l‘)

Check for
updates

Statistical Model Checking

Axel Legay', Anna Lukina?(®™) Louis Marie Traonouez', Junxing Yang?,

Scott A. Smolka?, and Radu Grosu?

! Inria Rennes — Bretagne Atlantique, Rennes, France
anna.lukina@tuwien.ac.at
2 Cyber-Physical Systems Group, Technische Universitit Wien, Vienna, Austria
3 Department of Computer Science, Stony Brook University, Stony Brook, USA

Abstract. We highlight the contributions made in the field of Statistical
Model Checking (SMC) since its inception in 2002. As the formal setting,
we use a very general model of Stochastic Systems (an SS is simply a
family of time-indexed random variables), and Bounded LTL (BLTL) as
the temporal logic. Let S be an SS and ¢ a BLTL formula. Our survey
of the area is centered around the following five main contributions.

Qualitative approach to SMC': Is the probability that S satisfies ¢ greater
or equal to a certain threshold?

Quantitative approach to SMC: What is the probability that S satisfies
? Typically this results in a confidence interval being computed for
this probability.

Rare Events: What happens when the probability that S satisfies ¢ is
extremely small, i.e. it is a rare event? To make the SMC approach
viable in this setting, rare-event estimation techniques Importance
Sampling and Importance Splitting are deployed to great advantage.

Optimal Planning: Motivated by the success of Importance Sampling
and Importance Splitting in rare-event SMC, we explore the use
of these techniques in the context of optimal planning. In particu-
lar, we consider ARES, an optimal-planning approach based on a
notion of adaptive receding-horizon planning. We illustrate the util-
ity of ARES on the planning problem of bringing a flock of birds
(autonomous agents) from a random initial configuration to a V-
formation, an energy-conservation formation deployed by migrating
geese. Somewhat ironically, the performance of ARES can be evalu-
ated using (quantitative) SMC, as the problem to be solved is of the
form F(J < 0); i.e. does an ARES-generated plan eventually bring
the flock to a configuration where the flock-wide cost function J is
below a given threshold 67

Optimal Control: We show that the techniques we presented for optimal
planning in the form of ARES carry over to the control setting in
the form of Adaptive-Horizon Model-Predictive Control (AMPC).
We again use the V-formation problem for evaluation purposes. We
also introduce the concept of V-formation games, and show how the
power of AMPC can be used to ward off cyber-physical attacks.

@© Springer Nature Switzerland AG 2019
B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 478-504, 2019.
https://doi.org/10.1007/978-3-319-91908-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_23&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_23

Statistical Model Checking 479

1 Introduction

Quantitative models of computer systems include stochastic systems, whose state
transitions are equipped with a probability distribution. Stochastic systems in
turn include both discrete- and continuous-time Markov Chains. Our main inter-
est will be in computing the probability by which a stochastic system S satisfies a
given temporal-logic property ¢. In contrast to the Boolean version of the model
checking problem, this quantitative model checking (QMC) problem allows one
to precisely determine how well S satisfies ¢. When ¢ is a linear temporal logic
(LTL) formula, QMC serves as a way to measure the number of paths that satisfy
the formula.

The QMC problem is typically solved by a numerical approach that, like
state-space exploration, iteratively computes (or approximates) the exact mea-
sure of paths satisfying relevant subformulas. The algorithm for computing such
measures depends on the class of stochastic systems being considered as well as
the logics used for specifying the correctness properties. QMC algorithms for a
variety of such contexts have been discovered [1,8,9] and there are mature tools
(see e.g. [7,28]) that have been used to analyze a variety of systems in practice.

Despite the great strides made by numerical QMC algorithms, there are
many challenges. Numerical algorithms work only for systems that have certain
structural properties. Further, these algorithms have significant time and space
requirements, and thus scaling to large systems is a challenge. Also, the temporal
logics supported by these QMC algorithms are extensions of classical temporal
logics that are not particularly popular among engineers. Finally, numerical tech-
niques do not easily scale to extended stochastic models whose semantics also
depends on other quantities such as real-time or energy.

