
Automated Software Test Generation:
Some Challenges, Solutions, and Recent

Advances

George Candea1 and Patrice Godefroid2(B)

1 Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

pg@microsoft.com

Abstract. The automation of software testing promises to delegate
to machines what is otherwise the most labor-intensive and expensive
part of software development. The past decade has seen a resurgence in
research interest for this problem, bringing about significant progress.
In this article, we provide an overview of automated test generation for
software, and then discuss recent developments that have had significant
impact on real-life software.

Keywords: Software testing · Program analysis · Symbolic execution

1 Introduction

Software testing is generally used to assess the quality of a program, where “qual-
ity” can mean reliability, performance, usability, compliance, etc. depending on
context. The purpose of this assessment can be to debug the program, because
testing points out programming errors and ways to reproduce the program failure
they induce. Another purpose can be assessing whether the program is accept-
able to a client, because tests can reveal not only bugs but also gaps between
what the client wanted and what the developer thought she wanted. All in all,
software testing is a method for critiquing a program rather than demonstrating
its correctness. In Dijkstra’s words, “testing shows the presence, not the absence
of bugs” [45].

Testing a program consists of executing the program with a given set of inputs
and observing its behavior. Test automation entails running several tests in an
automated fashion, such as every night or every time a major change is made to
the program. Such automation requires one or more test cases, each consisting
of specific inputs to the program, and an automated means of validating the
outcome, often called a test oracle. Test cases can be written in a black-box
manner (where the test developer chooses scenarios solely based on knowledge
of what the program is supposed to do) or a white-box manner (where internal
knowledge of the program source code supplements the external knowledge in
choosing test scenarios). There exist many types of testing (e.g., unit, feature,
c© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 505–531, 2019.

https://doi.org/10.1007/978-3-319-91908-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_24&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_24


506 G. Candea and P. Godefroid

functional, system, regression) that fulfill various goals. Testing is complemen-
tary to other non-dynamic methods for checking program correctness, such as
visual code inspection or static program analysis.

The outcome of running tests is measured in various ways. For example,
counting how many tests succeed vs. fail is often a proxy metric for the program’s
code quality. Another example is test coverage, which measures the rigorousness
of testing, e.g., by computing what fraction of the program’s instructions were
executed during a test suite.

The fundamental challenge in thoroughly testing a program is that the num-
ber of possible inputs is large. For example, consider a program that takes four
64-bit integers and adds them up: there exist 2256 different combinations of inte-
gers that could be provided to this program. In contrast, scientists estimate that
the observable Universe has on the order of 2240 atoms [115]. A naive approach
of trying all inputs one by one would therefore not complete, so one must be
clever about picking test inputs.

This brings us to test generation, i.e., producing “interesting” inputs to test
software. There is an inherent trade-off between how long it takes to choose the
inputs vs. how long it takes to run the corresponding test and measure outcomes.
For example, if executing a program takes a long time, it makes sense to spend
time on smartly choosing inputs, so as to minimize the number of times the
program must execute during testing. However, if running the program is quick,
then taking a long time to choose inputs can be detrimental compared to running
the program many times with many inputs.

A good way to reduce the time spent choosing test inputs is to automate
the process. This observation gave rise to the field of automated test generation,
which is the subject of this article. We discuss the spectrum of techniques used
for automated test generation (Sect. 2) along with some of the challenges they
face when applied in practice (Sect. 3). We highlight two recent advances in
the engineering and application of these techniques: SAGE (Sect. 4) and S2E
(Sect. 5). While this article is by no means a survey of automated test generation
techniques, we do mention many approaches, techniques and tools throughout,
as well as in Sect. 6. We conclude with a few thoughts on future directions in
this field of research (Sect. 7).

2 Automated Test Generation: An Overview

Techniques for automatically generating test inputs lay along a spectrum that
has at one end blackbox random testing (Sect. 2.1) and at the other end whitebox
symbolic execution (Sect. 2.2). We now describe these two end-points.

2.1 Random Testing and Input Fuzzing

Perhaps the simplest form of automated test generation is to select program
inputs at random [92]. Various input probability distributions can be used, either



Automated Software Test Generation 507

uniform or biased towards some specific values believed to lead to interesting
corner cases, like 0, −1 or MAXINT for integer input values.

A more evolved form, called fuzz testing, consists of starting with well-formed
inputs and repeatedly modifying them, more or less at random, to produce new
inputs—this preserves the benefit of blackbox testing while increasing the prob-
ability of inputs found in this way being “interesting” (e.g., capable of getting
past the first layer of input parsing). This proved to be an effective way to find
crashes and security vulnerabilities in software, with some of the most notori-
ous security vulnerabilities having been found this way [27]. Fuzz testing (or
“fuzzing” for short) has become a standard fixture in most commercial software
testing strategies [1,75,91].

Key to the effectiveness of fuzzing is test quantity, i.e., the ability to gen-
erate and try out new inputs at high rate. Large-scale fuzzing efforts (such as
ClusterFuzz [5] that tests the Chromium web browser) test software round the
clock, using as many machines as are available. The number of bugs found is
limited by the number of CPU resources given to the fuzzer—intuition suggests
that the more tests the fuzzer gets to run, the more likely it is to find bugs.

The other key ingredient is test quality. First, testing many random inputs
in a blackbox fashion can at best discover shallow bugs, whereas picking inputs
smartly can penetrate deeper into the program code and reduce the number of
executions needed to find a bug. To improve the quality of generated inputs,
modern fuzzers use feedback from prior executions to steer input generation
toward those inputs that are more likely to uncover bugs. Second, detecting
anomalous behaviors automatically during the test runs increases the chances of
detecting the manifestation of a bug. Therefore, fuzzers check for a wide range
of “illegal behaviors,” with memory safety violations being the most popular.
The premise is that higher-quality tests are more likely to find bugs.

Most modern blackbox fuzzers, like AFL [119] or LibFuzzer [84], have moved
away from the initial “random testing” end-point of the spectrum: they operate
in a feedback loop, as shown in Fig. 1. They rely on instrumentation to detect
program features triggered by tests, e.g., a basic block being executed or a buffer
overflow. Whenever a feature is seen for the first time, the fuzzer reacts: it adds
the test to its corpus of interesting testcases, or reports a bug.

Different types of instrumentation can detect various features of inter-
est. For example, coverage bits detect when a particular edge in the control-
flow graph of the program is executed. When a coverage bit fires, the fuzzer
knows that it has found new code. A coverage counter similarly detects how
often an edge has been executed, and can signal to the fuzzer that it made
progress when exploring a loop. Safety checks detect abnormal conditions, alert-
ing the fuzzer that a bug has been found. Such checks can be either added
by developers in the form of assertions, or done automatically by tools such
as Purify, AppVerifier, Valgrind, UndefinedBehaviorSanitizer, ThreadSanitizer,
AddressSanitizer, FORTIFY SOURCE, AFL’s libdislocator, stack-protector, and
others [34,44,52,78,108,109]. Using safety checks increases the quality of tests,
and thus the number of bugs that fuzzers can detect. Without them, developers



508 G. Candea and P. Godefroid

Fig. 1. Typical workflow of a fuzzer driven by coverage feedback

need to hope that illegal behavior leads to a segmentation fault or other visible
exception. This does not always happen, particularly for tricky cases such as
use-after-free or buffer over-read bugs.

Ideally, a fuzzer should simultaneously have high test throughput and high
test quality, but unfortunately these two requirements conflict: obtaining good
feedback comes at the cost of throughput. Both detecting program misbehavior
and collecting code coverage information is done using program instrumentation,
which competes for CPU cycles with the actual instructions of the program
being tested. It is in fact not unusual for fuzzers to invest less than half of
their resources into executing code of the target program, and spend the rest on
improving test quality.

2.2 Test Generation with Symbolic Execution

At the other end of the spectrum, the most precise form of automatic code-
driven test generation known today is dynamic test generation with symbolic
execution.

Symbolic execution is a program analysis technique that was introduced in
the 70s (e.g., see [14,37,76,79,103]). Symbolic execution means executing a pro-
gram with symbolic rather than concrete values. Assignment statements are
represented as functions of their (symbolic) arguments, while conditional state-
ments are expressed as constraints on symbolic values. Symbolic execution can be
used for many purposes, such as bug detection, program verification, debugging,
maintenance, and fault localization [38].

