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1 Introduction

Given a graph G = (V, E), we may be interested in computing various parameters
that are associated with the graph. Such parameters include the average degree,
the number of connected components, and the size of a minimum vertex cover.
These parameters and many others can be computed (exactly or approximately)
in an efficient manner. That is, in time that is polynomial in the size of the graph,
and possibly even linear in this size. However, for very large graphs, even linear
time may by infeasible. Hence, we need to design more efficient algorithms, that
is, algorithms that run in sublinear time.

Given the constraint on their running time, such algorithms cannot read the
entire graph, but can access parts of the graph by performing queries. We mainly
consider two types of queries: degree queries and neighbor queries. In a degree
query the algorithm specifies a vertex v € V, and the answer to the query is
the degree of v in G, denoted d(v). In a neighbor query, the algorithm specifies
a vertex v and an index i. The answer to the query is the i*" neighbor of v if
i €{1,...,d(v)}, and is a special symbol, L, otherwise.> A third possible type of
query is a vertex-pair query, where the algorithm specifies a pair of vertices {u, v}
and the answer is 1 if {u,v} € FE and 0 otherwise. If the graph is edge weighted,
then the answer to a neighbor query (similarly, a vertex-pair query) also includes
the weight of the corresponding edge. We assume that the algorithm is given the
number of vertices in the graph, denoted n, and, without loss of generality, may
assume that V = {1,...,n}. In all that follows, unless stated explicitly otherwise,
the algorithm has access to degree queries and neighbor queries.

The algorithms presented in this survey are randomized algorithms that are
allowed a small constant failure probability (e.g., 1/3). This failure probability
can be reduced in a standard manner to any desired value § > 0 at a multi-
plicative cost of log(1/d). The algorithms compute approximations of various
graph parameters. Ideally, we would like to design algorithms that, given any
e € (0,1), compute an approximation that is within a multiplicative factor of
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! Observe that a degree query to a vertex v can be replaced by O(logd(v)) neighbor
queries to v by performing a “doubling” search. For the sake of simplicity we allow
both types of queries.
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(1£e) from the exact value of the graph parameter in question, and furthermore,
their complexity grows polynomially with 1/e. While some of the algorithms have
this desired behavior, others provide weaker approximations, as we detail when
presenting the corresponding results.

In the rest of this section, we present a variety of results for sublinear approx-
imation of graph parameters. In the sections that follow we give more details for
a selection of these results.

1.1 Average Degree and Higher Moments of the Degree
Distribution

The Average Degree. The problem of estimating the average degree d = d(G)
of a graph G in sublinear time was first studied by Feige [10]. He considered this
problem when the algorithm is allowed only degree queries, so that the problem
is a special case of estimating the average value of a function given query access
to the function. For a general function d : {1,...,n} — {0,...,n— 1}, obtaining
a constant-factor estimate of the average value of the function (with constant
success probability) requires £2(n) queries to the function (and this remains true
even if there is a promise that the average value is at least 1). Feige showed
that when d is the degree function of a graph, for any ¢ € (0,1] it is possible

to obtain an estimate d such that d € [d, (2 4 ¢) - d] with probability at least
2/3 by performing O(y/n/e) (uniformly selected) queries. He also showed that
in order to go below a factor of 2 in the quality of the estimate, {2(n) queries
are necessary.

However, given that the object in question is a graph, it is natural to allow
the algorithm to query the neighborhood of vertices of its choice and not only
their degrees; indeed, the aforementioned problem definition follows this nat-
ural convention. Goldreich and Ron [14] showed that by giving the algorithm
this extra power, it is possible to break the factor-2 barrier. They provide an
algorithm that, given e € (0,1), outputs a (1 & €)-factor estimate of the aver-
age degree (with probability at least 2/3) after performing O. (n'/?) degree and
neighbor queries, assuming d > 1. (We use 55() to suppress both poly(logn)
factors and poly(1/¢) factors.) More precisely, the number of queries and the run-
ning time are O, ((n/d)'/2) in expectation. Thus, the complexity decreases as the
average degree increases. Furthermore, this result is essentially optimal [14]: a
(1 + €)-factor estimate requires 2((n/(ed))'/?) queries.

Higher Moments. For a graph G = (V, E), consider the sum (average) of

higher powers of the vertices’ degrees: for s > 1 we let My, = M(G) et

Y vev d)® and p, = ps(G) def L. M,(G). Observe that for s = 1 we have
that p; = d (and M; = 2m where m is the number of edges in the graph), while
for s = 2, the variance of the degree distribution is ps — 3.

Gonen et al. [15] gave a sublinear-time algorithm for approximating .. Tech-

nically, their algorithm approximates the number of stars in a graph (with a given
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size s), but a simple modification yields an algorithm for moments estimation.
A much simpler algorithm (and analysis) was later given by Eden et al. [9] with
essentially the same complexity (the dependence on 1/€, s and the poly(logn)
factors are reduced in [9]). Both papers show how to obtain a (1 + €)-factor

~ i o

approximation of us by performing O, (";“ + min {nl_i, ”11}) queries
ort ps °

in expectation, where this bound is essentially optimal [15] (up to a dependence

on 1/e and polylogarithmic factors in n). For example, when s = 2 this function
behaves as follows. For pz < nl/2 the bound is n2/3/ub/®, for n'/2 < py < n,
the bound is n'/2, and for puy > n, it is n/,u;/Q.

