
Computing in Combinatorial
Optimization

William Cook(B)

University of Waterloo, Waterloo, Canada
bico@uwaterloo.ca

Abstract. Research in combinatorial optimization successfully com-
bines diverse ideas drawn from computer science, mathematics, and oper-
ations research. We give a tour of this work, focusing on the early devel-
opment of the subject and the central role played by linear programming.
The paper concludes with a short wish list of future research directions.

Keywords: Combinatorial optimization · Linear programming
Traveling salesman problem

1 In the Beginning was n Factorial

The design of efficient algorithms for combinatorial problems has long been a tar-
get of computer science research. Natural combinatorial models, such as shortest
paths, graph coloring, network connectivity and others, come equipped with a
wide array of applications as well as direct visual appeal. The discrete nature of
the models allows them to be solved in finite time by listing candidate solutions
one by one and selecting the best, but the number of such candidates typically
grows extremely fast with the input size, putting optimization problems out of
reach for simple enumeration schemes.

A central model is the traveling salesman problem, or TSP for short. It is
simple to state. Given a set of cities, together with the distance between each
pair, find the shortest way to visit all of them and return to the starting point,
that is, find the shortest circuit containing every city in the specified set.

The TSP has its own array of applications, but its prominence is more due
to its success as an engine of discovery than it is to miles saved by travelers. The
cutting-plane method [20], branch-and-bound [22], local search [32], Lagrangian
relaxation [53], and simulated annealing [65], to name just a few, were all devel-
oped with the salesman problem as the initial target. This success, coupled with
the simplicity of the model, has made the TSP the poster child for the NP-hard
class of problems.

It was Karl Menger who first brought the algorithmic challenge of the TSP
to the attention of the mathematics community, describing the model in a col-
loquium held in Vienna in 1930 [76].

c© The Author(s) 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 27–47, 2019.

https://doi.org/10.1007/978-3-319-91908-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_3&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_3


28 W. Cook

We use the term Botenproblem (because this question is faced in practice
by every postman, and, by the way, also by many travelers) for the task,
given a finite number of points with known pairwise distances, to find the
shortest path connecting the points. This problem is of course solvable by
finitely many trials. Rules that give a number of trials below the number
of permutations of the given points are not known.

Menger was quite informal about the notion of an algorithm, speaking of “rules”.
(He used the German word “Regeln”.) Keep in mind that at the time Alan Turing
was an undergraduate student at Cambridge and still several years away from
his breakthrough concept of general-purpose computing machines [87].

Menger’s call for a better-than-finite TSP algorithm arose at an important
period of mathematical research, where fundamental issues in logic and com-
putability were being explored. Indeed, the published statement of Menger’s
problem appears in the same volume as Gödel’s paper [37] on incompleteness
theorems. This is not entirely a coincidence, since Gödel and Menger were both
Ph.D. students of Hans Hahn and active members of the Vienna Circle. Being a
great fan of the salesman problem, I’d like to think Gödel and Menger spent time
discussing TSP complexity in Viennese coffee houses, but there is no indication
of that.

His challenge did however capture the imagination of the mathematics com-
munity. Denoting by n the number of cities to visit, beating n! in a race to the
optimal TSP tour became a well-established research topic by the late 1940s.

The first major paper was written by Robinson [82] in 1949, while she was
a post-doctoral fellow at the RAND Corporation. Her Ph.D. thesis, Definability
and Decision Problems in Arithmetic [81], placed her firmly on Gödel’s side
of the Vienna Circle activities, but the TSP proved hard to resist while she
was at RAND as part of “what may have been the most remarkable group of
mathematicians working on optimization every assembled” [50].

When we today read the statement of Menger’s problem, we immediately
think of it in terms of establishing an asymptotic complexity bound. But early
researchers considered it not as an asymptotic challenge, but rather as a call for
mathematical methods to handle modest-sized instances. The following passage
is Robinson’s description [82] of her research target.

Since there are only a finite number of paths to consider, the problem
consists in finding a method for picking out the optimal path when n is
moderately large, say n = 50. In this case there are more than 1062 possible
paths, so we can not simply try them all. Even for as few as 10 points,
some short cuts are desirable.

Her approach towards a 50-point algorithm was to consider a relaxation of the
TSP where each city is assigned to another (and no two cities are assigned to
the same target city), so as to minimize the total distance between pairs of cities
in the assignments. A solution to this relaxation gives a set of disjoint directed
circuits (possibly including circuits having only two points) such that every city



Computing in Combinatorial Optimization 29

is contained in exactly one of them. The total length of the solution provides a
lower bound on the length of any TSP tour.

Robinson’s relaxation is known as the assignment problem, where we typically
think of assigning n workers to n tasks, rather than assigning cities to cities.
Her solution method is an iterative approach, moving step by step towards the
optimal assignment via a cycle-canceling operation (that later became a standard
technique for minimum-cost flow problems).

The method presented here of handling this problem will enable us to
check whether a given system of circuits is optimal or, if not, to find a
better one. I believe it would be feasible to apply it to as many as 50
points provided suitable calculating equipment is available.

She mentions again the specific target of 50-point problems, but the paper does
not provide an analysis of the algorithm’s running time.

Several years later, in 1956, Flood [32] wrote the following in a survey paper
on TSP methods.

It seems very likely that quite a different approach from any yet used may
be required for successful treatment of the problem. In fact, there may well
be no general method for treating the problem and impossibility results
would also be valuable.

It is not clear what he meant by “impossible”, but Flood may have had in
mind the notion of polynomial time and was thus speculating that the TSP had
no solution method with the number of steps bounded above by nk for some
constant k. Such an algorithm would certainly have been viewed as a major
breakthrough at the time, possibly permitting the solution of the target-sized
instances.