Symbolic execution can be used to symbolically explore the tree of all compu-
tations the program exhibits when all possible value assignments to input parame-
ters are considered [79]. As an example, consider the simple program on the left of



Automated Software Test Generation 509

Fig. 2 and its computation tree on the right. This program takes an integer value
rpm as input. The set of possible values for program variable rpm is represented by
a symbolic value λ that can initially take on any integer value: this is represented
by the constraint λ ∈ Z. During symbolic execution of that program, whenever a
branch depending on λ is encountered, a new constaint is generated to capture how
to make that input-dependent branch condition evaluate to true (e.g., λ > 1000)
or false (e.g., λ ≤ 1000) respectively. By repeating this process going down the
tree, we obtain an execution tree annotated with conjunctions of input constraints
which characterize what input values are required in order to reach what parts of
the program. Those conjunctions of constraints are called path constraints, or path
conditions, and are shown in grey on the right of Fig. 2.

Fig. 2. Test generation for a simple program using symbolic execution.

In other words, for each control path p, that is, a sequence of control loca-
tions of the program, a path constraint φp is constructed that characterizes the
input assignments for which the program executes along p. All the paths can be
enumerated by a search algorithm that explores all possible branches at condi-
tional statements. The paths p for which φp is satisfiable are feasible and are
the only ones that can be executed by the actual program. The solutions to φp

characterize the inputs that drive the program through p. This characterization
is exact provided symbolic execution has perfect precision. Assuming that the
theorem prover used to check the satisfiability of all formulas φp is sound and
complete, this analysis amounts to a kind of exhaustive symbolic testing of all
feasible control paths of a program.

Work on automatic code-driven test generation using symbolic execution can
roughly be partitioned into two groups: static versus dynamic test generation.
Static test generation (e.g., [79]) consists of analyzing a program P statically, by
using symbolic execution techniques to attempt to compute inputs to drive P



510 G. Candea and P. Godefroid

along specific execution paths or branches, without ever executing the program.
In contrast, dynamic test generation (e.g., [22,23,31,62,68,80,98,107]) consists
of executing the program P starting with some concrete inputs, while perform-
ing symbolic execution dynamically, collecting symbolic constraints on inputs
gathered from predicates in branch statements along the execution, and then
using a constraint solver to infer variants of the previous inputs in order to steer
the next execution of the program towards an alternative program branch.

The key practical advantage of dynamic test generation compared to static
test generation is that the entire program does not need to be executed symbol-
ically for test generation. Imprecision in dynamic symbolic execution can easily
be alleviated using concrete values: whenever dynamic symbolic execution does
not know how to generate a constraint for a program statement depending on
some inputs, one can always simplify this constraint using the current concrete
values of those inputs. One can prove [60] that dynamic test generation is more
precise than static test generation mainly because of its ability to observe con-
crete values and record those in path constraints.

In practice, the key strength of symbolic execution is that it can generate
quality test inputs that exercise program paths with much better precision than
random testing or other blackbox heuristic-based test-generation techniques.
However, symbolic execution does not have perfect precision, constraint solvers
are typically not sound and complete, and programs can have (infinitely) many
control paths due to loops or recursion. Moreover, symbolic execution is complex
to engineer properly. We discuss these challenges in the next section.

3 Symbolic Execution Meets Practice: Challenges
and Solutions

In practice, automatic test generation using symbolic execution suffers from
several important limitations. This section discusses these challenges and various
solutions.

Fortunately, approximate solutions are sufficient in practice. To be useful,
symbolic execution does not need to be perfect, it must simply be “good enough”
to drive the program under test through program branches, statements and paths
that would be difficult to exercise with simpler techniques like random testing.
Even if a systematic search cannot typically explore all the feasible paths of large
programs in a reasonable amount of time, it usually does achieve better coverage
than pure random testing and, hence, can find new program bugs.

3.1 Exploring New Program Paths

Dynamic symbolic execution is used to systematically explore the execution tree
of a program. These paths are discovered incrementally and can be explored
independently “in parallel”: each inner node is a branching decision, and each
leaf is a program state that contains its own address space, program counter,
and set of constraints on program variables. In order to exercise a new program



Automated Software Test Generation 511

path during such a systematic search, the path constraint for this new path is
solved with a constraint solver. If the constraint is satisfiable, the solver returns
a satisfying assignment for every symbolic variable in the constraint, which is
then mapped to new program inputs. There are two main ways to explore new
program paths of a program.

One approach consists of running the program with some fixed concrete
inputs and performing dynamic symbolic execution along that execution (using
runtime instrumentation) until the program terminates or a specific limit is
reached. In this approach, exploring a different execution path requires re-
running the target program from the beginning with new concrete inputs. This
is the approach used in, e.g., [62,64,107].

A second approach consists in literally “forking” (using the fork system call)
the program state before branch decisions. This way, a new address space is
created for a copy of the program that now explores an alternate path through
the tree. Copy-on-write techniques can be used to efficiently deduplicate these
address spaces. This is the approach used in, e.g., [23,31].

The two approaches present different trade-offs. The first approach (DART-
style concolic execution) presents, on the one hand, the benefit of not having
to solve constraints at runtime to determine feasibility of execution paths and
requires less memory. On the other hand, it requires re-running the program
from scratch for every explored path. The second approach (KLEE-style sym-
bolic execution), on the one hand is able to efficiently explore paths in parallel,
without re-running the program, and enables flexible search strategies for decid-
ing which program paths to explore next (e.g., in the presence of loops) based
on a broad number of factors. On the other hand, it requires more CPU (in par-
ticular for solving constraints to determine path feasibility) and memory, which
limits scalability.

3.2 Interacting with the Environment

In theory, symbolic execution does not use abstraction and is therefore fully
precise with respect to predicate transformer semantics [46]: it generates “per-
path verification conditions” whose satisfiability implies the reachability of a
particular statement, so it generally does not produce false positives.

In practice, to test real-world programs, a symbolic execution engine must
mediate between the program and its runtime environment, i.e., external
libraries, the operating system, the thread and process scheduler, I/O inter-
rupt events, etc. Thus symbolic execution engines need to minimize the time
they spend executing the environment, while of course ensuring correct behavior
of the program.

Existing solutions roughly fall into two categories: they either concretize calls
to the environment and thus avoid symbolic execution of the environment alto-
gether, or they abstract the environment as much as possible using models with
varying degrees of completeness. We now discuss those two options.

Concrete Environment. The first modern symbolic execution engines [24,62,
107] executed the program concretely, and maintained the symbolic execution



512 G. Candea and P. Godefroid

state only during the execution of the program code itself. Whenever symbolic
execution is not possible, such as inside external library calls (possibly executed
in kernel-mode or on some other machine or process) or when facing program
instructions with unknown symbolic semantics, the program execution can still
proceed. This approach turns the conventional stance on the role of symbolic
execution upside-down: symbolic execution is now an adjunct to concrete execu-
tion. As a result, a specific concrete execution can be leveraged as an automatic
fall back for symbolic execution [62]. This avoids altogether symbolic execution
of the environment.

A benefit of this approach is that it can be implemented incrementally: only
some program statements can be instrumented and interpreted symbolically,
while others can simply be executed concretely natively. A tool developer can
improve the precision of symbolic execution over time, by adding new instruction
handlers in a modular manner.

The main drawback is that program behaviors that correspond to environ-
ment behaviors other than the ones seen in the concrete executions are not
explored.

Modeled Environment. This drawback can be addressed with another
approach: model the environment during symbolic execution. For example,
KLEE [23] redirects calls to the environment to small functions that understand
the semantics of the desired action well enough to generate reasonable responses.
With about 2,500 lines of code, they modeled roughly 40 Linux system calls, such
as open, read, and stat. These models are hand-written abstractions of actual
implementations of the system calls. Subsequently, [18] expanded the models for
KLEE to a full POSIX environment.