Aliakbarpour et al. [1] consider a stronger model that assumes access to

uniform random edges. They show that in this model O. (]WT/S + nlfl/s) =

— 1

O, (nl_l/s - max {1, d-ps }) queries suffice for s > 1.

The Lower Bound and Graphs with Bounded Arboricity. The lower
bound constructions showing that the complexity of the aforementioned algo-
rithms for approximating us is essentially optimal [15], are based on “locally
dense” graphs. In particular, the first (and simpler) lower bound (corresponding

1 1
to the first term, nlfﬁ/u‘i“ =n/MJt), is simply based on the difficulty of
1

“hitting” a clique of size Mg ™", and the second lower bound (corresponding to
the second term), is based on a complete bipartite subgraph. A natural question
is whether we can get a better upper bound if we know that there are no dense
subgraphs. This question was answered affirmatively by Eden et al. [9]. They
showed that a significantly improved complexity can be obtained for graphs
with bounded arboricity.? For precise details see [9].

Number of Triangles and Larger Cliques. Gonen et al. [15] also considered
the problem of approximating the number of triangles in a graph G, denoted
t = t(G). They showed a linear lower bound when the algorithm may use degree
and neighbor queries and m = ©@(n). This raises the natural question whether
a sublinear bound can be obtained if the algorithm is also allowed pair-queries
(which are not helpful in the case of moments estimation). This question was
answered affirmatively by Eden et al. [7]. They gave an algorithm whose query

m3/2
t

complexity and running time are 65 (tl% + ) in expectation. To be precise,

in the expression for the query complexity, the second term is min{m, ms3/2 /t}
(so that the number of queries is at most linear, and is strictly sublinear as long as
t > m!/?). This bound on the query complexity is tight (up to factors polynomial
in logn and 1/€) [7]. The result was recently extended to approximating the
number of k-cliques [8], for any given k > 3.

2 The arboricity of a graph G, denoted arb(G), is the minimum number of forests into

which its edges can be partitioned. It satisfies [20,21] arb(G) = maxscy { “g‘(f)ll—‘ },

where E(S) denotes the set of edges in the subgraph induced by S.
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1.2 The Number of Connected Components

The problem of approximating the number of connected components in a graph
was addressed by Chazelle et al. [4] in the course of designing an algorithm for
approximating the minimum weight of a spanning tree. We discuss the latter prob-
lem in Subsect. 1.4. Their algorithm for approximating the number of connected
components of a graph G, denoted cc(G), outputs an estimate that with prob-
ability at least 2/3 is within an additive error of en from cc(G) (for any given
¢ € (0,1)). The query complexity and running time of the algorithm are O(d/e?).

1.3 Minimum Vertex Cover and Related Parameters

Let vc(G) denote the minimum size of a vertex cover in a graph G. The prob-
lem of approximating vc(G) in sublinear time was first studied by Parnas and
Ron [24]. They showed how to obtain an estimate v¢ that with probability at
least 2/3 satisfies v¢ € [ve(G),2 - ve(G) + en]. The query complexity and run-
ning time of the algorithm are d°(ogd/ ) where d is the maximum degree in the
graph. The dependence on d can be replaced by a dependence on d/e (recall that
d denotes the average degree in the graph) [24]. It is also possible to replace the
combination of the multiplicative factor of 2 and the additive term of en by a
multiplicative factor of 2+ ¢ at a cost that depends on n/ve(G) (and such a cost
is unavoidable).

The upper bound of d©Uesd/ <) was significantly improved in a sequence of
papers [19,22,23,27]. The best result, appearing in [23] (and building on [22]
and [27]), gives an upper bound of O(d/c®M).

On the negative side, it was also proved in [24] that at least a linear depen-
dence on the average degree, d, is necessary. Namely, 2(d) queries are neces-
sary for obtaining an estimate v¢ that satisfies (with probability at least 2/3)
V¢ € [ve(@), a-ve(G) +en] for any o > 1 and € < 1/4, provided that d = O(n/«).
In particular this is true for o = 2. We also mention that obtaining such an esti-
mate with o = 2 —~ for any constant v and sufficiently small constant e requires
2(y/n) queries, as shown by Trevisan (see [24]). For a < 7/6, the lower bound [3]
is 2(n).

Improved Approximation for Restricted Families of Graphs. Hassidim
et al. [16] introduced the notion of a Partition Oracle, and showed how it can
be applied to solve a variety of testing and approximation problems in sublinear
time (possibly under a promise that the graph belongs to a certain restricted
family of graphs). In particular, for graphs with excluded minors® (of constant
size, e.g., planar graphs), this implies an algorithm that computes an estimate
vc that satisfies (with probability at least 2/3) v¢ € [ve, ve + en] (i.e., with no
multiplicative factor). The query complexity and running time of the algorithm
are O(dP°Y(1/9)). An improved partition oracle presented in [17] implies that an

3 A graph H is a minor of a graph G if H can be obtained from a subgraph of G by
a sequence of edge contractions.
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estimate with the same quality can be obtained in time O((d/e)(o8(1/))) =
O(d1°g2(1/ ). Similar results hold for the size of a minimum dominating set and
maximum independent set.

