (6), but now with the g(·) and h(·) given by (12) and (13), respectively.
We obtain the following result.

Theorem 2. Ȳ (·) converges weakly to Ȳ∞(·), which is the solution to the
stochastic differential equation (7), with g(·) and h(·) given by (12) and (13),
respectively.

Remark 4. For large t (‘in stationarity’), this stochastic differential equation
essentially behaves as

dȲ∞(t) = −EΓ · Ȳ∞(t) dt +
√

2EΓ · 	̄(1 − 	̄) + 2EΓ · v dB(t),

corresponding with an ou process with mean 0 and variance 	̄ (1 − 	̄) + v. Note
that this is in line with what we found, plugging in δ = 1, in the expansion
N 	̄ (1 − 	̄ ) + N2−δv + o(Nmax{1,2−δ}). Regarding the cases δ < 1 and δ > 1 a
reasoning similar to that in Remark 3 applies.

3.4 Large Deviations Results Under Scaling

The above computations focused on the mean, variance, and correlation under
the scaling proposed. We now consider rare events. Another straightforward
calculation yields for the cumulant function, assuming Nx to be integer,

logE exp (ϑ(Ym − Ym−1) |Ym−1 = Nx)

= logE
((

e−ϑ(1 − Rm) + Rm)
)Nx (

eϑ(1 − Pm) + Pm)
)N(1−x)

)
,
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which, for δ = 1, converges to

Λx(ϑ) := logE exp
(
xζ(e−ϑ − 1) + (1 − x)η(eϑ − 1)

)

= log M
(
x(e−ϑ − 1), (1 − x)(eϑ − 1)

)
,

where M(·, ·) is the joint moment generating function of the random variables
ζ and η (assuming that it exists). One thus finds a sample-path ldp where the
local rate function is given by

Ix(y) := sup
ϑ

(ϑy − Λx(ϑ)) .

More precisely, with Y ◦(t) := N−1Y�Nt	 and t ∈ [0, T ], and under mild regularity
conditions on the set A,

lim
N→∞

1
N

logP(Y ◦(·) ∈ A) = − inf
f∈A

IT (f), with IT (f) :=
∫ T

0

If(s)(f ′(s))ds.

Fig. 1. Left panel: histogram of Ȳ for situation (A). Right panel: histogram of Ȳ for
situation (B). In both cases we took N = 45.

4 Numerical Illustration

In this section we include a number of illustrative examples that assess the
applicability of the diffusion limits. We consider two situations; in both cases we
take δ = 1. (A) In the first situation we consider the regime switching model
of Sect. 2. The background process has two states, with q12 = 2 and q21 = 3;
in addition λ1 = 0.3, λ2 = 0.5, μ1 = 1, and μ2 = 0.1. Using the formulae we
derived in Sect. 2, we find EY = 0.762N and Var Y = 0.182N . (B) The second
situation corresponds to the resampling model of Sect. 3. More, specifically, M
has a uniform distribution on [0, 3] and Λ a uniform distribution on [0, 5]. It is
readily checked that EY = 0.625N and Var Y = 0.308N .

In Fig. 1 histograms are presented for the random variable

Ȳ :=
Y − EY√
Var Y

.
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The number of experiments the estimates are based upon equals the number of
this lncs volume. Each simulation experiment starts with an empty system, and
is then run for a sufficiently long time such that the process has reached equilib-
rium. The red curves in Fig. 1 correspond to the density of the standard Normal
distribution. The figures confirm the convergence to the Normal distribution.

In Fig. 2 typical sample paths are depicted, illustrating the ou-like mean-
reverting behavior. The red curves correspond to the mean of Y (t).

Fig. 2. Left panel: sample path of Y (·) for situation (A). Right panel: sample path of
Y (·) for situation (B). In both cases we took N = 45.

5 Discussion and Concluding Remarks

In this paper we have discussed distributional properties of the number of edges
in a dynamic Erdős-Rényi graph. We have considered two variants: one with
the underlying mechanism being based on regime switching, and the other in
which the transition probabilities are resampled at equidistant points in time.
For both models we have succeeded in obtaining fairly explicit results for various
transient and stationary quantities. Under a specific scaling a functional central
limit theorem was established.