The benefit of this approach is that target programs can now be exposed to
more varied behaviors of the environment, and their reaction can be evaluated.
For instance, what does the program do whenever a write operation to a file fails
due to a full disk? A suitably written model for write can have a symbolic return
value, which will vary depending on success or failure of that operation. In fact,
one can write models that return different error codes for different failures, and
a symbolic execution engine can automatically test the program under all these
scenarios.

This approach has two main drawbacks. First, by definition, the model is an
abstraction of the real code, and it may or may not model all possible behaviors
of that code. (If the model was fully precise, it would be equivalent to the actual
implementation.) Second, writing models by hand is labor-intensive and prone
to error.

To mitigate these drawbacks, selective symbolic execution [31] does not
employ models but instead automatically abstracts the environment. In doing
so, it is guided by consistency models that govern when to over-approximate and
when to under-approximate. More details on this system appear in Sect. 5.



Automated Software Test Generation 513

3.3 Path Explosion

Symbolically executing all feasible program paths does not scale to large pro-
grams, because the number of feasible paths in a program can be exponential in
the program size, or even infinite if the program, such as a network server, has a
single loop whose number of iterations may depend on some unbounded input,
such as a stream of network packets. A program like the Firefox web browser has
more than 500,000 if statements; if just one thousandth of them were to have
both a then and an else branch that are feasible for some inputs, then Firefox
could be expected to have on the order of 2500 paths, which still far exceeds the
number of atoms in the observable Universe [115]. We now discuss solutions to
this path explosion problem.

A Generic Symbolic Execution and Search Algorithm. In order to present
different trade-offs, we describe the operation of a symbolic execution engine in
a more precise manner using the worklist-style Algorithm 1.

The algorithm is parameterized by a function pickNext for choosing the next
state to expand in a worklist, a function follow that returns a decision on whether
to follow a branch, and a relation ∼ that controls whether program states should
be merged or kept separate (more on this later). A program state is a triple
(�, pc, s) consisting of a program location �, the path condition pc, and the sym-
bolic store s that maps each variable to either a concrete value or an expression
over input variables. In line 1, the worklist w is initialized with a state whose
symbolic store maps each variable to itself (we ignore named constants, for sim-
plicity). Here, λx.e denotes the function mapping parameter x to an expression
e, with λ(x1, . . . xn).e mapping multiple parameters. In each iteration, the algo-
rithm picks a new state from the worklist (line 3).

On encountering an assignment v := e (lines 5–6), the algorithm creates a
successor state at the fall-through successor location succ(�) of � by updating the
symbolic store s with a mapping from v to a new symbolic expression obtained
by evaluating e in the context of s, and adds the new state to the set S. At every
branch (lines 7–11), the algorithm first checks whether to follow either path and,
if so, adds the corresponding condition to the successor state, which in turn is
added to S. A symbolic execution engine can decide to not follow a branch if
the branch is infeasible or would exceed a limit on loop unrolling. For assertions
(line 12–13), the path condition, the symbolic store, and the negated assertion are
put in conjunction and checked for satisfiability. Halt statements terminate the
analyzed program, so the algorithm just outputs the path condition—a satisfying
assignment of this condition can be used to generate a test case for the execution
leading to the halt.

In lines 16–21, the new states in S are merged with any matching states in
the worklist before being added to the worklist themselves. Two states match if
they share the same location and are similar according to relation ∼. Merging
creates a disjunction of the two path conditions and builds the merged symbolic
store from ite expressions that assert one or the other original value, depending
on the path taken (line 19).



514 G. Candea and P. Godefroid

Input: Choice function pickNext , similarity relation ∼, branch checker follow ,
and initial location �0.

Data: Worklist w and set of successor states S.

1 w := {(�0, true, λv.v)};
2 while w �= ∅ do
3 (�, pc, s) := pickNext(w); S := ∅;

// Symbolically execute the next instruction
4 switch instr(�) do
5 case v := e // assignment
6 S := {(succ(�), pc, s[v �→ eval(s, e)])};

7 case if(e) goto �′ // conditional jump
8 if follow(pc ∧ s ∧ e) then
9 S := {(�′, pc ∧ e, s)};

10 if follow(pc ∧ s ∧ ¬e) then
11 S := S ∪ {(succ(�), pc ∧ ¬e, s)};

12 case assert(e) // assertion
13 if isSatisfiable(pc ∧ s ∧ ¬e) then abort else S := {(succ(�), pc, s)}
14 case halt // program halt
15 print pc;

// Merge new states with matching ones in w
16 forall (�′′, pc′, s′) ∈ S do
17 if ∃(�′′, pc′′, s′′) ∈ w : (�′′, pc′′, s′′) ∼ (�′′, pc′, s′) then
18 w := w \ {(�′′, pc′′, s′′)};
19 w := w ∪ {(�′′, pc′ ∨ pc′′, λv.ite(pc′, s′[v], s′′[v]))};

20 else
21 w := w ∪ {(�′′, pc′, s′)};

22 print ”no errors”;
Algorithm 1. Generic symbolic execution of programs written in a simple
input language with assignments, conditional goto statements, assertions, and
halt statements. For simplicity, this algorithm is just intraprocedural; function
calls must be inlined. It can generate precise symbolic function summaries, if
invoked per procedure and with a similarity relation that merges all states
when the function terminates.

Search Heuristics for Program Loops. Bounded model checkers [36] and
extended static checkers [7,54,118] unroll loops up to a certain bound, which can
be iteratively increased if an injected unwinding assertion fails. Such unrolling
is usually performed by statically rewriting the control-flow graph, but can be
fit into Algorithm1 by defining follow to return false for branches that would
unroll a loop beyond the bound. By default, symbolic execution explores loops
as long as it cannot prove the infeasibility of the loop condition; in the case of
an unbounded loop, this can lead to an infinite number of unrollings.



Automated Software Test Generation 515

Modern symbolic execution typically performs loop unrolling and aims to be
smart about choosing which program state to explore next. Dynamic test gener-
ation as implemented in DART [62] starts with an arbitrary initial unrolling of
the loop (driven by an original concrete input) and explores different unrollings
in subsequent tests, driven by follow-on concrete inputs chosen by DART. In
other words, it implements pickNext to follow concrete executions, postponing
branch alternatives to be covered by a subsequent concrete execution. Simple
techniques like bounding the number of constraints injected at each program
location are effective practical solutions to limit path explosion [64]. Dynamic
test generation as implemented in KLEE [23] employs a search strategy imple-
mented in the function pickNext that biases the choice of program states from
the worklist against states that perform many repetitions of the same loop. For
example, a search strategy optimized for line coverage selects states close to
unexplored code and avoids states in deep loop unrollings.

While these code-coverage-based search heuristics do not change the number
of execution paths through a target program, they focus the search on differ-
ent parts of the program. In practice, these heuristics are important to explore
diverse parts of the program, to avoid being stuck in specific parts of the search
space, and hence to try to maximize code coverage and the number of bugs found
given a limited time and space budget.

Summaries and State Merging. In addition to search heuristics, one can
also reduce the number of paths to be explored by memoizing and merging pro-
gram states reached by different program paths. This general idea of analyzing
programs compositionally (e.g., [105]) is well-known in interprocedural static pro-
gram analysis and is key to make it scale to large programs (e.g., [21,29,43,70]).
In the context of static analysis, a merged state typically over-approximates
the individual states that are merged [43,88]; even if the resulting imprecision
can be reduced, it cannot be eliminated, thus leading to false positives (i.e.,
infeasible executions). In contrast, in the context of symbolic execution for test
generation, as a matter of principle, a merged state must precisely represent
the information from all execution paths subsumed by that state without any
over-approximation. In other words, while compositional static analysis typically
computes and memoizes “may” over-approximate function summaries, compo-
sitional test generation computes “must” under-approximate summaries [59].