Maximum Matching. The aforementioned algorithms for approximating
ve(G) work by approximating the size of a maximal matching. Nguyen and
Onak [22] showed how such an approximation can be extended and used in a
recursive manner (based on augmenting paths for matchings) so as to obtain an
estimate mm of the mazimum size of a matching in a graph G, denoted mm(G).
The estimate satisfies mm € [mm(G) —en, mm(G)] with probability at least 2/3.
The query complexity of the algorithm is 2d?% Y iy expectation. This result was
improved by Yoshida et al. [27] to dO(1/€*).

1.4 Minimum Weight Spanning Tree

Chazelle et al. [4] studied the problem of approximating the minimum weight of
a spanning tree in an edge-weighted graph. For a (connected) graph G = (V, E)
with an associated weight function w over E, let st(G,w) denote the minimum
weight of a spanning tree in G (according to the weight function w). Assuming
w(e) € {1,...,W} for an integer W and every e € E, they show how to obtain
an estimate st that satisfies st € [st(G,w), (1 + €)st(G,w)] with high constant
d'EZV) queries. Here a query for a neighbor of a

probability by performing 0] (

given vertex v also returns the weight of the corresponding edge. They also give
d

an almost-matching lower bound of (2 ( GZV) The algorithm can be extended

to the case of non-integer weights in the range [1, W] (by discretization of the
edge weights).*

The problem of approximating the minimum weight of a spanning tree when
the distance function is a metric was studied by Czumaj and Sohler [6], and for
the special case of the Euclidean metric, by Czumaj et al. [5].

1.5 Distance to Properties

Another type of graph parameter is the distance of a graph to having a partic-
ular property. Distance is measured in terms of the fraction of edges that need
to be added and/or removed so that the graph obtains the property. Distance
approximation was first explicitly introduced by Parnas et al. [25] (together with
tolerant property testing).

In what is known as the dense-graphs model, a distance-approximation algo-
rithm for a graph property P may perform vertex-pair queries, and is given an
approximation parameter € € (0,1). It should output an estimate of the distance
to the property that is within +en? from the true value with probability at least

4 In CRT it was shown how this can be done at a cost of 1/e in the query complexity,
and Bansal [2] showed how this cost can be avoided.
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2/3. Hence a distance-approximation algorithm is a generalization of a (graph)
property-testing algorithm (as defined in [12]). A property-testing algorithm
should distinguish between the case that the graph has the property (distance
0), and the case in which it has distance greater than e to the property.

As observed in [25], for some graph properties, known algorithms for property
testing in the dense-graphs model presented in [12] immediately imply distance
approximation algorithms. In particular this holds for a variety of Graph Par-
titioning properties (such as bipartiteness, and more generally, k-colorability),
where the query complexity is polynomial in 1/¢. (Assuming P # NP, the run-
ning time cannot be polynomial in 1/e.) Fischer and Newman [11] proved that
every property that has a testing algorithm in the dense-graphs model whose
query complexity depends only on 1/¢, has a distance approximation algorithm
whose query complexity depends only on 1/¢ (though the dependence may be
quite high (e.g., a tower function)).

Marko and Ron [19] studied distance approximation for bounded-degree and
unbounded-degree sparse graphs. In both cases the algorithms can perform
neighbor and degree queries. For graphs with a degree bound d, distance is
measured with respect to d - n, while when there is no bound on the degree, dis-
tance is measured with respect to a given upper bound on the number of edges.
They present several distance approximation algorithms for properties that have
testing algorithms [13], such as k-connectivity and subgraph-freeness.

1.6 Organization

Following a preliminaries section, in Sect. 3 we describe an algorithm for approx-
imating the average degree d, and more generally, s for s > 1. In Sect.4 we
give two algorithms for approximating the minimum size of a vertex cover, and
in Sect. 5 we describe an algorithm for approximating the minimum weight of a
spanning tree. Due to space constraints, some analysis details are omitted.

2 Preliminaries

For an integer s, we let [s] o {1,...,s}. Let G = (V,E) be an undirected
graph, which, unless stated otherwise, is simple and unweighted. We denote
the number of vertices in G by n and the number of edges by m. Each vertex
v € V is associated with a unique id, denoted id(v). For a vertex v € V, we let
I'(v) denote its set of neighbors, and let d(v) denote its degree. We denote the
maximum degree in the graph by d = d(G), and the average degree by d = d(G).
We assume it is possible to uniformly select a vertex in V', and for any vertex
v € V to obtain its degree d(v) (referred to as a degree query), as well as its i}
neighbor for any ¢ € [d(v)] (referred to as a neighbor query), all at unit cost.
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3 Moments of the Degree Distribution

3.1 Average Degree

We start by considering the average degree, d = def 1 = ey d(v). In what follows
we present an algorithm due to [9] (which is a variant of the algorithm appearing
in [26]).

This algorithm and its analysis are more elegant than what appears in [14],
and also serve as an introduction to higher moments. We have chosen to combine
the presentation of the algorithm and its analysis, since we believe it better brings
out the ideas behind them. The more general algorithm, for higher moments, is
presented in a more conventional and formal manner in Subsect. 3.2.