There is an interesting relation between the models considered in this paper
and two-node closed queueing networks. In such closed networks a fixed number
of jobs, say N , move between an active state (‘in service’) and an inactive state
(‘waiting’). Such models (but without regime switching or resampling) have been
intensively studied in the literature in the context of so-called Engset models [5];
see e.g. [3] and references therein.

Topics for future research may relate to other graph metrics than the total
number of edges. In the introduction, we mentioned that [13] considers the behav-
ior of the Betti number, but one could also think of e.g. the evolution of the num-
ber of wedges or triangles in the random graph. In addition, one may wonder
under what conditions the dynamic random graph in which the edges (indepen-
dently) alternate between present and absent is almost surely connected; one
would expect that if this alternating process is ‘sufficiently fast’ and the station-
ary up-probability is larger than log n/n, this should be the case.
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Appendix

We now prove Lemma 1. We do so by establishing the claim for k = 1; plugging in
k Γ for Γ yields the stated. Write F∞ := (γ�)−11πT and abbreviate FN := FN,1.

As Q has a kernel of dimension 1, we can factorize Q as Q = AB, where
A ∈ R

d×(d−1) is of full column rank and B ∈ R
(d−1)×d is of full row rank. It is

not hard to show that BA is an invertible matrix. Moreover, every element in
the right kernel of Q is a multiple of 1 and, likewise, every element in the left
kernel of Q is a multiple of πT.

Applying the Sherman-Morrison formula to FN = (Γ − NAB)−1, we find

FN = Γ−1 + Γ−1A

(
Id−1

N
− BΓ−1A

)−1

BΓ−1. (14)

Taking the limit for N → ∞, we arrive at

F∞ = Γ−1 − Γ−1A (BΓ−1A)−1BΓ−1, (15)

where the invertibility of BΓ−1A is due to γ� > 0. One sees that F∞A = 0 and
BF∞ = 0. Hence F∞ belongs to the left kernel of A and to the right kernel of
B, so F∞ = c1πT for some c ∈ R. One also has F∞Γ1 = F∞γ = 1, and hence
c = (γ�)−1, which gives the desired result for limN→∞ FN .

We proceed by proving the expansion. Inserting
(

I

N
− BΓ−1A

)−1

= −(BΓ−1A)−1 − 1
N

(BΓ−1A)−2 + O(N−2)

into (14), one obtains

FN = F∞ − 1
N

Γ−1A(BΓ−1A)−2BΓ−1 + O(N−2).

Let A+ (B+, resp.) denote any left (right, resp.) inverse of A (B, resp.), so that
A+A = BB+ = Id−1. Then

Γ−1A(BΓ−1A)−2BΓ−1 = Γ−1A(BΓ−1A)−1BB+A+A(BΓ−1A)−1BΓ−1.

Now, it follows from (15) that Γ−1A(BΓ−1A)−1B = I − F∞Γ and in addition
A(BΓ−1A)−1BΓ−1 = I − ΓF∞. Hence,

FN = F∞ − 1
N

(I − F∞Γ )B+A+(I − ΓF∞) + O(N−2). (16)

We specialize to judicious choices of A+ and B+, namely

A+ =
(
Id−1 0

)
A−1

1 , B+ = B−1
1

(
Id−1

0

)
, where A1 :=

(
A 1

)
, B1 :=

(
B

−πT

)
,
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and 0 stands here as well as below for a zero matrix or vector of appropriate
dimensions. Both A1 and B1 are invertible, as an immediate consequence of the
relation A1B1 = Q − 1πT = −(D + 1πT)−1. In addition,

B+A+ = B−1
1

(
Id−1 0

0 0

)
A−1

1 , B11 = −
(

0
1

)
, πTA1 =

(
0 1

)
.

A straightforward computation gives with the above relations

B+A+ = B−1
1 A−1

1 − B−1
1

(
1
0

)
(
1 0

)
A−1

1 = −(D + 1πT) + 1πT = −D.

The result (for k = 1) now follows from (16). �

References

1. Basu, P., Bar-Noy, A., Ramanathan, R., Johnson, M.: Modeling and analysis of
time-varying graphs. arXiv:1012.0260 (2010)

2. Blom, J., de Turck, K., Mandjes, M.: Functional central limit theorems for Markov-
modulated infinite-server systems. Math. Methods Oper. Res. 83, 351–372 (2016)
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