For test generation, symbolic summaries can be computed at the block,
method, function or procedure level, or at arbitrary program points. These can
be computed incrementally, one interprocedural path at a time, and then bun-
dled together using disjunctions as shown in lines 17–22 of Algorithm1. The
advantage of this approach is that, instead of being symbolically re-executed
over and over again in different calling contexts, each intraprocedural path is
symbolically executed only once, and the results of that symbolic execution are
memoized using local input-preconditions and output post-conditions. A sym-
bolic summary for a procedure is then simply defined as the disjunction of the
summaries of its intraprocedural paths. Whenever a higher-level procedure foo
calls an already-summarized procedure bar, the summary for bar is re-used and



516 G. Candea and P. Godefroid

included in the current path condition of foo. The effect of re-using a symbolic
summary is thus to merge all the states that can be reached when the summa-
rized procedure returns. Such summaries can be computed in various ways, e.g.,
in an inner-most-first order [59] or lazily on-demand [3], and can also be used
together with “may” summaries generated with static analysis (e.g., [67]).

Unfortunately, the main drawback of using summaries and state merging
is that both symbolic execution and constraint solving become more complex
and expensive: summaries (i.e., disjunctions of sub-program paths) need to be
computed and memoized, which makes the path conditions (which now have
more disjunctions) harder to solve.

Therefore, various trade-offs have been proposed. Two extreme trade-offs
are (i) no state merging at all, i.e., complete separation of paths [23,24,62],
and (ii) complete static state merging, as implemented by verification condition
generators [7,36,77,118]. Static state merging combines states at join points after
completely encoding all subpaths, i.e., it defines pickNext to explore all subpaths
leading to a join point before picking any states at the join point, and it defines
∼ to contain all pairs of states. In search-based symbolic execution engines with
no state merging, pickNext can be chosen freely according to the search goal,
and ∼ is empty.

Some approaches adopt intermediate merging strategies. In the context of
bounded model checking (BMC), Ganai and Gupta [56] investigate splitting the
verification condition along subsets of paths; this moves BMC a step into the
direction of symbolic execution, and corresponds to partitioning the ∼ relation.
Hansen et al. [72] describe an implementation of static state merging in which
they modify the exploration strategy to effectively traverse the control-flow graph
in topological order and merge all states that share the same program location.
Alas, for two of their three tested examples, the total solving time increases
with this strategy due to the added load placed on the constraint solver by the
increased complexity of the merged path conditions.

Indeed, the challenge in state merging is that, while merging two program
states on the one hand may reduce the number of execution paths by an exponen-
tial factor, it could also increase the time the symbolic execution engine spends
solving the more complex constraints. The net effect can be positive or nega-
tive. [82] proposes a technique for deciding when merging two program states is
expected to be benefical vs. not. The approach uses a query count estimation
algorithm to compute, during symbolic execution, whether the performance ben-
efit resulting from the reduction in number of execution paths would outweigh
the increase in constraint solver time. Experiments showed that this approach
consistently achieved several orders of magnitude speedup over the then state of
the art.

An alternative to implementing state merging inside the symbolic execution
engine is to present this same engine with an equivalent variant of the target pro-
gram that is easier to symbolically execute. Whereas a usual compiler translates
programs into code that executes as quickly as possible on a target CPU, taking
into account CPU-specific properties, Overify [116] instead compiles programs



Automated Software Test Generation 517

to have the simplest possible control flow, using techniques like jump threading,
loop unswitching, transforming conditionally executed side-effect-free statements
into speculative branch-free versions, splitting objects into smaller ones to reduce
opportunities for pointer aliasing, and others. The net effect is that compiling
a program with the -Overify option reduces the time of exhaustive symbolic
execution by up to almost two orders of magnitude.

3.4 Efficient Constraint Solving

Another key component is the constraint solver being used to solve path con-
straints. Over the last decade, several tools implementing dynamic test gener-
ation for various programming languages, properties and application domains
have been developed. Examples of such tools are DART [62], EGT [22],
PathCrawler [117], CUTE [107], EXE [24], SAGE [64], CatchConv [93],
PEX [113], KLEE [23], CREST [20], BitBlaze [111], Splat [87], Apollo [4],
YOGI [67], Kudzu [106], S2E [31], and JDart [85]. The above tools differ by
how they perform dynamic symbolic execution (for languages such as C, Java,
x86, .NET), by the type of constraints they generate (for theories such as linear
arithmetic, bit-vectors, arrays, uninterpreted functions, etc.), and by the type of
constraint solvers they use (such as lp solve, CVClite, STP, Disolver, Yikes, Z3).
Indeed, like in traditional static program analysis and abstract interpretation,
these important parameters are determined in practice depending on which type
of program is to be tested, on how the program interfaces with its environment,
and on which properties are to be checked. Moreover, various cost/precision
tradeoffs are also possible while generating and solving constraints.

Fortunately, and driven in part by the test generation applications reported
in this article, the science and engineering of automated theorem proving has
made a lot of progress over the last decade as well. Notably, the last decade
witnessed the birth and rise of so-called Satisfiability-Modulo-Theories (SMT)
solvers [2,10,16,49,57,95], which can efficiently check satisfiability of complex
constraints expressed in rich domains. Such solvers have also become computa-
tionally affordable in recent years thanks to the increasing computational power
available on modern computers.

3.5 Parallelization and Testing as a Cloud Service

An orthogonal approach to speed up symbolic execution is parallelization of path
exploration on a cluster of machines, harnessing its aggregate CPU and mem-
ory capabilities (alternatively, one could imagine running a symbolic execution
engine on a supercomputer). One way to parallelize symbolic execution is by
statically dividing up the task among nodes and have them run independently.
However, when running on large programs, this approach leads to high work-
load imbalance among nodes, making the entire cluster proceed at the pace of
the slowest node—if this node gets stuck, for instance, while symbolically exe-
cuting a loop, the testing process may never terminate. In [18], a method is
described for parallelizing symbolic execution on shared-nothing clusters in a



518 G. Candea and P. Godefroid

way that scales well. Without changing the exponential nature of the problem,
parallel symbolic execution harnesses cluster resources to make it feasible to run
automated testing on larger systems than would otherwise be possible.

In essence, software testing reduces to exercising as many paths through
a program as possible and checking that certain properties hold along those
paths (no crashes, no buffer overflows, etc.). The advances in symbolic execution
lead naturally to the “testing as a service” (TaaS) vision [26,66] of (1) offering
software testing as a competitive, easily accessible online service, and (2) doing
fully automated testing in the cloud, to harness vast, elastic resources toward
making automated testing practical for real software. A software-testing service
allows users and developers to upload the software of interest, instruct the service
what type of testing to perform, click a button, and then obtain a report with the
results. For professional uses, TaaS can integrate directly with the development
process and test the code as it is written. TaaS can also serve as a publicly
available certification service that enables comparing the reliability and safety
of software products [25].

Having seen some key challenges in automated test generation and possi-
ble solutions, we now describe two recent systems that employ many of these
techniques: SAGE (Sect. 4) and S2E (Sect. 5).

4 Whitebox Fuzzing with SAGE

Whitebox fuzzing of file parsers [64] is a “killer app” for automatic test gener-
ation using dynamic symbolic execution and constraint solving. Many security
vulnerabilities are due to programming errors in code for parsing files and pack-
ets that are transmitted over the Internet. For instance, the Microsoft Windows
operating system includes parsers for hundreds of file formats. A security vul-
nerability in any of those parsers may require the deployment of a costly, visible
security patch to more than a billion PCs, i.e., millions of dollars [65]. Because
of the magnitude of this problem, Microsoft has invested significant resources to
hunt security vulnerabilities in its products, and provided the right environment
for whitebox fuzzing to mature to an unprecedented level.

Whitebox fuzzing extends dynamic test generation from unit testing to
whole-program security testing in three main ways: First, inspired by blackbox
fuzzing [55], whitebox fuzzing performs dynamic test generation starting from
one or several well-formed inputs, which is a heuristic to increase code coverage
quickly and give the search a head-start. Second, again like blackbox fuzzing,
the focus of whitebox fuzzing is to find security vulnerabilities, like buffer over-
flows, not to check functional correctness; finding such security vulnerabilities
can be done fully automatically and does not require an application-specific test
oracle or functional specification. Third, and more importantly, the main tech-
nical novelty of whitebox fuzzing is scalability: it extends the scope of dynamic
test generation from (small) units to (large) whole programs. Whitebox fuzzing
scales to large file parsers embedded in applications with millions of lines of code
and execution traces with hundreds of millions of machine instructions.