In what follows we assume we have a “rough” constant factor estimate m of
the number of edges in the graph. That is, m = ©(m). We describe an algorithm
that, given such an estimate m, computes a “refined” estimate of d = 2m/n
that is within (1 & €) of d (for any given approximation parameter e € (0,1)).
In fact, to ensure its correctness, the algorithm only requires that m = O(m).
Furthermore, if m = 2(m), then with high probability it will not overestimate d
(but may underestimate it). The running time of the algorithm is O, ((n/m)'/2).
Hence, the assumption regarding m can be removed by a geometric search, as
shown in [14, Sect. 3.1.2].

Weight Assignment. Consider assigning each edge e € F to its endpoint that
has smaller degree, breaking ties arbitrarily (e.g., by the ids of the vertices). Let
the weight of vertex v, denoted w(v), be twice® the number of edges assigned to v.
Observe first that since each edge is assigned to exactly one vertex, >, w(v) =
2m. Next, observe that w(u) < 2(2m)'/? for every vertex u. This is true since
w(u) < 2-d(u), and for each of the w(u)/2 edges {u,v} that are assigned
to u, we have that d(u) < d(v). Hence, if w(u) > 2(2m)'/? for some u, then
Y vey A(v) > (w(w)/2)-d(u) > 2m, contradicting the fact that ) .y, d(v) = 2m.

The algorithm starts by selecting r vertices, uniformly, independently, at

random, where r = 257 - % =0 ,Ijz 6%) and ¢, is a (sufficiently large)
constant. Let R = {uy,...,u,} denote the multiset of vertices selected, and let

w(R) = def >i_y w(w;). By the definition of the weight of vertices, since each w; is
selected uniformly at random, Explw(u;)] = 2m/n = d for each i € [r], so that
Expp [L - w(R)] =d.

We can now apply the multiplicative Chernoff bound on the sum of the
random variables X; = w(u;), which satisfy Exp[ ;] = dand X; € [0,2(2m)/?).
By our choice of 7 and the assumption that m = ©(m) = O(d - n), we get that

Prr Hi-w(R)—d) ><—:d] < 2exp (W) < 1/10,

5 The factor of 2 is due to the relation between the number of edges and the average
degree, as well as for the sake of consistency with the higher moments algorithm.



112 D. Ron

where the last inequality is for a sufficiently large constant ¢, in the setting of
the sample size r. The above implies that if we had an oracle for the weight
function over vertices, we could compute w(R) and simply output % - w(R).
Unfortunately, we do not have such an oracle, and furthermore, it is not even
clear how to approximate w(u;) for all © € R in an efficient manner. Therefore,
we approximate w(R) in a different manner, as described next, conditioning on
the event that w(R) = (14 ¢€)-d-r (which holds with probability at least 9/10).
In what follows we assume without loss of generality that € < 1/2 (or else we set
e=1/2).

Approximating w(R). Let E(R) denote the multiset of ordered pairs, (u,v)
such that v € R and {u,v} € E. Note that if v and v both belong to R, then
E(R) contains both (u,v) and (v,u). Consider next “spreading” the weight of
the vertices in R onto E(R). Namely, for each (u,v) € E(R), if d(u) < d(v) or
d(u) = d(v) and id(u) < id(v), then w(u,v) = 2, and otherwise, w(u,v) = 0. By

this definition,
w(R) = Z w(u,v) .
(u,v)EE(R)

The benefit of moving the assignment of weight from vertices to (ordered)
edges, is that for any edge (u,v), we can determine whether w(u,v) = 2 or
w(u,v) = 0 by simply performing two degree queries. Note that |E(R)| =
> wer d(u), which can be computed by performing degree queries on all vertices
in R. Also note that we can select a pair (u,v) € E(R) uniformly at random
as follows: Select a vertex u € R with probability d(u)/|E(R)|, select i € [d(u)]
uniformly at random, and query the i*" neighbor of u to obtain (u,v). Finally,
observe that Exp[|E(R)|] = d - r, and by Markov’s inequality, |E(R)| < 10-d -7
with probability at least 9/10. From this point on, we condition on the last event,
in addition to w(R) = (1 £ €) - d - r, which gives us that w(R)/|E(R)| > 1/20.

Armed with the ability to uniformly sample (ordered) edges from E(R) and
obtain their weight, the algorithm selects, uniformly, independently, at random,
q = ¢4/€? edges in E(R) (for an appropriate constant c,), and sums their weights.
Let the sum be denoted by X. By the above discussion, the expected value of X/q

is |75§g\ , which is at least 1/20. By applying the multiplicative Chernoff bound,

we get that X/q is within (1 £ €) from this expected value with probability at
[E(R)|

last 9/10. Hence, the algorithm outputs - X as its estimate for d.

By summing the probabilities of three “bad” events ((1) w(R) deviates from

d - r by more than a factor of (1 £¢€); (2) |[E(R)| > 10-d-7; (3) X/q deviates

|Eggl by more than a factor of (1 & ¢€)), we get that

from

|E(R)|
q-r

'X:(I:I:e)'@:(li?)e)a,

with probability at least 2/3. By running the algorithm with €¢/3 instead of e,
we obtain the desired accuracy.
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Since the geometric search for a “rough” constant factor estimate m for m
increases the complexity of the algorithm by a multiplicative factor of poly(logn)
(in expectation), we get the following theorem.