Another approach to QMC is to simulate the system for finitely many runs,
and use techniques from the area of statistics to infer whether the samples pro-
vide a statistical evidence for the satisfaction or violation of the specification [41].
The crux of this approach is that since sample runs of a stochastic system are
drawn according to the distribution defined by the system, they can be used to
obtain estimates of the probability measure on executions. These techniques are
known under the name of Statistical Model Checking (SMC).

The SMC approach enjoys many advantages. First, these algorithms only
require the system to be simulatable (or rather, sample executions be drawn
according to the measure space defined by the system). Thus, it can be applied
to a larger class of systems than numerical QMC algorithms, including black-box
systems and infinite-state systems. Second, the approach can be generalized to
a larger class of properties, i.e., Fourier transform-based logics [2,3]. Finally, the
algorithm is easily parallelizable, which can help scale to large systems. In cases
where the model-checking problem is undecidable or too complex, SMC is often
the only viable solution. As we shall see, SMC has been the subject of intensive
research. SMC algorithms have been implemented in a series of tools, including
Ymer [39], Prism [29], and UPPAAL [10]. Recently, we have implemented a series
of SMC techniques in a flexible and modular toolset called Plasma Lab [4].

480 A. Legay et al.

Despite the successes SMC has enjoyed, a serious obstacle in its applica-
tion is its poor performance in predicting the satisfaction of properties holding
with very low probability, so-called rare events (REs). In such cases, the number
of samples required to attain a high confidence ratio and a low error margin
explodes [16,42]. Two sequential Monte-Carlo techniques, importance sampling
(ISam) [12] and importance splitting (ISpl) [15], originally developed for statis-
tical physics [25], promise to overcome this obstacle. We discuss the important
role these techniques have come to play in the SMC arena and beyond, in par-
ticular, for the purposes of optimal planning and control of controllable MDPs,
a popular strategy-based probabilistic modeling formalism [14].

With this background in place, the following discussion summarizes the main
contributions of this chapter. It also serves as a guide to how the chapter is
organized.

— Section 2 provides definitions of the two basic ingredients of the SMC problem.
It presents a very general definition of stochastic system as a family of time-
indexed random variables, and it also introduces the temporal logic Bounded
LTL (BLTL), which is often used in the SMC setting.

— Section 3 describes SMC-based approaches to both the qualitative and quan-
titative stochastic verification problems [33,39]. The qualitative version is of
the form “How is the probability of property satisfaction related to a given
threshold?”, whereas the quantitative version asks the question “What is a
confidence interval for this probability?”

— Section 4 considers the impact of rare events on the performance of SMC. As
discussed above, we show how importance sampling and importance splitting
can be successfully used for the statistical model checking of rare-event prop-
erties. In particular, we consider command-based importance sampling which
is intended to reduce the computational burden imposed by ISam. Instead of
reiterating the process of choosing a good distribution, the command-based
approach considers parametrization over the syntax of stochastic guarded
commands. We thereafter investigate the application of importance splitting
with fixed and adaptive levels for rare-event probability estimation. These
approaches are implemented in the Plasma toolset, thereby allowing for a
thorough evaluation of their performance.

— Section 5 shows how the rare-event approach to SMC can be exploited for
the purpose of optimal plan synthesis for controllable MDPs. Specifically,
we present ARES, an efficient approximation algorithm for generating opti-
mal plans (action sequences) that take an initial state of an MDP to a state
whose cost is below a specified (convergence) threshold [30]. ARES uses Par-
ticle Swarm Optimization (PSO), with adaptive sizing for both the receding
horizon and the particle swarm. Inspired by Importance Splitting, the length
of the horizon and the number of particles are chosen such that at least one
particle reaches a next-level state, that is, a state where the cost decreases by
a required delta from the previous-level state.