Automated Software Test Generation 519

Since whitebox fuzzing targets large applications, it must scale to long pro-
gram executions, and such symbolic execution is expensive. For instance, a single
symbolic execution of Microsoft Excel with 45,000 input bytes executes nearly a
billion x86 instructions. In this context, whitebox fuzzing uses a novel directed
search algorithm, dubbed generational search, that maximizes the number of new
input tests generated from each symbolic execution. Given a path constraint, all
the constraints in that path are systematically negated one-by-one, placed in a
conjunction with the prefix of the path constraint leading to it, and attempted
to be solved by a constraint solver. This way, a single symbolic execution can
generate thousands of new tests. (In contrast, a standard depth-first or breadth-
first search would negate only the last or first constraint in each path constraint,
and generate at most one new test per symbolic execution.)

Whitebox fuzzing was first implemented in the tool SAGE, short for Scalable
Automated Guided Execution [64]. SAGE was the first tool to perform dynamic
symbolic execution at the x86 binary level, which allows it to be used on any
program regardless of its source language or build process. It also ensures that
“what you fuzz is what you ship,” as compilers can perform source-code changes
which may impact security.

SAGE uses several optimizations that are crucial for dealing with huge exe-
cution traces with billions of machine instructions. To scale to such execution
traces, SAGE uses several techniques to improve the speed and memory usage
of constraint generation: symbolic-expression caching ensures that structurally
equivalent symbolic terms are mapped to the same physical object; unrelated
constraint elimination reduces the size of constraint solver queries by removing
the constraints which do not share symbolic variables with the negated con-
straint; local constraint caching skips a constraint if it has already been added to
the path constraint; flip count limit establishes the maximum number of times
constraints generated from a particular program branch can be flipped; using
a cheap syntactic check, constraint subsumption eliminates constraints logically
implied by other constraints injected at the same program branch (mostly likely
due to successive iterations of an input-dependent loop) [64].

Since 2008, SAGE has been running in production on hundreds of machines,
automatically fuzzing hundreds of applications in Microsoft security testing labs.
This is over 500 machine-years and the “largest computational usage ever for any
Satisfiability-Modulo-Theories (SMT) solver” according to the authors of the Z3
SMT solver [95], with over four billion constraints processed to date [13].

During this fuzzing, SAGE found many new security vulnerabilities (buffer
overflows) in many Windows parsers and Office applications, including image
processors, media players, file decoders, and document parsers. Notably, SAGE
found roughly one third of all the bugs discovered by file fuzzing during the
development of Microsoft’s Windows 7 [65], saving millions of dollars by avoiding
expensive security patches for nearly a billion PCs worldwide. Because SAGE
was typically run last, those bugs were missed by everything else, including static
program analysis and blackbox fuzzing.



520 G. Candea and P. Godefroid

In 2015, SAGE and other popular blackbox fuzzers used internally at
Microsoft were packaged into Project Springfield [91], the first commercial cloud
fuzzing service (renamed Microsoft Security Risk Detection in 2017). Customers
who subscribe to this service can submit fuzzing jobs targeting their own software
and benefit from the technology described in this article. No source code or sym-
bols are required. Springfield fuzzing jobs are easy to set up by non-experts, and
are processed using the same tools used for over a decade inside Microsoft, for
automatic job validation, seed minimization, fuzzing on many machines (lever-
aging the cloud) each running different fuzzing tools and configurations, and
then automatic analysis, triage and prioritization of the bugs found, with results
available directly on the Springfield web-site.

5 Selective Symbolic Execution with S2E

When the target of testing is not individual applications but systems code
(e.g., device drivers) or full system stacks (i.e., the operating system kernel
with drivers, libraries, and applications all together), the dominant consider-
ations become the interaction between the tested software and its environment
(Sect. 3.2) and scaling beyond a single application. These challenges motivated
the development of the S2E system [31].

S2E is a symbolic execution engine for x86 and ARM binaries. It is built
around a modified version of the QEMU [12] virtual machine, and it dynamically
dispatches guest machine instructions either to the host CPU for native execution
or to a symbolic execution engine (KLEE [23]) embedded inside S2E. Most
instructions do not access symbolic state, so they can run natively, while the
rest are interpreted symbolically.

The original use case for S2E was testing full system stacks with complex
environments (proprietary OS kernel, many interdependent libraries, etc.). An
accurate assessment of program behavior requires taking into account every rele-
vant detail of the environment, but making a priori the choice of what is relevant
is hard. So S2E offers “in-vivo” symbolic execution, in which the environment is
automatically abstracted on-the-fly, as needed. This is in contrast to “in-vitro”
symbolic execution, as done by symbolic execution engines and model checkers
that use stubs or models [8,23,97]).

Such in-vivo symbolic execution was used both in industrial and academic
settings. Engineers at Intel used S2E to search for security vulnerabilities in
UEFI BIOS implementations [11]. DDT [81] used S2E to test closed-source pro-
prietary Microsoft Windows device drivers, without access to the driver source
code or inside knowledge of the Windows kernel. DDT found memory leaks,
segmentation faults, race conditions, and memory corruption bugs in drivers
that had been shipping with Windows for many years. Network researchers used
S2E to verify the dataplane of software network routers [47] by using a form of
exhaustive symbolic execution on specific elements in the router without having
to model the rest of the router.



Automated Software Test Generation 521

The key design choice that enables in-vivo symbolic execution is to carefully
maintain a unified global state store that simultaneously captures both sym-
bolic and concrete execution state. An execution can thus alternate between
concrete and symbolic execution multiple times during the same run, without
losing desired correctness and precision. For example, when symbolically execut-
ing a driver in-vivo, the initial execution starts out concrete from userspace, is
concrete in the kernel, then switches to symbolic when entering the driver, then
back to concrete when the driver calls into the kernel, back to symbolic when
execution returns inside the driver, and so on. In this way, “interesting” pro-
gram paths are explored in the software of interest (the driver, in this example)
without symbolically executing the rest of the real environment.

The unified state store consists of machine state (memory, CPU registers and
flags, system clock, devices, etc.) that is shared between the symbolic execution
engine and the virtual machine. S2E is responsible for the transparent conver-
sions of concrete state to symbolic state and vice versa, governed by an execution
consistency model. For example, under a so-called “locally consistent execution”
model, when a driver calls kmalloc with a symbolic argument λ to allocate kernel
memory, S2E automatically picks a concrete value that satisfies the path con-
straint, say 64, and executes kmalloc concretely in the kernel. Once the kernel
returns the concrete 64-byte memory buffer, S2E returns to the driver a sym-
bolic two-valued pointer p = 0 | &buffer capturing the two possible outcomes
of the kmalloc call. S2E then augments the path constraint with λ = 64 and
continues symbolic execution in the driver. Depending on consistency model, if
λ is later involved in a branch condition with one of the branches made infeasi-
ble by the λ = 64 constraint, S2E can return to the original kmalloc call site to
re-concretize λ to an additional value that enables that branch, and repeat the
call.

Execution consistency models in S2E are analogous to memory consistency
models [94]. The traditional assumption about system execution is that the state
at any point in time is consistent, i.e., there exists a feasible concrete-execution
path from the system’s start state to the system’s current state. This is what
S2E calls “strictly consistent concrete execution,” and this is the strongest of all
execution consistency models. Relaxing this assumption results in the definition
of five additional consistency models [32], each offering different trade-offs. For
example, “strictly consistent unit-level execution” corresponds to the consistency
model that governs how DART [62] and EXE [24] handle the environment. The
“locally consistent execution” mentioned above is the one DDT [81] employed
for the interface between device drivers and the OS kernel.

An interesting concept in S2E is that of symbolic hardware. It corresponds
to “overapproximately consistent execution,” and allows virtualized hardware to
return unconstrained symbolic values. DDT [81] and SymDrive [104] used this
execution consistency model for the hardware interface, in order to test drivers
for hardware error paths that are difficult to exercise, and to make up for the
all-together absence of the hardware.