An argument for suggesting Flood was hoping to replace Menger’s n! by a
more tidy nk can be seen in Schrijver’s beautifully detailed history of combina-
torial optimization [84, Chap. 3]. Schrijver cites several examples from the early
1950s where authors point out polynomial running-time bounds. The earliest of
these is the following passage from a lecture given by von Neumann [78] in 1951,
concerning the assignment problem.

We shall now construct a certain related 2-person game and we shall show
that the extreme optimal strategies can be expressed in terms of the opti-
mal permutation matrices in the assignment problem. (The game matrix
for this game will be 2n×n2. From this it is not difficult to infer how many
steps are needed to get significant approximate solutions with the method
of G. W. Brown and J. von Neumann. It turns out that this number is a
moderate power of n, i.e. considerably smaller than the “obvious” estimate
n! mentioned earlier.)

Details are not provided in the transcript, but the use of the phrase “moderate
power of n” fits with the overall theme of developing methods for use in practice.

An explicit running-time bound for solving the assignment problem was given
by Munkres [77] in 1957, making use of a variant of the Hungarian algorithm.



30 W. Cook

The final maximum on the number of operations needed is

(11n3 + 12n2 + 31n)/6.

This maximum is of theoretical interest since it is so much smaller than the
n! operations necessary in the most straightforward attack on the problem.

Munkres’s paper is entirely analysis; there is no mention of target applications
or possible computational testing. Indeed, his use of the phrase “theoretical
interest” is striking, making an early claim for the mathematics of algorithmic
complexity.

From Menger to Robinson to von Neumann to Munkres, we see the modern
treatment of combinatorial algorithms starting to take shape. But back in the
TSP camp, the obvious n! bound for worst-case complexity remained the state
of the art through the 1930s, 40s, and 50s. This finally changed in 1962 with
the publication of papers by Bellman [5] and Held and Karp [52], describing an
elegant method for solving any n-city TSP in time proportional to n22n. Not
the dreamed-for nk, but still an answer to Menger’s challenge.

The Bellman-Held-Karp algorithm adopts Bellman’s general tool of dynamic
programming [4], building an optimal tour from shortest paths through each of
the 2n subsets of points. Both teams were well aware of the asymptotic limita-
tions of the algorithm. In a section titled “Computational Feasibility”, Bellman
gives estimates of the memory requirement (which also grows exponentially with
n) for 11, 17, and 21 cities. He goes on to write the following passage [5].

It follows that the case of 11 cities can be treated routinely, that 17 cities
requires the largest of current fast memory computers, but that problems
involving 21 cities are a few years at least beyond our reach. One can
improve upon these numbers by taking advantage of the fact that the
distances will be integers and that we need not use all the digits of one
word to specify a distance, but this requires some fancy programming.

This is an interesting display of mathematical analysis with real-world computing
in mind.

Held and Karp take this a step further, giving explicit computational results
on IBM hardware: “An IBM 7090 program can solve any 13-city traveling-
salesman problem in 17 seconds.” And they describe how the exact algorithm
can be used as a tool for high-quality solutions for larger instances [52].

It is characteristic of the algorithms under discussion that their complexity,
measured by numbers of arithmetic operations and storage requirements,
grows quite rapidly. They are, however, a vast improvement over complete
enumeration, and permit the rapid solution of problems of moderate size.
In this section we show how the algorithms can be combined with a method
of successive approximations to provide a systematic procedure for treating
large problems. This procedure yields a sequence of permutations, each
obtained from its predecessor by the solution of a derived subproblem
of moderate size having the same structure as the given problem. The



Computing in Combinatorial Optimization 31

associated costs form a monotone nonincreasing sequence which may not
converge to the optimum solution; however, computer experimentation has
yielded excellent results in a variety of cases.

Again, a fantastic combination of theory and practice. Their computer code,
developed together with Richard Shareshian, was made available to users of
IBM’s hardware; an image of the 1964 press release is displayed in Fig. 1.

Fig. 1. Michael Held, Richard Shareshian and Richard Karp, 1964. Courtesy of IBM
Corporate Archives.

2 Dantzig, Linear Programming, and Cutting Planes

We mentioned that Julia Robinson was a post-doc at the RAND Corporation,
a think tank for the United States government. Another member of the RAND
group was the remarkable George Dantzig. His name is forever associated with
his life’s work: the creation of the linear programming model, the simplex method
for its solution, and its application to problems far and wide. Grötschel [44] gave
the following powerful summary.

The development of linear programming is—in my opinion—the most
important contribution of the mathematics of the 20th century to the
solution of practical problems arising in industry and commerce.

This is from the operations research perspective, but Dantzig’s LP model was
also a bombshell for the general theory and practice of computing in combina-
torial optimization.

Linear programming was introduced to the world in a lecture given by
Dantzig on September 9, 1948, at an economics meeting at the University of
Wisconsin in Madison [18].

The basic assumptions of the model lead to a fundamental set of linear
equations expressing the conditions which much be satisfied by the various
levels of activity, Xi, in the dynamic system. These variables are subject



32 W. Cook

to the further restriction Xi ≥ 0. The determination of the “best” choice
of Xi is made to depend on the maximization (or minimization) of linear
form in Xi. ... It is proposed that computational techniques developed by
J. von Neumann and by the author be used in connection with large scale
digital computers to implement the solution of programming problems.

This last point, concerning digital computers, is important. Dantzig was work-
ing to get linear programming at the head of the queue for implementation on
the first generation of electronic hardware. Computation pioneers Hoffman and
Wolfe [57] write the following.

Linear programming was an important force in sponsoring the early UNI-
VAC computers, as well as the SEAC at the National Bureau of Standards,
because of U.S. Air Force funding in support of computations required by
it and other planning tools developed by Dantzig and his associates in the
Office of the Air Controller.

The computers were lined up and ready to go. And, indeed, extensive LP tests
were made as early as 1952 [56,79].