— Section 6 demonstrates the utility of importance splitting and PSO in the
context of control, where we present a new formulation of model-predictive

Statistical Model Checking 481

control called Adaptive-Horizon MPC (AMPC). We show that under cer-
tain controllability conditions, an AMPC controller can bring a system to
an optimal state (WRT a given cost function) with probability 1. Somewhat
ironically, we provide statistical guarantees of the performance of AMPC and
ARES using SMC, the same approach that inspired our use of rare-event
techniques in the first place.

— Section 7 draws our conclusions and discusses future work in the area.

2 Formal Definitions

In this section, we introduce several formal definitions that will be used in the
rest of the chapter. We consider a set of states .S and a time domain T C R. We
first introduce the general definition of a stochastic system.

Definition 1 (Stochastic system). A stochastic system over S and T is a
family of random variables X = {X; | t € T}, each random variable X; having
range S.

The definition of a stochastic system as a family of random variables is quite
general and includes systems with both continuous and discrete dynamics. In this
work, we will focus our attention on a limited, but important, class of stochastic
system: stochastic discrete event systems, which we note S = (S, 7). This class
includes any stochastic system that can be thought of as occupying a single state
for a duration of time before an event causes an instantaneous state transition
to occur. An execution for a stochastic system is any sequence of observations
{zy € S|t € T} of the random variables X; € X. It can be represented as a
sequence w = (8g,%0), (S1,t1), -+, (Sn,tn). .., such that s; € S and ¢; € T, with
time stamps monotonically increasing, e.g. t; < t;41. Let 0 < ¢ < n, we denote
wh = (84,t5),- -+, (8n,tn) the suffix of w starting at position i. Let 5 € S, we
denote Path(s) the set of executions of X that starts in state (5,0) (also called
initial state) and Path™(3) the set of executions of length n.

In [39], Younes showed that the set of executions of a stochastic system is a
measurable space, which defines a probability measure u over Path(s). The pre-
cise definition of 1 depends on the specific probability structure of the stochastic
system being studied.

Properties over traces of Sys are defined via the so-called Bounded Linear
Temporal Logic (BLTL). BLTL restricts Linear Temporal Logic by bounding
the scope of the temporal operators. The syntax of BLTL is defined as follows:

d=0Vo|dAG| 0| FSp|GSo | o US g | X | a

V,A and — are the standard logical connectives and « is a Boolean constant
or an atomic proposition constructed from numerical constants, state variables
and relational operators. X is the next temporal operator: X¢ means that ¢
will be true on the next step. F, G and U are temporal operators bounded by
time interval [0,¢], relative to the time interval of any enclosing formula. We
refer to this as a relative interval. F is the finally or eventually operator: F<t¢

482 A. Legay et al.

means that ¢ will be true at least once in the relative interval [0,¢]. G is the
globally or always operator: G='¢ means that ¢ will be true at all times in the
relative interval [0,¢]. U is the until operator: 1/U<,¢ means that in the relative
interval [0, ¢], either ¢ is initially true or ¢ will be true until ¢ is true. Combining
these temporal operators creates complex properties with interleaved notions of
eventually (F), always (G) and one thing after another (U).

3 On Verifying Requirements: The SMC Approach

Consider a stochastic system (S, T") and a property ¢. Statistical model checking
refers to a series of simulation-based techniques that can be used to answer two
questions: (1) Qualitative: Is the probability that (S,T') satisfies ¢ greater or
equal to a certain threshold? and (2) Quantitative: What is the probability that
(S,T) satisfies ¢? Contrary to numerical approaches, the answer is given up to
some correctness precision. As we shall see later, SMC solves those problems
with two different approaches, while classical numerical approaches only solve
the second problem, which implies the first one, but is harder.

In the rest of the section, we overview the two first statistical model checking
techniques that were proposed in the literature. Let B; be a discrete random
variable with a Bernoulli distribution of parameter p. Such a variable can only
take 2 values 0 and 1 with Pr[B; = 1] = p and Pr[B; = 0] = 1 — p. In our
context, each variable B; is associated with one simulation of the system. The
outcome for B;, denoted b;, is 1 if the simulation satisfies ¢ and 0 otherwise. The
latter is decided with the help of a monitoring procedure [18]. The objective of
an SMC algorithm is to generate simulations and exploit the Bernoulli outcomes
to extract the global confidence on the system.