522 G. Candea and P. Godefroid

One of S2E’s optimizations is lazy concretization: concretize symbolic values
on-demand, only when concretely-running code is about to branch on a condition
that depends on that value. This makes it possible to carry a lot of data through
the layers of the system stack without conversion. For example, when a program
writes a buffer of symbolic data to the filesystem, there are usually no branches
in the kernel or the disk device driver that depend on the data per se, so S2E
can pass the buffer through unconcretized and write it in symbolic form to the
virtual disk, from where it can later be read back in its symbolic form, thus
avoiding the loss of precision inherent in concretization.

Over time, S2E turned into a general platform for software analysis, and saw
a number of surprising use cases. For example, RevNIC [30] employed “overap-
proximately consistent execution” to automatically reverse-engineer proprietary
Windows device drivers and produce equivalent drivers for different platforms.
In [32], S2E was used to develop a comprehensive performance profiler to mea-
sure instruction count, cache misses, TLB misses, and page faults for arbitrary
memory hierarchies along all paths of a program. A side effect of S2E’s design
as a virtual machine is that it can be used not only for proprietary software but
also for self-modifying, JITed, and/or obfuscated and packed/encrypted binaries.
This made S2E well suited for malware analysis in a commercial setting [41]. It
was also used to develop Chef [17], a tool for turning the vanilla interpreter of
a dynamically interpreted language (like Python) into a sound and complete
symbolic execution engine for that language. As a final example, two of the
seven systems competing in the finals of DARPA’s Cyber Grand Challenge in
2016 were based on S2E. This competition was an all-machine computer secu-
rity tournament, where each competing machine had to autonomously analyze
computer programs, find security vulnerabilities, fix them, and launch attacks
on other competitors. As part of Galactica (one of the DARPA competitors),
S2E launched 392 successful attacks during the competition, twice as many as
the competition’s all-around winner.

S2E is currently an open-source project [51] and is also at the heart of several
commercial cybersecurity products. S2E illustrates how automated test genera-
tion can morph into a variety of other forms of program analysis.

6 Other Approaches to Automated Test Generation

As mentioned in the introduction, this paper is not a survey on automatic test
generation. We do mention briefly here some other notable test-generation tech-
niques.

Model-Based Testing. Given an abstract representation of the program, called
model, model-based testing consists of generating tests by analyzing the model
in order to check the conformance of the program with respect to the model
(e.g., [114]). Such models are usually program specifications written by hand,
but they can also be generated automatically using machine-learning techniques
(e.g., see [69,102] and the article on automata learning in this volume [74]). In
contrast, the code-driven test-generation techniques discussed in this article do



Automated Software Test Generation 523

not use or require a model of the program under test. Instead, their goal is to
generate tests that exercise as many program statements as possible, including
assertions inserted in the code.

Grammar-Based Fuzzing. Most popular blackbox random fuzzers for security
testing support some form of grammar representation to specify the input format
of the application under test, e.g., Peach [99] and SPIKE [100], among many oth-
ers [112]. Such grammars are typically written by hand, and this process is labo-
rious, time consuming, and error-prone. Nevertheless, grammar-based fuzzing is
the most effective fuzzing technique known today for fuzzing applications with
complex structured input formats, like web-browsers which must take as inputs
web-pages including complex HTML documents and JavaScript code. Work on
grammar-based test input generation started in the 1970’s [71,101]. Test gener-
ation from a grammar is usually either random [40,89,110] or exhaustive [83].
Imperative generation [33,42] is a related approach in which a custom-made
program generates the inputs (in effect, the program encodes the grammar).
Grammar-based fuzzing can also be combined with whitebox fuzzing [61,86].

Search-Based Test Generation. Test generation can be viewed as a search
and optimization problem (e.g., how to maximize code coverage), and vari-
ous heuristics and search techniques have been proposed, for instance, using
genetic algorithms and simulated annealing (e.g., [90]). The fuzzing heuristics
using code-coverage feedback mentioned earlier are related to these techniques.
These techniques have also been applied to other software engineering problems,
including other testing-related problems such as test case minimization and test
case prioritization [90].

Exploit Generation. A targetted form of security testing is exploit generation:
given a program, automatically find vulnerabilities and generate exploits for
them. Systems like Mayhem [28] have used pre-conditioned symbolic execution
to find and exploit zero-day security bugs [6], and work prior to that augmented
such test generation with knowledge from security patches in order to reverse-
engineer the exploits against which those patches were defending [15].

Combinatorial Testing. Given a program and a set of input parameters, com-
binatorial testing aims at generating efficiently a set of test inputs which cover
all pairs of input parameters (e.g., [39]). Generalizations from pairs to arbitrary
k-tuples have also been proposed. In practice, these techniques are used pro-
vided the number of input parameters is sufficiently small, e.g., for configuration
parameters [39].

Concurrency Testing. Systematic testing techniques and algorithms have also
been proposed for concurrent software (e.g., [50,53,58,96]). Such techniques
explore the possible interleavings of multiple processes or threads using a runtime
scheduler with the goal of finding concurrency-related bugs such as deadlocks
and race conditions.

Runtime Verification. Runtime verification tools (e.g., [48,73]) monitor at
run-time the behavior of a program and compare this behavior against a



524 G. Candea and P. Godefroid

high-level specification, typically represented as a finite-state automaton or a
temporal-logic formula. These tools can be viewed as extensions of runtime
checking tools mentioned earlier (like Purify and AddressSanitizer), and are
complementary to test generation.

Program Verification. Over the past few decades, symbolic execution, con-
straint generation and automated theorem proving have also been developed
further in various ways for program verification, such as verification-condition
generation (e.g., [9,46]), symbolic model checking [19] and bounded model check-
ing [35]. Program verification aims at proving the absence of program errors,
while test generation aims at generating concrete test inputs that can drive the
program to execute specific program statements or paths. A detailed technical
comparison can be found in [63]. In practice, symbolic execution, constraint gen-
eration and solving are typically not sound and complete, and fully automatic
program verification remains elusive for large complex software.

7 Conclusion

This article presented an introduction and overview of automated test gener-
ation for software. We discussed how test generation using dynamic symbolic
execution can be more precise than static test generation and other forms of test
generation such as random, taint-based and coverage-heuristic-based test gen-
eration. This test generation approach is also more sophisticated, requiring the
use of automated theorem proving for solving path constraints. This machinery
is more complex and heavy-weight, but may exercise more program paths, find
more bugs and generate fewer redundant tests covering the same path. Whether
this better precision is worth the trouble depends on the application domain.

Research on automatic test generation has been carried out over many years
and is still an active area of research. The techniques described in this article have
been implemented in tens of tools. The application of those tools has, collectively,
found thousands of new bugs, many of them critical from a reliability or security
point of view, in many different application domains.

While this progress is significant and enoucouraging, there is room for further
improvements. Automated test generation tools have been successfully applied
to several application domains so far, but they are not being used routinely yet
by most software developers and testers. New application domains are arising
for which the techniques described here need significant rethinking. For exam-
ple the models automatically learned by machine-learning algorithms (e.g., used
in self-driving vehicles) are unlike regular programs, and so testing them auto-
matically requires new approaches. More work is required to further lower the
cost of automated test generation (e.g., in terms of computation and memory)
while increasing the value it provides (e.g., by providing actionable information
on how to fix the bugs instead of just providing test cases). Automated testing
can benefit from human insights (both in terms of providing test criteria and in
prioritizing test case search), and the potential of combining human intelligence



Automated Software Test Generation 525

with fuzzing and symbolic execution has yet to be realized. We also see oppor-
tunities for machine learning in automated testing, such as in learning input
grammars from examples and leveraging these grammars for generating tests.
Finally, the goal of automated test generation is to enable software engineers to
produce better software faster, and further research is required on how best to
integrate testing tools in software development processes, in particular modern
agile processes and continuous integration, and how to tighten the feedback loop
for fixing bugs.