The general LP model is to optimize a linear function cTx subject to con-
straints Ax = b, x ≥ 0, where matrix A, vector b, and vector c are data and
x = (x1, x2, . . . , xn) is a vector of variables. Note that each xi can be assigned
possibly a fractional value. This makes the connection to combinatorial optimiza-
tion subtle, since combinatorial objects, such as paths, correspond to integer-
valued solutions. Indeed, most often in combinatorial models we have a logical
choice for each variable, either we use it or we do not, xi = 1 or xi = 0.

In some basic cases, like the assignment problem, it can be shown there exists
always an optimal LP solution that is integer valued. Geometrically, this means
all vertices of the polyhedral set {x : Ax = b, x ≥ 0} have integer components.
There are beautiful theorems in combinatorics that can be described in this way,
but, for optimization models, such naturally-integer examples are the exception,
rather than the rule.

The TSP is not one of the exceptional cases. That said, it is also true that
any combinatorial problem is, in principle, an LP problem. Take the example of
the salesman. A tour through n cities selects n direct point-to-point links, that
is, n edges in the complete graph on n points. So a tour can be specified as a 0-1
vector indexed by the edges of the complete graph, where a 1 means we include
the edge in the tour. The TSP is to minimize the total travel distance, which is
a linear function, over these (n − 1)! vectors. That sounds unpleasant, but, for
any finite set of vectors S, a classic result of Minkowski states that there exists a
convex polytope P such that S is precisely the set of vertices of P , that is, P is
the convex hull of S. For our set of tour vectors, by taking the linear constraints
that describe the corresponding polytope P , we have formulated the TSP as an
LP problem.

Cheers for Minkowski, but actually solving the LP problem could be difficult.
Indeed, following up on Robinson’s work, Heller [54] and Kuhn [68] presented
results showing the number of linear constraints needed to describe the TSP



Computing in Combinatorial Optimization 33

polytope grows exponentially fast with the number of cities. This is not a trivial
statement. For example, there are n! solutions to the n-dimensional assignment
problem and yet its corresponding polytope is described by only 2n + 2n2 con-
straints. But not so for the TSP.

Dantzig brushed aside this concern. He was willing to gamble that only a
small number of these exponentially many constraints would be needed to solve
a target instance that was making the rounds of the US mathematics community,
namely to visit one city chosen in each of the 48 states plus Washington, DC.1

He and his RAND colleagues Ray Fulkerson and Selmer Johnson settled the
challenge, finding a tour through the 49 cities together with an LP proof that it
was the shortest possible.

The approach they invented in this TSP work is called the cutting-plane
method. Rather than taking the full polytope as envisioned by Heller and Kuhn,
they instead take a simple polytope that includes all of the tours, and refine
it step by step, adding in each step constraints that are satisfied by all tours
but violated by the optimal solution to the current LP relaxation. At the end
of their computation, they have an LP relaxation of the TSP that has as an
optimal solution a TSP tour. Game over.

In the research-report version of their paper, Dantzig et al. [19] wrote the
following line to start a section titled “The method”.

The title of this section is perhaps pretentious, as we don’t have a method
in a precise sense.

This is typical of the modest style of writing at the time, but there were indeed
certain ad hoc aspects to their work.

1. They did not know explicitly the full set of inequalities that define the TSP
polytope for n = 49 points. Indeed, even today the full description is known
only for n ≤ 9. So it was possible they could reach an LP relaxation having a
non-tour optimal solution and not have any means to refine their relaxation
with an additional constraint.

2. Even for the classes of constraints they did know, they did not have available
exact algorithms to test whether or not the current LP solution satisfies all
member constraints of each class. In the computation, they relied on their
own creativity to locate a violated constraint.

3. Despite Dantzig’s willingness to place a wager, they had no upper bound on
the number of iterations that might be needed to reach an LP optimal solution
that was a tour. Indeed, without further restrictions on the constraints to be
considered (such as defining facets of the TSP polytope) the process is not
guaranteed to be finite.

That is three strikes. Nonetheless, Dantzig’s team accomplished the task
described in their abstract [20]: “It is shown that a certain tour of 49 cities, one

1 This is literally true. Dantzig wagered Fulkerson one dollar that at most 25 inequal-
ities would be needed on top of the assignment problem constraints [57].



34 W. Cook

in each of the 48 states and Washington, DC, has the shortest road distance.”
A feat no team would surpass until the 1970s.

Interestingly, rather than unleash the new electronic computers that Dantzig
secured for LP testing, the TSP team carried out all computations by hand.
This was due to the shear size of their model. The 1,176 variables in the 49-city
example put it far beyond the capabilities of available hardware and software.
In the long run this proved to be a good thing—the specialized techniques they
developed to short-cut the computations provided a template for large-scale
computing in the following decades.

The computation by Dantzig’s team was an amazing accomplishment, but,
due to the three strikes, the work made no direct contribution to the asymptotic
complexity of the TSP. Here is the concluding paragraph of their paper [20].

It is clear that we have left unanswered practically any question one might
pose of a theoretical nature concerning the traveling-salesman problem;
however, we hope that the feasibility of attacking problems involving a
moderate number of points has been successfully demonstrated, and that
perhaps some of the ideas can be used in problems of similar nature.

That is marvelous in its modesty. The team may not have given Karl Menger
a satisfactory answer, but they showed us how to use LP to attack seemingly
intractable problems.

The cutting-plane method is far and away the most successful technique for
the exact solution of NP-hard models in combinatorial optimization; a nice
survey can be found in Jünger et al. [60].

For the TSP itself, it took twenty years for the community to catch up to
the by-hand computations of Dantzig’s team. But starting in the 1970s, led

Fig. 2. Optimal walking tour to 49,603 sites from the National Register of Historic
Places. Image Google Maps c©.



Computing in Combinatorial Optimization 35

by Martin Grötschel and Manfred Padberg and aided by increasingly powerful
computing platforms, great progress was made in exact methods [1,17,43,45,80].
It is now routine to exactly solve problems with many hundreds of cities.