Theorem 1. There exists an algorithm that, given query access to a graph G =
(V, E) and an approximation parameter € € (0,1), returns a value that belongs to

[(1—¢€)-d,(1+¢€)-d] with probability at least 2/3. The expected query complexity

and Tunning time of the algorithm are O. (%)

3.2 Higher Moments

For s > 1, we consider the sum over all vertices, of their degrees to the power

of s, denoted M, & >, d(v)® and let fig def L. M, (so that in particular,

M; =2m and py = E). As done implicitly in the case of s = 1 (described in
Subsect. 3.1), we consider an ordering, denoted <, over the graph vertices, where
u < v if d(u) < d(v) or d(u) = d(v) and id(u) < id(v). Our algorithm is given in
Fig.1, and as can be seen, generalizes the algorithm described in Subsect. 3.1.

The sample sizes r and ¢ will be determined in the analysis (see the statement
of Theorem 2).

Algorithm 1 (An algorithm for approximating )

1. Select r vertices, uniformly, independently, at random and denote the result-
ing multi-set by R. Query the degree of each vertex in R, and let d(R) =
e dv).

2. Fori=1,...,q do:

(a) Select a vertexr u; € R with probability proportional to its degree (i.e., with
probability d(u;)/d(R)), and query for a random neighbor v; of ;.
(b) If u; < v;, then X; = (dsfl(ui) + dsfl(vi)), otherwise, X; = 0.
3. RetumX:%-@~iXi.

1 i=1

Fig. 1. An algorithm for approximating fis.

Here too we assign weights to vertices (and to edges), so that when summing
over the weights of all vertices (similarly, all edges) we get M. We first introduce
some notations. Let I (u) = {v € I'(u) : v > u}, I'<(u) = I'(u) \ I'-(u),
dy (u) = |I'-(u)| and d<(u) = |I'<(u)|. For each vertex u let

we(w) € ST (d(w)* T +d(v)*Y)

vely (u)

and observe that for s = 1 the weight of a vertex u equals 2d, (u), which fits the
definition in Subsect. 3.1. Taking the sum over all vertices we get
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S wsw) = 3 de () - d(w) = + Y da(v) - dw) T = M. (1)

ueV ueV veV

For a multi-set of vertices R, let wy(R) def > uwer Ws(u), and let E(R) be as

defined in Subsect. 3.1 (i.e., E(R) ef {(u,v) :u € R,{u,v} € E}). Observe that
if for each (u,v) € F(R) we define w,(u,v) = d(u)*~! +d(v)*~! when u < v and
ws(u,v) = 0 otherwise, then w,(R) = 3", ,)ep(r) Ws(u, V).

The next lemma provides a bound on the maximum weight of a vertex (recall
that for s = 1 the bound was O(m!/2)). Tt is proved by separately considering
“low-degree” vertices and “high-degree” vertices, where the degree threshold is

1

MSTT

Lemma 1. For every vertex v € V. we have that w,(v) < 4Mg ™.
Lemma 1 is the main ingredient in the proof of the next theorem.

Theorem 2. If r = —<2— for a sufficiently large constant c., and ¢ =
e2. M7t

_1
1-L n 5

min §n s, AT j—g for a sufficiently large constant cq, then for X as defined

M, F
in Step 8 of Algorithm 1, X € [(1 — 2€)us, (1 + 3€)us] with probability at least
2/3.

Proof Sketch: Lemma 1 implies that for r as stated in the theorem, with high
constant probability, the sample R is such that w(R) is close to its expected
value, r - pus. The size of r also ensures that with high constant probability

d(R) (as defined in Algorithm1) is not much larger than its expected value,

7 - d. Conditioned on these two events we get that Exp[X;] = Ifj(%) = (),

for the random variables X; defined in Step 2b of Algorithm 1. Since it can
1 -1
be shown that m < M¢ - n'~%, we get that Exp[X,] = 2 Mll) We

also use the fact that each X; is upper bounded by 2max,{d(v)*~'} <
Zmin{Mé}_g,nsfl} (since d(v) < M3 and d(v) < n). By the multiplicative
Chernoff bound we get that for a sufficiently large constant ¢4 in the setting of

q, Pr [ % 3:1 X; — %‘ >e€- %} < %, and the theorem follows. a

As stated in Theorem 2, the sample sizes r and ¢ used in the algorithm depend
on M. Similarly to the case of the average degree (s = 1), a constant factor
estimate suffices, and such an estimate can be found by performing a geometric
search (at a multiplicative cost of poly(slogn,1/e) [9, Sect. 6]), obtaining the
following theorem:

Theorem 3. There exists an algorithm that, given query access to a graph
G = (V,E) and an approzimation parameter ¢ € (0,1), returns a
value that belongs to [(1 — €) - us, (1 + €) - pus| with probability at least
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2/3. The expected query complexity and running time of the algorithm are

1 _
0] (”1 L 4 min {nli, ”bi } - poly(slogn, l/e)).