References

1. Aizatsky, M., Serebryany, K., Chang, O., Arya, A., Whittaker, M.: Announcing
OSS-Fuzz: Continuous fuzzing for open source software (2016). https://testing.
googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

2. Alberti, F., Ghilardi, S., Sharygina, N.: Decision procedures for flat array prop-
erties. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
15–30. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 2

3. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic
execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78800-3 28

4. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A.M., Ernst, M.D.:
Finding bugs in web applications using dynamic test generation and explicit-state
model checking. IEEE Trans. Softw. Eng. 36(4), 474–494 (2010)

5. Arya, A., Neckar, C.: Fuzzing for security (2012). https://blog.chromium.org/
2012/04/fuzzing-for-security.html

6. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: AEG: automatic exploit
generation. In: Network and Distributed System Security Symposium (2011)

7. Babic, D., Hu, A.J.: Calysto: scalable and precise extended static checking. In:
International Conference on Software Engineering (2008)

8. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static driver
verifier research platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 11

9. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

10. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

11. Bazhaniuk, O., Loucaides, J., Rosenbaum, L., Tuttle, M.R., Zimmer, V.: Symbolic
execution for BIOS security. In: USENIX Workshop on Offensive Technologies
(2015)

12. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference (2005)

13. Bounimova, E., Godefroid, P., Molnar, D.: Billions and billions of constraints:
whitebox fuzz testing in production. In: International Conference on Software
Engineering (2013)

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://doi.org/10.1007/978-3-642-54862-8_2
https://doi.org/10.1007/978-3-540-78800-3_28
https://doi.org/10.1007/978-3-540-78800-3_28
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://blog.chromium.org/2012/04/fuzzing-for-security.html
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14


526 G. Candea and P. Godefroid

14. Boyer, R.S., Elspas, B., Levitt, K.N.: SELECT - a formal system for testing and
debugging programs by symbolic execution. SIGPLAN Not. 10, 234–245 (1975)

15. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: techniques and implications. In: IEEE Symposium on Secu-
rity and Privacy (2008)

16. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-
2 16

17. Bucur, S., Kinder, J., Candea, G.: Prototyping symbolic execution engines for
interpreted languages. In: International Conference on Architectural Support for
Programming Languages and Operating Systems (2014)

18. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: ACM EuroSys European Conference
on Computer Systems (2011)

19. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. In: Symposium on Logic in Computer Science (1990)

20. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: Interna-
tional Conference on Automated Software Engineering (2008)

21. Bush, W., Pincus, J., Sielaff, D.: A static analyzer for finding dynamic program-
ming errors. Softw. Practice Exp. 30(7), 775–802 (2000)

22. Cadar, C., Engler, D.: Execution generated test cases: how to make systems
code crash itself. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 2–23.
Springer, Heidelberg (2005). https://doi.org/10.1007/11537328 2

23. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Symposium on Operating
System Design and Implementation (2008)

24. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automati-
cally generating inputs of death. In: Conference on Computer and Communication
Security (2006)

25. Candea, G.: A software certification service. In: Symposium on Operating System
Design and Implementation (2008). “Research Vision” talk session

26. Candea, G., Bucur, S., Zamfir, C.: Automated software testing as a service. In:
Symposium on Cloud Computing (2010)

27. CERT: CERT database of security vulnerabilities (2017). http://www.cert.org/
vulnerability-analysis/knowledgebase/

28. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on binary
code. In: IEEE Symposium on Security and Privacy (2012)

29. Chen, H., Dean, D., Wagner, D.: Model checking one million lines of C code. In:
Network and Distributed System Security Symposium (2004)

30. Chipounov, V., Candea, G.: Reverse engineering of binary device drivers with
RevNIC. In: ACM EuroSys European Conference on Computer Systems (2010)

31. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-
path analysis of software systems. In: International Conference on Architectural
Support for Programming Languages and Operating Systems (2011)

32. Chipounov, V., Kuznetsov, V., Candea, G.: The S2E platform: design, imple-
mentation, and applications. ACM Trans. Comput. Syst. 30(1), 2 (2012). Special
issue: Best papers of ASPLOS

33. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ACM SIGPLAN International Conference on Functional
Programming (2000)

https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/11537328_2
http://www.cert.org/vulnerability-analysis/knowledgebase/
http://www.cert.org/vulnerability-analysis/knowledgebase/


Automated Software Test Generation 527

34. Clang Users Manual: Undefined behavior sanitizer (2017). http://clang.llvm.org/
docs/UsersManual.html

35. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using sat-
isfiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

36. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

37. Clarke, L.A.: A program testing system. In: ACM Annual Conference (1976)
38. Clarke, L.A., Richardson, D.J.: Applications of symbolic evaluation. J. Syst.

Softw. 5(1), 15–35 (1985)
39. Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design

approach to automatic test generation. IEEE Softw. 13(5), 83–88 (1996)
40. Coppit, D., Lian, J.: Yagg: an easy-to-use generator for structured test inputs.

In: International Conference on Automated Software Engineering (2005)
41. Cyberhaven Inc: Cyberhaven product line. http://cyberhaven.io/
42. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring

engines. In: Symposium on the Foundations of Software Engineering (2007)
43. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in poly-

nomial time. In: International Conference on Programming Language Design and
Implementation (2002)

44. Dhurjati, D., Kowshik, S., Adve, V.: Safecode: enforcing alias analysis for weakly
typed languages. In: International Conference on Programming Language Design
and Implementation (2006)

45. Dijkstra, E.W.: Notes on Structured Programming. In: Structured Programming.
Academic Press, Cambridge (1972)

46. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (1975)

47. Dobrescu, M., Argyraki, K.: Software dataplane verification. In: Symposium on
Networked Systems Design and Implementation (2014)

48. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund, K., Penix, J.,
Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722468 19

49. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

50. Edelstein, O., Farchi, E., Goldin, E., Nir, Y., Ratsaby, G., Ur, S.: Framework
for testing multi-threaded Java programs. Concurrency Comput.: Practice Exp.
15(3–5), 485–499 (2003)

51. EPFL and Cyberhaven Inc: S2E software distribution. http://s2e.systems/
52. Etoh, H.: Propolice: GCC extension for protecting applications from stack-

smashing attacks (2000). https://www.researchgate.net/publication/243483996
GCC extension for protecting applications from stack-smashing attacks

53. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: Symposium on Principles of Programming Languages (2005)

54. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended static checking for Java. In: International Conference on Programming
Language Design and Implementation (2002)

55. Forrester, J.E., Miller, B.P.: An empirical study of the robustness of windows NT
applications using random testing. In: USENIX Windows System Symposium
(2000)

http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/docs/UsersManual.html
https://doi.org/10.1007/978-3-540-24730-2_15
http://cyberhaven.io/
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/11817963_11
http://s2e.systems/
https://www.researchgate.net/publication/243483996_GCC_extension_for_protecting_applications_from_stack-smashing_attacks 
https://www.researchgate.net/publication/243483996_GCC_extension_for_protecting_applications_from_stack-smashing_attacks 


528 G. Candea and P. Godefroid

56. Ganai, M.K., Gupta, A.: Tunneling and slicing: towards scalable BMC. In: Design
Automation Conference (2008)

57. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

58. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
Symposium on Principles of Programming Languages (1997)

59. Godefroid, P.: Compositional dynamic test generation. In: Symposium on Prin-
ciples of Programming Languages (2007)

60. Godefroid, P.: Higher-order test generation. In: International Conference on Pro-
gramming Language Design and Implementation (2011)

61. Godefroid, P., Kiezun, A., Levin, M.Y.: Grammar-based whitebox fuzzing. In:
International Conference on Programming Language Design and Implementation
(2008)

62. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: International Conference on Programming Language Design and Implemen-
tation (2005)

63. Godefroid, P., Lahiri, S.K.: From program to logic: an introduction. In: LASER
Summer School (2012)

64. Godefroid, P., Levin, M., Molnar, D.: Automated whitebox fuzz testing. In: Net-
work and Distributed System Security Symposium (2008)

65. Godefroid, P., Levin, M., Molnar, D.: SAGE: whitebox fuzzing for security testing.
Commun. ACM 55(3) (2012)

66. Godefroid, P., Molnar, D.: Fuzzing in the cloud. Technical report MSR-TR-2010-
29, Microsoft Research, March 2010

67. Godefroid, P., Nori, A., Rajamani, S., Tetali, S.: Compositional may-must pro-
gram analysis: unleashing the power of alternation. In: Symposium on Principles
of Programming Languages (2010)