The most recent study [15] reports the optimal solution of a 49,603-city USA
instance with point-to-point distances measured by walking directions provided
by Google Maps. I like to think Dantzig, Fulkerson, and Johnson would be proud
(Fig. 2).

3 Edmonds, Matchings, and Polynomial Time

Following the success of Bellman, Held and Karp, the stage in the 1960s look set
for the jump to an nk algorithm for the TSP. And the best hope for making such
a breakthrough was Jack Edmonds, a mathematician who brought the theory of
combinatorial optimization into the modern era.

The 28-year-old Edmonds burst onto the scene in 1961, at a summer work-
shop held at the RAND Corporation. At the time, he was working for the
National Bureau of Standards, having obtained a Master’s degree at the Univer-
sity of Maryland. Balinsky, Edmonds, and several other young researchers had
been invited to join a who-is-who list of stars from the field of combinatorics.
He described his talk as follows [26].

At this lecture, everybody I’d ever heard of was there. Gomory and Dantzig
and Tutte and Fulkerson and Hoffman ... And I gave this grand philosoph-
ical speech ... Here is a good algorithm, here is a solved integer program.
This was a sermon, this was a real sermon. Here is a solved integer pro-
gram. It was my first glimpse of heaven.

This was a report on a polynomial-time algorithm for the matching problem
in general graphs, a difficult generalization of the assignment problem. Along
the way, he made a strong case for the mathematical importance of such good
algorithms.

Edmonds’ paper on these topics was written in 1963 and appeared in jour-
nal form [24] in 1965, the same year as Alan Cobham’s paper on machine-
independent computation [13]. Both authors present the notion of polynomial-
time algorithms, but they emphasize different aspects of the theory. In his Turing
Award lecture [14], Stephen Cook summarized the work as follows.

Cobham pointed out that the class was well defined, independent of which
computer model was chosen, and gave it a characterization in the spirit
of recursive function theory. The idea that polynomial time computabil-
ity roughly corresponds to tractability was first expressed in print by
Edmonds.

It was certainly a great year for computational complexity—the classic paper by
Hartmanis and Stearns [51] also appeared in journal form in 1965.

If you are a card-carrying complexity theorist, then you almost certainly turn
to Cobham’s elegant paper for an explanation of the class P. For a combinato-
rial optimizer, however, Edmonds is the polynomial-time champion (Fig. 3). His



36 W. Cook

description is less formal, but he brings the topic to life, showing by example how
to put combinatorial problems into P. It is his glimpse of algorithmic heaven.

Fig. 3. Jack Edmonds, 2015. Photograph courtesy of Kathie Cameron.

The center piece of Edmonds’ paper is his blossom algorithm for matching in
a general graph. A matching is a set of edges that have no common end points.
Unlike the assignment problem, the natural LP relaxation for matchings may
have optimal solutions that are not integer valued. For this problem, however,
Edmonds was able to describe explicitly the full set of linear inequalities that
define the polytope promised by Minkowski. He thus obtained an LP model that
returns always a matching as an optimal solution. The LP has exponentially
many constraints, but he was able to devise a primal-dual algorithm to handle
them all in polynomial time. And his algorithm was not just good in theory,
but also in practice: careful implementations are able to handle graphs with a
million or more points [2,16,66,75].

In his work, Edmonds was able to overcome all three strikes we had against
the cutting-plane method. So the big question was whether or not his method-
ology would also give a means to devise a polynomial-time algorithm for the
TSP. Edmonds writes that he did indeed follow up his success with matchings
by taking a crack at the salesman problem [27].

Inspired by Dantzig, Fulkerson, Johnson (1954), I became excited in 1961
to show that TSP is co-NP by finding an NP description of a set of



Computing in Combinatorial Optimization 37

inequalities whose solution set is the convex hull of all the 0,1 incidence
vectors of tours in G. I failed, and so in 1966 I conjectured that TSP is
not in P.

Sadly, he became convinced we will never see an nk algorithm for the TSP. He
stated this explicitly in a paper [28] published in 1967: “I conjecture that there
is no good algorithm for the traveling salesman problem.” Bad luck for all fans
of the TSP. And the news got even worse when both the directed and undirected
versions of the TSP appeared on Karp’s famous list [62] of 21 NP-hard problems
in 1972.

So the fate of the TSP is now tied to the great P versus NP question. But,
along the way, Edmonds provided an important insight into possible solution
methods. He made the following remark during a discussion that took place
after a TSP lecture by Gomory [42] in 1964.

For the traveling salesman problem, the vertices of the associated polyhe-
dron have a simple characterization despite their number—so might the
bounding inequalities have a simple characterization despite their num-
ber. At least we should hope they have, because finding a really good
traveling salesman algorithm is undoubtedly equivalent to finding such a
characterization.

Edmonds’ thesis was that polynomial-time algorithms go hand-in-hand with
polyhedral characterizations.

And he was right. Some twenty years later, Edmonds’ thesis was proven in
a deep result by Grötschel et al. [49]. The theorem is based on the ellipsoid
algorithm for linear programming and it goes by the slogan optimization ≡
separation. Roughly speaking, if we can solve an optimization problem in poly-
nomial time, then we have an implicit description of the corresponding poly-
tope, and, the other way around, if we understand the polytope then we have a
polynomial-time algorithm for the optimization problem.

Beautiful! The new work brought together combinatorial-optimization the-
ory, practice, algorithms, and complexity, all united via linear programming.

4 Sixty-Three Years of Progress

Let’s take a step back to fill in other research highlights, before jumping ahead
to current topics. In this quick survey, we start the combinatorial-optimization
clock ticking with the 1954 publication of the Dantzig-Fulkerson-Johnson paper
on the TSP.

Despite the ringing success of their cutting-plane method, the research carried
out by Dantzig’s team did not have an immediate impact on the computational
side of the field. They were simply too far ahead of their time, both in the sophis-
ticated use of LP theory and in their ability to perform by-hand calculations that
were out of reach for existing computing platforms.