In the next subsections, we present three algorithms used in the early works
on SMC to solve both the quantitative and the qualitative problems. Exten-
sion of those algorithms to unbounded temporal operators [17,34] and to nested
probabilistic operators exist [39]. As shown in [19] those extensions are debatable
and often slower. Consequently, we will not discuss them.

3.1 Qualitative Analysis Using Statistical Model Checking

The main approaches [33,39] proposed to answer the qualitative question are
based on hypothesis testing. Let p = Pr(¢), to determine whether p > 0, we
can test H : p > 0 against K : p < 6. A test-based solution does not guarantee
a correct result but it is possible to bound the probability of making an error.
The strength (a, 3) of a test is determined by two parameters, o and g, such
that the probability of accepting K (respectively, H) when H (respectively, K)
holds, called a Type-I error (respectively, a Type-1I error), is less or equal to «
(respectively, 3).

A test has ideal performance if the probability of the Type-I error (respec-
tively, Type-II error) is exactly a (respectively, 3). However, these requirements

Statistical Model Checking 483

make it impossible to ensure a low probability for both types of errors simul-
taneously (see [39] for details). A solution to this problem is to relax the test
by working with an indifference region (p1,po) with pg = p1 (po — p1 is the
size of the region). In this context, we test the hypothesis Hy : p > po against
H; : p < py instead of H against K. If the value of p is between p; and pg (the
indifference region), then we say that the probability is sufficiently close to 6 so
that we are indifferent with respect to which of the two hypotheses K or H is
accepted. The thresholds pg and p; are generally defined in terms of the single
threshold 4, e.g., p1 = 0 — § and pg = 6 + §. We now need to provide a test
procedure that satisfies the requirements above. In the next two subsections, we
recall two solutions proposed by Younes in [39,40].

Single Sampling Plan. This algorithm plays more a historical role rather than
to be used directly. However, it is still exploited in subsequent algorithms. To
test Hy against Hy, we specify a constant c. If """ | b; is larger than ¢, then
Hy is accepted, else Hy is accepted. The difficult part in this approach is to find
values for the pair (n, ¢), called a single sampling plan (SSP in short), such that
the two error bounds « and (3 are respected. In practice, one tries to work with
the smallest value of n possible so as to minimize the number of simulations
performed. Clearly, this number has to be greater if & and 3 are smaller but also
if the size of the indifference region is smaller. This results in an optimization
problem, which generally does not have a closed-form solution except for a few
special cases [39]. In [39], Younes proposes a binary search based algorithm that,
given pg, p1, @, 3, computes an approximation of the minimal value for ¢ and n.

Sequential Probability Ratio Test (SPRT). The sample size for a single sampling
plan is fixed in advance and independent of the observations that are made.
However, taking those observations into account can increase the performance
of the test. As an example, if we use a single plan (n,c) and the m > ¢ first
simulations satisfy the property, then we could (depending on the error bounds)
accept Hy without observing the n—m other simulations. To overcome this prob-
lem, one can use the sequential probability ratio test (SPRT in short) proposed
by Wald [36]. The approach is briefly described below.

In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength of the test is respected. Let m be the number of observations that
have been made so far. The test is based on the following quotient:
plm _ PT(— b ‘p pl) _ dm(l _pl)midm (1)

DPom PV“(; = bilp = po) (1 — po)m—dm’

where d,, = Y.i" b;. The idea behind the test is to accept Hy if p“” > A,
and Hy if Bi» < B. The SPRT algorithm computes]1; Lm for successive Values of
m until either Hy or H; is satisfied; the algorithm terminates with probability
1 [36]. This has the advantage of minimizing the number of simulations. In [39],
Younes proposed a logarithmic based algorithm SPRT that given pg, p1,a and
0 implements the sequential ratio testing procedure.