B

4 Minimum Vertex Cover and Maximum Matching

There are several approaches to the problem of approximating the size of a
minimum vertex cover in sublinear time. Here we present two. Both are based
on the relation between vertex covers and matchings. Namely, for any graph
G = (V,E) and any matching M C FE, the size of a minimum vertex cover of
G, denoted ve(G), satisfies ve(G) > | M| (because any vertex cover must include
at least one endpoint of every edge in M). Furthermore, if M is a maximal
matching, then ve(G) < 2|M| (because taking both endpoints of each edge in
M gives us a vertex cover). Both algorithms provide an estimate ve, that with
high constant probability satisfies v¢ € [ve(G), 2ve(G) + en]. The algorithms are
described for bounded degree graphs, where their complexity depends on the
degree bound, d. They can be adapted to work with bounded average degree, d,
as we discuss shortly following Theorem 5.

4.1 Building on a Distributed Algorithm

In this subsection we describe an algorithm that is due to [19]. The basic underly-
ing idea (first applied in [24]) is to transform a local distributed algorithm into a
sublinear algorithm. Recall that in the local distributed model, there is a processor
residing on each vertex, and the computation proceeds in rounds. In each round,
each vertex can send messages to all its neighbors. When the computation ends,
each vertex knows “its part” of the output, where in the case of the computation
of a vertex cover, it knows whether or not it belongs to the cover.

The distributed algorithm described in [19] is similar to the O(logn)-rounds
distributed algorithm for the maximal independent set of Luby [18]. The algo-
rithm, presented in Fig. 2, is described as if there is a processor assigned to every

edge, but clearly this can be emulated by processors that are assigned to the ver-

tices. For an edge e = {u, v}, we let d(e) def d(u)4+d(v) denote the number of edges

that have a common endpoint with e, which are considered to be its neighbors.

In the course of the algorithm (described in Fig.2), the edges (processors
assigned to them) make various decisions (to activate/inactivate themselves, to
select/un-select themselves, and to add their endpoints to the cover). Following
each such decision, a corresponding message is sent to all neighboring edges
(this notification is not stated explicitly in the algorithm). On a high level, the
algorithm works in iterations, where in each iteration a new subset of vertices
is added to the cover C (based on a certain (distributed) random process). In
each iteration, the vertices added to C' constitute endpoints of a matching. After
the last iteration, for each edge that has remained uncovered by C, one of its
endpoints is added to C'. In the analysis of the algorithm, we show that with high
probability (over the random selection process), the number of edges remaining
in the final stage is small.
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Theorem 4. For every graph G = (V, E) with degree-bound d and every § > 0,
Algorithm 2 constructs a vertex cover C C 'V such that with probability at least
5/6, |C| € [ve(G),2 - ve(G) + on).

Algorithm 2 (Distributed approximation for minimum vertex cover)

1. Fach edge initially activates itself.
2. Fromi=1 tor=16-log(6d/) :
(a) Each active edge e selects itself with probability #(e)' Ifd(e) =0 then e
is selected with probability 1.
(b) Every two neighboring edges that were both selected, un-select themselves.
(¢) Each vertex that is incident to a selected edge (that was not un-selected),
adds itself to the vertex cover C.
(d) All selected edges and neighbors of selected edges, inactivate themselves.
(e) Active edges update their degrees to be the number of their active neigh-
bors.
3. For every edge that remained active, its endpoint with the smaller id adds
itself to the vertex cover C.

Fig. 2. A distributed algorithm for an approximate minimum vertex cover.

Proof Sketch: Since an edge inactivates itself only when one of its endpoints
is added to C', and in Step 3 one endpoint from each edge that is still active
is added to C, all edges are covered by the end of the algorithm. Hence C' is a
vertex cover, and this implies the lower bound on its size.

By the definition of the algorithm, the vertices that are added to C in the
r iterations of Step 2 are endpoints of a matching. Hence, their number is at
most 2-ve(G). It remains to show that with probability at least 5/6, the number
of edges that remain active at the start of Step 3 is at most dn. To this end
we introduce the following notation: for each ¢ € [r], let m; be the number of
active edges remaining at the end of the " iteration of Step 2. For i = 0 let
mg = m. It can be shown, that given the process by which the algorithm selects
and de-activates edges,

Exp [m; | m;—1] < (1 - 116> mi—1 . (2)

The heart of the argument for establishing Eq. (2) is that the following holds
for each iteration ¢ and integer j > 0. If we consider at the start of iteration ¢ an
active edge e that has j active neighbors, then the probability that e is selected
in iteration ¢ and remains selected (since none of its active neighbors is selected),
is £2(1/7). But if e remains selected, then it, as well as its j active neighbors,
are inactivated. The inactivation of an edge can be caused by more than one
selected neighbor, but since the selected edges do not neighbor each other, an
edge can be inactivated due to at most two of its neighbors. Equation (2) follows
by summing the “inactivation contribution” of edges with varying numbers of
(active) neighbors.
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Equation (2) in turn implies that for » = 16log(6d/¢), Exp[m,] < (1-1/16)"-

m < (§/6)n. By Markov’s inequality, m, < dn with probability at least 5/6, as
desired. O

In order to estimate the size of a minimum vertex cover we apply the obser-
vation that it is possible to emulate the outcome of the distributed algorithm
(Algorithm 2) at any vertex v of our choice by considering the subgraph induced
by all vertices at distance at most 41 from v. Since the distributed algorithm is
randomized, we only need to take care to use the same coin-flips if we encounter
the same vertex u in the neighborhoods of two different vertices v; and vy. The
sublinear approximation algorithm is given in Fig. 3.