38 W. Cook

But the clock did not stand still in the 1950s. Led by Hoffman’s min-max
theorems [55], Ford and Fulkerson’s network-flow algorithms [33], Gomory’s cut-
ting planes [41], and Eastman [22] and Land and Doig’s [69] branch-and-bound
method, the overall field advanced quickly. This work, particularly by Hoffman,
showed further the central role that was to be played by linear programming.

The following decade was dominated by Edmonds on the algorithmic side,
including polynomial-time results for matchings [23], matroid intersection [25],
optimal branchings [28], Gaussian elimination [29] and, together with Karp,
maximum flow and minimum-cost flow [30]. On the computational side, Lin and
Kernighan’s introduction of powerful heuristic methods for graph partitioning
[64] and the TSP [72,73] established the study of heuristic search as an important
and sophisticated component of combinatorial optimization.

The 1970s saw the introduction of the formal study of α-approximation algo-
rithms by Johnson [58], where he considers polynomial-time methods that pro-
duce solutions guaranteed to have value no greater than α times that of an opti-
mal solution. His paper was quickly followed by Christofides’ 1.5-approximation
for the TSP [11], and the sub-discipline was off and running. A highlight here is
the spectacular result on approximating the maximum-cut problem by Goemans
and Williamson [39] in 1995, where they use semi-definite programming to move
beyond what can be obtained with the natural LP relaxation. Texts by Vazirani
[88] and Williamson and Shmoys [89] provide great coverage of the area.

We have already discussed the iconic result of the 1980s, the decade of opti-
mization ≡ separation. But these years also saw, on the applied/computational
side, the start of a great expansion of the use of the cutting-plane method. This
work goes well beyond the confines of the TSP, led by successful projects by
Grötschel et al. [46–48] and others. A huge boost to this computational area was
the arrival of robust LP solvers that could be called as functions from within a
cutting-plane code, in particular the CPLEX library created by Bixby [6].

Moving to the 1990s, a major development was the introduction of new hier-
archical relaxations of combinatorial optimization models by Lovász and Schri-
jver [74], Sherali and Adams [85], and Lasserre [70]. The template for this line
of work was the classic paper on cutting planes by Chvátal [12], where he shows
that the convex hull associated with any combinatorial problem can be obtained
by iteratively applying a simple rounding process. The new procedures expand
on this idea, by considering the problem in higher-dimensional spaces (obtained
by adding variables to the initial relaxation) where it can be easier to enforce
integrality conditions.

I’ve been skipping over important work by a host of researchers, so with the
field getting ever broader and more active, I prefer not to try for a two-line
summary of the 2000s. But let me point out a clear highlight, the publication
of Schrijver’s monograph Combinatorial Optimization: Polyhedra and Efficiency
[84]. His work, published in 2003, covers 1881 pages in three volumes and includes
over 4,000 references. Schrijver’s scholarly writing is amazing. And to bring you
forward from 2003, there are excellent recent texts by Frank [35] and Korte
and Vygen [67]. If you want to study the first sixty-three years of combinatorial
optimization, these three books contain all the material you need.



Computing in Combinatorial Optimization 39

5 Wish List of Research Directions

A good sign of the health of a field of study is the ease in which it is possible
to list future research directions. Combinatorial optimization looks great under
this metric. I could have started with any of the seventy-five open problems and
conjectures listed in Schrijver’s monograph [84]. But I decided to go with only
a short wish list of five topics, all aimed at pushing forward the intersection of
computation, algorithms, and theory.

5.1 Improving the Simplex Method

Perhaps the most important contribution the computer-science algorithms com-
munity could make to the field of operations research would be the delivery of
ideas to improve the practical performance of the simplex method for solving
linear programming problems. The simplex method was named one of the top
ten algorithms of the century [21], but it needs help to continue to drive progress
in OR applications. The steepest-edge pivot rules that are the state of the art in
simplex implementations date back to the 1970s [40], and the best known meth-
ods for implementing these rules go back to the early 1990s [34]. Moreover, there
currently are no implementations of the simplex method that make effective use
of multi-core processors, GPUs, or other parallel computing platforms.

For solving any single large-scale LP model, the simplex method has a seri-
ous competitor in the class of polynomial-time algorithms called interior-point
methods, that parallelize nicely. But for solving a sequence of closely related LP
models, such as those that arise in the cutting-plane method or in a branch-and-
bound search, the simplex method is the only game in town. This comes from
the fact that the simplex method can be set up to start its search at the opti-
mal solution to the previously solved model, dramatically decreasing the number
of steps needed to reach an optimal solution to the new model. Interior-point
methods are not able to do this effectively.

Here is the context. Over a broad class of models and considering the com-
mercial software libraries CPLEX 1.0 to 11.0 and Gurobi 1.0 to 7.0, Bixby [7]
reports a machine-independent speed-up in mixed-integer programming (MIP)
codes of a factor over 1.3 million in the past 25 years, roughly a factor of 1.75
each year. That is amazing progress in practical computing and it has been a
driving force in the growth of successful OR applications. But Bixby also reports
that, with continued increases in model sizes, linear programming has become
a roadblock towards solutions in a substantial fraction of MIP settings. Help is
needed.

The big ticket item, from the CS theory side, is the fact that there is no
known polynomial-time variant of the simplex method. Avis [3] sums things up
nicely in a short note marking the 100th anniversary of the birth of George
Dantzig.

Surely the close collaboration of TCS and the optimization community
would be able to settle this question: is there or is there not a polynomial



40 W. Cook

time pivot selection rule for the simplex method? Of course I think all
of us, including George, hope for a positive answer that is both strongly
polynomial time and a winner in practice!

Settling this question may be difficult, but there has been progress in under-
standing the complexity of Dantzig’s algorithm, including a long line of award
winning papers from the OR, CS, optimization, and mathematics communities.