68. Gupta, N., Mathur, A.P., Soffa, M.L.: Generating test data for branch coverage.
In: International Conference on Automated Software Engineering (2000)

69. Hagerer, A., Hungar, H., Niese, O., Steffen, B.: Model generation by moderated
regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS,
vol. 2306, pp. 80–95. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45923-5 6

70. Hallem, S., Chelf, B., Xie, Y., Engler, D.: A system and language for build-
ing system-specific static analyses. In: International Conference on Programming
Language Design and Implementation (2002)

71. Hanford, K.: Automatic generation of test cases. IBM Syst. J. 9(4) (1970)
72. Hansen, T., Schachte, P., Søndergaard, H.: State joining and splitting for the

symbolic execution of binaries. In: Bensalem, S., Peled, D.A. (eds.) RV 2009.
LNCS, vol. 5779, pp. 76–92. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04694-0 6

73. Havelund, K., Rosu, G.: Monitoring Java programs with Java PathExplorer. In:
International Conference on Runtime Verification (2001)

74. Howar, F., Jonsson, B., Vaandrager, F.: Combining black-box and white-box tech-
niques for learning register automata. In: Steffen, B., Woeginger, G. (eds.) Com-
puting and Software Science. LNCS, vol. 10000, pp. 563–588. Springer, Heidelberg
(2018)

75. Howard, M., Lipner, S.: The Security Development Lifecycle. Microsoft Press
(2006)

https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/978-3-642-04694-0_6
https://doi.org/10.1007/978-3-642-04694-0_6


Automated Software Test Generation 529

76. Howden, W.: Symbolic testing and the DISSECT symbolic evaluation system.
IEEE Trans. Softw. Eng. 3(4) (1977)

77. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft:
software verification platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005). https://doi.org/10.
1007/11513988 31

78. Jelinek, J.: Fortify source: Object size checking to prevent (some) buffer overflows.
https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html

79. King, J.C.: Symbolic execution and program testing. J. ACM 19(7) (1976)
80. Korel, B.: A dynamic approach of test data generation. In: IEEE Conference on

Software Maintenance (1990)
81. Kuznetsov, V., Chipounov, V., Candea, G.: Testing closed-source binary device

drivers with DDT. In: USENIX Annual Technical Conference (2010)
82. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-

bolic execution. In: International Conference on Programming Language Design
and Implementation (2012)

83. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-
based testing. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006.
LNCS, vol. 3964, pp. 19–38. Springer, Heidelberg (2006). https://doi.org/10.1007/
11754008 2

84. Libfuzzer–a library for coverage-guided fuzz testing. http://llvm.org/docs/
LibFuzzer.html

85. Luckow, K., Dimjašević, M., Giannakopoulou, D., Howar, F., Isberner, M., Kah-
sai, T., Rakamarić, Z., Raman, V.: JDart: a dynamic symbolic analysis frame-
work. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
442–459. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 26

86. Majumdar, R., Xu, R.: Directed test generation using symbolic grammars. In:
International Conference on Automated Software Engineering (2007)

87. Majumdar, R., Xu, R.-G.: Reducing test inputs using information partitions. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 555–569. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 41

88. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based
static analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0 2

89. Maurer, P.: Generating test data with enhanced context-free grammars. IEEE
Softw. 7(4) (1990)

90. McMinn, P.: Search-based software test data generation: a survey. Int. J. Softw.
Test. Verification Reliab. 14(2) (2004)

91. Microsoft: Project springfield. https://www.microsoft.com/springfield/
92. Miller, B., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX

utilities. Commun. ACM 33(12) (1990)
93. Molnar, D., Wagner, D.: Catchconv: symbolic execution and run-time type infer-

ence for integer conversion errors. Technical report EECS-2007-23, U.C. Berkeley
(2007)

94. Mosberger, D.: Memory consistency models. ACM SIGOPS Oper. Syst. Rev.
27(1) (1993)

95. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/11513988_31
https://doi.org/10.1007/11513988_31
https://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
https://doi.org/10.1007/11754008_2
https://doi.org/10.1007/11754008_2
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-662-49674-9_26
https://doi.org/10.1007/978-3-642-02658-4_41
https://doi.org/10.1007/978-3-540-31987-0_2
https://www.microsoft.com/springfield/
https://doi.org/10.1007/978-3-540-78800-3_24


530 G. Candea and P. Godefroid

96. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: International Conference on Programming Language
Design and Implementation (2007)

97. Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P.A., Neamtiu, I.: Finding
and reproducing Heisenbugs in concurrent programs. In: Symposium on Operating
System Design and Implementation (2008)

98. Offutt, A.J., Jin, Z., Pan, J.: The dynamic domain reduction procedure for test
data generation. Softw. Practice Exp. 29(2) (1999)

99. Peach fuzzer (2017). http://www.peachfuzzer.com/
100. Spike fuzzer (2017). http://resources.infosecinstitute.com/fuzzer-automation-

with-spike/
101. Purdom, P.: A sentence generator for testing parsers. BIT Numer. Math. 12(3)

(1972)
102. Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata

learning. Int. J. Softw. Tools Technol. Transf. 11(4) (2009)
103. Ramamoorthy, C., Ho, S.B., Chen, W.: On the automated generation of program

test data. IEEE Trans. Softw. Eng. 2(4) (1976)
104. Renzelmann, M.J., Kadav, A., Swift, M.M.: Symdrive: testing drivers without

devices. In: Symposium on Operating System Design and Implementation (2012)
105. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via

graph reachability. In: Symposium on Principles of Programming Languages
(1995)

106. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: IEEE Symposium on Security and Privacy,
pp. 513–528 (2010)

107. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Symposium on the Foundations of Software Engineering (2005)

108. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a
fast address sanity checker. In: USENIX Annual Technical Conference (2012)

109. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer - data race detection in prac-
tice. In: Workshop on Binary Instrumentation and Applications (2009)

110. Sirer, E., Bershad, B.: Using production grammars in software testing. In: Con-
ference on Domain-Specific Languages (1999)

111. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7 1

112. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional, Boston (2007)

113. Tillmann, N., de Halleux, J.: Pex–white box test generation for .NET. In: Beck-
ert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79124-9 10

114. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Int. J. Softw. Test. Verification Reliab. 22(5) (2012)

115. Villanueva, J.C.: How many atoms are there in the universe? (2015). http://www.
universetoday.com/36302/atoms-in-the-universe/

116. Wagner, J., Kuznetsov, V., Candea, G.: -OVERIFY: optimizing programs for fast
verification. In: Workshop on Hot Topics in Operating Systems (2013)

http://www.peachfuzzer.com/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
http://resources.infosecinstitute.com/fuzzer-automation-with-spike/
https://doi.org/10.1007/978-3-540-89862-7_1
https://doi.org/10.1007/978-3-540-79124-9_10
http://www.universetoday.com/36302/atoms-in-the-universe/
http://www.universetoday.com/36302/atoms-in-the-universe/


Automated Software Test Generation 531

117. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaâniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281–292. Springer,
Heidelberg (2005). https://doi.org/10.1007/11408901 21

118. Xie, Y., Aiken, A.: Scalable error detection using Boolean satisfiability. In: Sym-
posium on Principles of Programming Languages (2005)

119. Zalewski, M.: American Fuzzy Loop (2017). http://lcamtuf.coredump.cx/afl/

https://doi.org/10.1007/11408901_21
http://lcamtuf.coredump.cx/afl/

	Automated Software Test Generation: Some Challenges, Solutions, and Recent Advances
	1 Introduction
	2 Automated Test Generation: An Overview
	2.1 Random Testing and Input Fuzzing
	2.2 Test Generation with Symbolic Execution

	3 Symbolic Execution Meets Practice: Challenges and Solutions
	3.1 Exploring New Program Paths
	3.2 Interacting with the Environment
	3.3 Path Explosion
	3.4 Efficient Constraint Solving
	3.5 Parallelization and Testing as a Cloud Service

	4 Whitebox Fuzzing with SAGE
	5 Selective Symbolic Execution with S2E
	6 Other Approaches to Automated Test Generation
	7 Conclusion
	References