Algorithm 3 (Sublinear Approximation for vc¢(G), Version I)

1. Uniformly and independently sample s = 2/€* vertices from G. Let S =
{v1,...,vs} be the multiset of the sampled vertices.

2. For each v; € S, query G in order to obtain the subgraph G,(v;) induced by
the (r 4+ 1)-neighborhood of v;, where r = 161log(6d/6) is as in Algorithm 2,
and 6 = €/2.

3. Run Algorithm 2 on the graph that is the union of all subgraphs Gr(v;) for
v; € S (in a sequential manner). For each i € [s], let x; = 1 if the algorithm
adds v; to the cover, otherwise x; = 0.

4. Output ve=23%"7  xi+ (¢/2)n .

Fig. 3. A sublinear algorithm for approximating the minimum size of a vertex cover.

The next theorem follows by applying Theorem 4 together with the multi-
plicative Chernoff bound.

Theorem 5. For every graph G with degree bound d, and every e € (0,1],
Algorithm 3 outputs an estimate V¢, that with probability at least 2/3 satisfies
ve € [ve(G),2 - ve(G) + en]. The query and time complexity of the algorithm
are dOUos(d/e))

We remark that the same modifications of the algorithm in [24] can be applied
here to achieve a dependence on ©(d/e) instead of d in the query complexity.
The idea is to slightly modify the distributed algorithm so that initially, each
vertex with degree greater than 2d/e is added to the cover, and all edges inci-
dent to these vertices are inactivated. This increases the size of the cover by an
additive term of at most en/2, and reduces the maximum degree in the graph
induced by active edges to 2d/e.

4.2 Building on a Random Ordering

The local emulation of the distributed algorithm described in the previous sub-
section can be viewed as an oracle (which is randomized) for a vertex cover C.
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Namely, the cover C' is defined by the protocol of the distributed algorithm, and
the coin flips used in the course of the execution of the distributed algorithm
(that determine which edges are selected in each iteration). The oracle is given a
vertex v and should answer whether v € C'. To this end it emulates the execution
of the distributed algorithm in the neighborhood of v (flipping coins “on the fly”,
while keeping track of previous coin flips if needed). The sublinear algorithm for
approximating the size of a minimum vertex cover can now be viewed as sim-
ply querying the oracle on ©(1/€2) uniformly selected vertices, and using the
fraction of sampled vertices that belong to the cover to determine its estimate.

Nguyen and Onak [22] also design such a randomized oracle for a vertex
cover, but their oracle is not based on a distributed algorithm but rather on the
greedy sequential algorithm for constructing a maximal matching (and adding to
the cover both endpoints of each edge in the matching). This algorithm considers
an arbitrary ranking = : E — [m] of the edges of the graph (where each edge
is given a unique rank). In each step the algorithm checks whether the next
edge according to this ranking neighbors any edge that was already added to
the matching M, (initially, M, is empty). If not, then the new edge is added
to M, . While for different rankings = we may get a different matching M, we
always obtain a maximal matching (and hence | M| € [ve(G), 2ve(G))).

Suppose we are given an edge e, and would like to determine whether e € M,
(without necessarily constructing the entire matching M, ). Consider the edges
that neighbor e. Observe that in order to decide whether e € M, it suffices to
know whether any of its neighbors with lower rank (according to =) is in M.
If at least one of them is, then e ¢ M, and if none of them belong to M, then
e € M,. This gives rise to the (recursively defined) oracle in Fig. 4.

Algorithm 4 (Oracle for M, given an edge e as input)

1. For each edge €' neighboring e such that w(e’') < m(e), recursively call the
oracle (Algorithm /) on €.

2. If the oracle returns TRUEFE for one of these neighbors, then return FALSE,
else return TRUE.

Fig. 4. An oracle of a maximal matching M,

The first question that arises is what is the number of recursive calls that
the oracle needs to perform in order to decide whether e belongs to M,.. This of
course depends on 7(e) (e.g., if m(e) = 1 then there are no recursive calls) and
more generally on the ranking of edges in the neighborhood of e. To be precise,
if we consider the tree of recursive calls, then the paths in the tree correspond
to edges with decreasing ranks. Nguyen and Onak consider a random choice of
7, and analyze the expected number of recursive calls, where the expectation is
taken both over the choice of m and the choice of a random edge e. Observe that
if we increase the range of 7 from [m] to [poly(m)], then 7(e) can be selected
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on-the-fly (that is, independently for each encountered edge), with only a small
probability of a collision (i.e., w(e) = w(e’) for e # €’).

The next lemma directly follows from Lemma 12 in [22] (a more general
Locality Lemma regarding random rankings of edges is Lemma 4 in [22]).

Lemma 2. Let G = (V, E) be any graph with mazimum degree bounded by d.
For a uniformly selected ranking m over E and a uniformly selected edge e € E,

the expected number of recursive calls made by Algorithm 4 when called on e is
20(d),

The resulting sublinear approximation algorithm for the size of a minimum ver-
tex cover is similar to Algorithm 3, and is provided in Fig. 5.