– Borgwardt [8], average-case analysis of the simplex method, Lanchester Prize
1982 (INFORMS).

– Kalai [61], quasi-polynomial bound on diameter of polyhedra, Fulkerson Prize
1994 (MOS and AMS).

– Spielman and Teng [86], smoothed analysis of the simplex method, Gödel
Prize 2008 (ACM) and Fulkerson Prize 2009 (MOS and AMS).

– Friedmann [36], super-polynomial lower bounds for simplex pivot rules,
Tucker Prize 2012 (MOS).

– Santos [83], counterexample to the Hirsh conjecture, Fulkerson Prize 2015
(MOS and AMS).

Each of these results concerns analysis of the simplex method or the paths it
takes along the edges of polyhedra. What I’d like to emphasize is the need for
turning analytical insights, such as these, into recommendations for improving
the simplex method in practice.

For example, can machine-learning techniques be used to build pivot-selection
rules that adapt to the properties of the input polyhedra? In this area, every
saved pivot helps.

5.2 Language of Algorithms

I’d like to draw attention to a research direction that is more of a dream than
a specific problem. Namely, the development and adoption of a more nuanced
way of expressing accomplishments in the analysis of algorithms.

Avis [3] gives a dramatic example. Suppose history was reversed and Dantzig
announced a polynomial-time interior-point algorithm in his 1948 talk in Madi-
son. Would a paper today on a newly invented, exponential-time simplex method
have a chance of being accepted into a major conference? Would it even be coded
for testing? One might hope the operations research community would handle
the task, but it takes an exceptional amount of care to implement the simplex
method in a way that makes it competitive with interior-point codes. With-
out guidance from the algorithms community, it seems unlikely the necessary
time and energy would be devoted to building the expertise needed to bring the
simplex method into practical use.

I do not mean to criticize the focus on asymptotic analysis and polynomial-
time results. Indeed, this focus drives CS theory, and CS theory has long supplied
a lifeline of techniques for everyone in the business of attacking large-scale opti-
mization models. But this focus, together with the use of big-oh notation and the
hiding of logarithmic factors, can sometimes make it difficult to tap into ideas



Computing in Combinatorial Optimization 41

that can have a major impact in computational studies. And, more importantly,
it may sometimes hinder the creation of techniques that could have dramatic
impact on computational practice, such as the simplex method in Avis’s fable.

5.3 Understanding Heuristic Algorithms

The term heuristic is sometimes used to describe both non-exact techniques, such
as simulated annealing, as well as exact, but exponential-time, techniques, such
as the cutting-plane method. In my discussion I refer only to the first meaning.
That is, a heuristic algorithm is one designed to find a hopefully good solution,
but comes without a performance guarantee.

Heuristic algorithms are widely used in operations research and many other
areas. They are used, but not understood. The success of these techniques far
outstrips our ability to explain and evaluate analytically.

In his 2010 Knuth Prize lecture [59], David Johnson discussed the theme of
how best to increase the impact of theoretical computer science research. His
first rule was “Study problems people might actually want to solve” and his top
open question in this regard was the following.

When (and why) do metaheuristc approaches work well?

Just so. Computer science is the research community best equipped with analytic
tools to address this issue.

And Johnson is not the only giant of computer science to bring up this topic.
Richard Karp, in a lecture given at Harvard University in 2011 [63], made the
following statement.

Heuristics are often “unreasonably effective,” for reasons not well under-
stood.

This is certainly the case. Recall that I mentioned the report of an optimal TSP
tour to visit 49,603 sites with distance measured by Google walking routes. To
solve this instance, the total computing time for the cutting-plane method and
branch-and-bound search was 178.9 years (on a network of processors). That is a
great deal of computing power, but it turned out that the heuristic tour we had
at the start of the search was in fact optimal. All of the computation was to verify
there was no better solution. It is definitely unreasonable that a combination of
local search and genetic algorithms was able to produce an optimal solution for
such a complex optimization problem. Unreasonable and unexplained.

5.4 Analysis of Exact Algorithms for Hard Problems

Facing an NP-hard optimization problem, the main targets for study are approx-
imation methods and computational methods, combining heuristic search with
lower-bound techniques like cutting planes. A third option is the study of
exponential-time exact solution algorithms. Research in this direction can pro-
vide effective means to handle small problem instances (and these can in turn



42 W. Cook

be used to solve larger examples, using techniques such as the local-cuts pro-
cedure described in [1]), as well as providing insights that can be adopted in
branch-and-bound and other computational methods.

A nice survey of this area, together with a list of open problems, is given
in Woeginger [90]. Prominent among these is the challenge of improving the
Bellman-Held-Karp n22n bound for solving an n-city TSP, possibly replacing
the exponential term by cn for a constant c < 2. It has been 55 years since the
publication of the BHK algorithm, but there has been no improvement for gen-
eral instances. This is likely one of the longest-standing, non-trivial, complexity
bounds for any combinatorial model.

5.5 Complexity of Cutting-Plane Methods

The cutting-plane method is a well-established computational technique, with
successful application to a broad range of combinatorial models. As such, it is a
good target for investigation from a computer science theory perspective. Pos-
sible topics include examining bounds on the complexity of the overall method,
investigating algorithms for separation problems to deliver cutting planes for
particular models, and obtaining insights into the selection of cutting planes to
speed the convergence of the process.

A nice result of the first type was given recently by Chandrasekaran et al. [10],
establishing a polynomial-time cutting-plane method for the matching problem.
A direct challenge here would be to establish a similar bound for the subtour
relaxation of the TSP.

For the second type of problem, there are interesting results for the separa-
tion of TSP inequalities by Carr [9], Fleischer and Tardos [31], Letchford [71]
and others. But, even for this intensely studied model, there are far more open
questions than results. For example, the comb-separation problem (the most
basic question for TSP inequalities) is not known to be NP-hard and also not
known to be polynomial-time solvable. It would be interesting to see non-trivial
approximation results in this area.

The third type of problem, the selection of cutting planes, is critical in prac-
tice. It would be great to see analysis for well-known models, such at the TSP, the
maximum-cut problem, and the maximum stable-set problem. A nice paper here
is an initial study of TSP inequalities by Goemans [38]. His results are worst-
case comparisons, but they predict well the performance seen in computational
studies (see [1, p. 524]).

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

2. Applegate, D.L., Cook, W.: Solving large-scale matching problems. In: Johnson,
D.S., McGeoch, C.C. (eds.) Algorithms for Network Flows and Matching. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol. 12, pp.
557–576. American Mathematical Society, Providence (1993)



Computing in Combinatorial Optimization 43

3. Avis, D.: George Dantzig: father of the simplex method. Bull. EATCS 116 (2015)
4. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
5. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.

J. ACM 9, 61–63 (1962)
6. Bixby, R.: You have to figure out who your customer is going to be. Optima 101,

1–6 (2016)
7. Bixby, R.: A saga of 25 years of progress in optimization. Lecture at the University

of Tokyo, 1 December 2016
8. Borgwardt, K.-H.: Some distribution-independent results about the asymptotic

order of the average number of pivot steps of the simplex-method. Math. Oper.
Res. 7, 441–462 (1983)

9. Carr, R.: Separating clique trees and bipartition inequalities having a fixed number
of handles and teeth in polynomial time. Math. Oper. Res. 22, 257–265 (1997)

10. Chandrasekaran, K., Végh, L.A., Vempala, S.S.: The cutting plane method is poly-
nomial for perfect matchings. Math. Oper. Res. 41, 23–48 (2015)

11. Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman
problem. Report no. 388, Graduate School of Industrial Administration, Carnegie
Mellon University, Pittsburgh (1976)

12. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
cret. Math. 4, 305–337 (1973)

13. Cobham, A.: The intrinsic computational difficulty of functions. In: Proceedings
of the 1964 International Congress for Logic, Methodology, and Philosophy of Sci-
ences, pp. 24–30. North Holland, Amsterdam (1965)

14. Cook, S.A.: An overview of computational complexity. Commun. ACM 26, 401–408
(1983)

15. Cook, W., Espinoza, D., Goycoolea, M., Helsgaun, K.: US50K (2016). http://www.
math.uwaterloo.ca/tsp/us/index.html

16. Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS
J. Comput. 11, 138–148 (1999)

17. Crowder, H., Padberg, M.W.: Solving large-scale symmetric travelling salesman
problems to optimality. Manag. Sci. 26, 495–509 (1980)

18. Dantzig, G.: Programming in a linear structure. Econometrica 17, 73–74 (1948)
19. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large scale traveling salesman

problem. Technical report P-510. RAND Corporation, Santa Monica (1954)
20. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman

problem. Oper. Res. 2, 393–410 (1954)
21. Dongara, J., Sullivan, F.: The top 10 algorithms. IEEE Comput. Sci. Eng. 2, 22–23

(2000)
22. Eastman, W.L.: Linear programming with pattern constraints. Ph.D. thesis,

Department of Economics, Harvard University, Cambridge (1958)
23. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat.

Bur. Stan. 69B, 125–130 (1965)
24. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
25. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Guy, R.,

Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their
Applications, pp. 69–87. Gordon and Breach, New York (1970)

26. Edmonds, J.: A glimpse of heaven. In: Lenstra, J.K., et al. (eds.) History of Math-
ematical Programming-A Collection of Personal Reminiscences, pp. 32–54. North-
Holland, Amsterdam (1991)

http://www.math.uwaterloo.ca/tsp/us/index.html
http://www.math.uwaterloo.ca/tsp/us/index.html


44 W. Cook

27. Edmonds, J.: EP and PPA: can it be hard to find if it’s easy to recognize and
you know it’s there? Lecture at the 21st Combinatorial Optimization Workshop,
Aussois, France, 13 January 2017

28. Edmonds, J.: Optimum branchings. J. Res. Nat. Bur. Stan. 71B, 233–240 (1967)
29. Edmonds, J.: Systems of distinct representatives and linear algebra. J. Res. Nat.

Bur. Stan. 71B, 241–245 (1967)
30. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for

network flow problems. J. ACM 19, 248–264 (1972)
31. Fleischer, L., Tardos, É.: Separating maximally violated comb inequalities in planar

graphs. Math. Oper. Res. 24, 130–148 (1999)
32. Flood, M.M.: The traveling-salesman problem. Oper. Res. 4, 61–75 (1956)
33. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-

ton (1962)
34. Forrest, J.J., Goldfarb, D.: Steepest-edge simplex algorithms for linear program-

ming. Math. Program. 57, 341–274 (1992)
35. Frank, A.: Connections in Combinatorial Optimization. Oxford University Press,

Oxford (2011)
36. Friedmann, O.: Exponential lower bounds for solving infinitary payoff games and

linear programs. Ph.D. thesis, Ludwig-Maximilians-Universität München (2011)
37. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme, I. Monats-hefte für Mathematik und Physik 38, 173–198
(1931)

38. Goemans, M.: Worst-case comparison of valid inequalities for the TSP. Math. Pro-
gram. 69, 335–349 (1995)

39. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems. J. ACM 42, 1115–1145 (1995)

40. Goldfarb, D., Reid, J.K.: A practicable steepest-edge simplex algorithm. Math.
Program. 1, 361–371 (1977)

41. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bull. Am. Math. Soc. 64, 275–278 (1958)

42. Gomory, R.E.: The traveling salesman problem. In: Proceedings of the IBM Scien-
tific Computing Symposium on Combinatorial Problems, pp. 93–121. IBM, White
Plains (1996)

43. Grötschel, M.: On the symmetric travelling salesman problem: solution of a 120-
city problem. Math. Program. Study 12, 61–77 (1980)

44. Grötschel, M.: Notes for a Berlin Mathematical School (2006)
45. Grötschel, M., Holland, O.: Solution of large-scale symmetric travelling salesman

problems. Math. Program. 51, 141–202 (1991)
46. Grötschel, M., Jünger, M., Reinelt, G.: A cutting plane algorithm for the linear

ordering problem. Oper. Res. 32, 1195–1220 (1984)
47. Grötschel, M., Jünger, M., Reinelt, G.: On the acyclic subgraph polytope. Math.