Algorithm 5 (Sublinear Approximation for vc(G), Version II)

1. Uniformly and independently sample s = 2/€* vertices from G. Let S be the
multiset of the sampled vertices.

2. For eachv € S, query the mazimal matching oracle (Algorithm 4) on all edges
incident to v (where 7 is a random ranking selected on the fly by Algorithm /).
If the oracle returns TRUE on one of these edges, then set x, = 1, otherwise
X'u = 0

8. Output ve= 237 _oxo+(¢/2)n .

Fig. 5. A sublinear algorithm for approximating the minimum size of a vertex cover.

The proof of the correctness of Algorithm 5, stated next, is essentially the
same as the proof of Theorem 5, and the bound on the query complexity follows
from Lemma 2.

Theorem 6. For every € > 0, and every graph G, Algorithm 5 outputs an esti-
mate v, that with probability at least 2/3 satisfies v¢ € [ve(G),2 - ve(G) + en].
The query complexity of the algorithm is 2O(d)/62.

Comparing the bound in Theorem 6 to the bound in Theorem5 we see that
while the dependence on d is larger, the dependence on 1/¢ is improved. More
importantly, the approach suggested in [22] led to a significant improvement
in the complexity, as we discuss shortly next. Here too we remark that it is
possible to achieve a dependence on ©(d/e) instead of d in the complexity of
the algorithm.

Reducing the Query Complexity. Nguyen and Onak [22] also suggested
the following variant of their algorithm. When making recursive calls on edges
neighboring an edge e, perform the calls from the smallest to the largest rank.
Since once some neighboring edge of e returns TRUE, we know that e should
return FALSE (so that there is no need to make calls on the other neighboring
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edges), they asked whether it can be proved that this variant has smaller query
complexity (in expectation). A very clever analysis of Yoshida et al. [27] showed
that indeed the expected number of recursive calls can be upper bounded by a
polynomial in d. This yields an algorithm for approximating the size of a mini-
mum vertex cover whose query complexity is O(d*/€?), or 0(84 /e*) in terms of
the average degree d. Onak et al. [23] showed how to further modify the algo-
rithm so as to obtain an algorithm whose query complexity is 6(&) -poly(1/e)),

which almost matches the lower bound of £2(d) for constant e [24].

5 Minimum Weight Spanning Tree

In this section we present a slight variant of Chazelle et al. [4] algorithm for
approximating the minimum weight of a spanning tree in an edge weighted
graph with weights in [W] for an integer W. We denote the minimum weight
of a spanning tree by st(G,w) where G = (V, E) is the underlying graph and
w: E — [W] is the weight function.

The first idea underlying the algorithm is to reduce the problem of approxi-
mating st(G, w) to that of approximating the number of connected components
in a graph. Specifically, for each j € [W], let G; = (V, E;) for E; Lef {e€ E:
w(e) < j}, and let cc; denote the number of connected components in G;. The
next lemma relates between st(G,w) and ccy,...,ccy—1. It can be established
by recalling Kruskal’s algorithm for finding a minimum-weight spanning tree.

Lemma 3. st(G,w) = n—W + Z;ﬁ;l cc;.

Armed with Lemma 3 it remains to show how to obtain an approximation of
the number of connected components cc(H) of a graph H (and to apply this to
the graphs G1,...,Gw_1). For the sake of simplicity, in what follows we describe
an algorithm whose complexity depends on the maximum degree d (rather than
the average degree d, as done in [4]). The algorithm, which is due to Czumaj

Algorithm 6 (Sublinear Approximation for cc(H))

1. Repeat the following s = 1/~ times:

(a) Select a vertex v; € V uniformly at random.

(b) Pick a random integer X; according to the probability distribution
Pr[X; > k] = 1/k.

(c) If X; > B then set x; = 0.

(d) Else, perform a Breadth First Search (BFS) from v; until X; + 1 vertices
are reached, or the BFS can reach at most X; vertices (since v; belongs
to a connected component with at most X; vertices). In the former case
set xi =0 and in the latter case set x; = 1.

2. Output cc = 2377 | xi .

Fig. 6. A sublinear algorithm for approximating the number of connected components
in a graph H.
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and Sohler [6], receives both an approximation parameter v and a size bound B
(and its performance is analyzed as a function of these two parameters).

Lemma 4. For every graph G with degree bounded by d and for every v € (0,1]
and integer B, Exp[cc] € [cc(H) —n/B,cc(H)] and Var[ce] < 4% -n-cc(H). The

expected number of queries performed by Algorithm 6 is O (% log B).
Lemma 4 can be established by a fairly standard probabilistic analysis.

In Fig. 7 we give an algorithm for approximating the minimum weight of a
spanning tree by using Algorithm 6 as a subroutine.

Algorithm 7 (Sublinear Approximation for st(G,w))

1. Forj=1toW —1:
(a) Run Algorithm 6 on G; with parameters v = €/8 and B = 4W/e (the
degree bound d is the mazimum degree in G).
(b) Let cc; be the estimate it returns.
2. Output st =n—W + Z]szl ce;.

Fig. 7. A sublinear algorithm for approximating the minimum weight of a spanning
tree.

The next theorem follows by applying Lemmas3 and 4 and Chebishev’s
inequality.

Theorem 7. For every edge-weighted graph G with degree bounded by d and
weights in [W], and for every e € (0,1] Algorithm 7 returns an estimate st that
satisfies st € [(1— €) -st(G,w), (1 +€) - st(G, w)] with probability at least 2/3. Its
expected query complexity is O (dE—QW log %)
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