Program. 33, 28–42 (1985)
48. Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope.

Math. Program. 33, 43–60 (1985)
49. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial

Optimization. Springer, Berlin (1988). https://doi.org/10.1007/978-3-642-97881-4
50. Grötschel, M., Nemhauser, G.L.: George Dantzig’s contributions to integer pro-

gramming. Discret. Optim. 5, 168–173 (2008)
51. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms.

Trans. Am. Math. Soc. 117, 285–306 (1965)

https://doi.org/10.1007/978-3-642-97881-4


Computing in Combinatorial Optimization 45

52. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10, 196–210 (1962)

53. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees: Part II. Math. Program. 1, 6–25 (1971)

54. Heller, I.: On the problem of the shortest path between points. I. Abstract 664t.
Bull. Am. Math. Soc. 59, 551 (1953)

55. Hoffman, A.J.: Generalization of a theorem of Konig. J. Wash. Acad. Sci. 46,
211–212 (1956)

56. Hoffman, A., Mannos, M., Sokolowsky, D., Wiegmann, N.: Computational experi-
ence in solving linear programs. J. Soc. Ind. Appl. Math. 1, 17–33 (1953)

57. Hoffman, A.J., Wolfe, P.: History. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan,
A.H.G., Shmoys, D.B. (eds.) The Traveling Salesman Problem, pp. 1–15. Wiley,
Chichester (1985)

58. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

59. Johnson, D.S.: Knuth Prize Lecture (2010)
60. Jünger, M., Reinelt, G., Thienel, S.: Practical problem solving with cutting plane

algorithms. In: Cook, W., Lovász, L., Seymour, P. (eds.) Combinatorial Optimiza-
tion. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 20, pp. 111–152. American Mathematical Society, Providence (1995)

61. Kalai, G.: Upper bounds for the diameter and height of graphs of the convex
polyhedra. Discret. Comput. Geom. 8, 363–372 (1992)

62. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

63. Karp, R.M.: Implicit hitting set problems. Lecture at Harvard University, 29
August 2011

64. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49, 291–307 (1970)

65. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220, 671–680 (1983)

66. Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect
matching algorithm. Math. Program. Comput. 1, 43–67 (2009)

67. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-24488-9

68. Kuhn, H.W.: On certain convex polyhedra. Abstract 799t. Bull. Am. Math. Soc.
61, 557–558 (1955)

69. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28, 497–520 (1960)

70. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11, 796–817 (2001)

71. Letchford, A.N.: Separating a superclass of comb inequalities in planar graphs.
Math. Oper. Res. 25, 443–454 (2000)

72. Lin, S.: Computer solutions of the traveling salesman problem. Bell Syst. Tech. J.
44, 2245–2269 (1965)

73. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21, 498–516 (1973)

74. Lovász, L., Schrijver, A.: Cones of matrices and set-functions, and 0–1 optimization.
SIAM J. Optim. 1, 166–190 (1991)

https://doi.org/10.1007/978-3-642-24488-9


46 W. Cook

75. Mehlhorn, K., Schäfer, G.: Implementation of O(nm logn) weighted matchings in
general graphs: the power of data structures. J. Exp. Algorithmics 7, Article 4
(2002)

76. Menger, K.: Bericht über ein mathematisches Kolloquium. Monats-hefte für Math-
ematik und Physik 38, 17–38 (1931)

77. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5, 32–38 (1957)

78. von Neumann, J.: A certain zero-sum two-person game equivalent to the optimal
assignment problem. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the
Theory of Games, pp. 5–12. Princeton University Press, Princeton (1953). (Tran-
script of a seminar talk given by Professor von Neumann at Princeton University,
26 October 1951)

79. Orden, A.: Solution of systems of linear inequalities on a digital computer. In:
Proceedings of the 1952 ACM National Meeting, pp. 91–95 (1952)

80. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Rev. 33, 60–100 (1991)

81. Robinson, J.: Definability and decision problems in arithmetic. Ph.D. thesis, Uni-
versity of California, Berkeley (1948)

82. Robinson, J.: On the Hamiltonian game (a traveling salesman problem). RAND
Research Memorandum RM-303. RAND Corporation, Santa Monica (1949)

83. Santos, F.: A counterexample to the Hirsh conjecture. Ann. Math. 176, 383–412
(2011)

84. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)
85. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving

Discrete and Continuous Nonconvex Problems. Springer, Berlin (2013). https://
doi.org/10.1007/978-1-4757-4388-3

86. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. J. ACM 51, 385–463 (2004)

87. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc. s2-42, 230–265 (1937)

88. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-662-04565-7

89. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press, Cambridge (2011)

90. Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Jünger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You
Shrink!. LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36478-1 17

https://doi.org/10.1007/978-1-4757-4388-3
https://doi.org/10.1007/978-1-4757-4388-3
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1007/3-540-36478-1_17


Computing in Combinatorial Optimization 47

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Computing in Combinatorial Optimization
	1 In the Beginning was n Factorial
	2 Dantzig, Linear Programming, and Cutting Planes
	3 Edmonds, Matchings, and Polynomial Time
	4 Sixty-Three Years of Progress
	5 Wish List of Research Directions
	5.1 Improving the Simplex Method
	5.2 Language of Algorithms
	5.3 Understanding Heuristic Algorithms
	5.4 Analysis of Exact Algorithms for Hard Problems
	5.5 Complexity of Cutting-Plane Methods

	References