484 A. Legay et al.

SPRT has been largely used in the formal methods area. In this paper, we
shall show that the approach extends to a much larger class of problems than
the one originally foreseen.

3.2 Quantitative Analysis Using Statistical Model Checking
and Estimation

In the case of estimation, existing SMC algorithms rely on classical Monte Carlo
estimation. More precisely, they calculate a priori the required number of simula-
tions according to a Chernoff bound [31] that allows the user to specify an error
€ and a probability § that the estimate p will not lie outside the true value +e.
Given that a system has true probability p of satisfying a property, the Chernoff
bound ensures P(| p — p |>) < §. Parameter ¢ is related to the number of
simulations N by & = 2¢~2N¢’ [31], giving

N = [(In2—1n0d)/(2¢?)]. (2)

4 Rare Events

SMC is a Monte Carlo method that takes advantage of robust statistical tech-
niques to bound the error of the estimated result (e.g., [31,36]). To quantify a
property, it is necessary to observe the property, where increasing the number of
observations generally increases the confidence of the estimate. Rare properties
are often highly relevant to system performance (e.g., bugs and system failures
are required to be rare) but pose a problem for statistical model checking because
they are difficult to observe. Fortunately, rare-event techniques such as impor-
tance sampling [24,26] and importance splitting [25,26,32] may be successfully
applied to statistical model checking.

Importance sampling and importance splitting have been widely applied to
specific simulation problems in science and engineering. Importance sampling
works by estimating a result using weighted simulations and then compensating
for the weights. Importance splitting works by reformulating the rare probability
as a product of less rare probabilities, conditioned on the levels that must be
achieved.

In this section, we summarize our contributions in terms of applying impor-
tance sampling and importance splitting to the SMC problem. We then discuss
their implementation within the Plasma toolset.

4.1 Command-Based Importance Sampling

Importance sampling works by simulating a probabilistic system under a
weighted (importance sampling) measure that makes a rare property more likely
to be seen [23]. It then compensates the results by the weights, to estimate
the probability under the original measure. When simulating Markov Chains,
this compensation is typically performed on the fly, with almost no additional
overhead.

Statistical Model Checking 485

Given a set of finite traces w € {2 and a function z : 2 — {0, 1} that returns
1 iff a trace satisfies some property, the importance sampling estimator is given
by

\ 4f (wi)
;Z(Wz)df,<wi)~

N is the number of simulation traces w; generated under the importance sam-
pling measure f’, while f is the original measure. % is the likelihood ratio.

For importance sampling to be effective it is necessary to define a “good”
importance sampling distribution: () the property of interest must be seen fre-
quently in simulations and (ii) the distribution of the simulation traces that
satisfy the property in the importance sampling distribution must be as close
as possible to the normalized distribution of the same traces in the original
distribution. Failure to consider both (i) and (i) can result in underestimated
probability with overestimated confidence.

Since the main motivation of importance, sampling is to reduce the compu-
tational burden, the process of finding a good importance sampling distribution
must maintain the scaling advantage of SMC and, in particular, should not
iterate over all the states or transitions of the system. We, therefore, consider
parameterized importance sampling distributions, where our parametrization is
over the syntax of stochastic guarded commands, a common low-level modeling
language of probabilistic systems'.

Each command has the form (guard, rate, action). The guard enables the
command and is a predicate over the state variables of the model. The rate is
a function from the state variables to R, defining the rate of an exponential
distribution. The action is an update function that modifies the state variables.
In general, each command defines a set of semantically linked transitions in the
resulting Markov chain.

The semantics of a stochastic guarded command is a Markov jump process
(has discrete movements with random arrival times, i.e., a Poisson process).
The semantics of a parallel composition of commands is a system of concurrent
Markov jump processes. Sample execution traces can be generated by discrete-
event simulation. In any state, zero or more commands may be enabled. If no
commands are enabled the system is in a halting state. In all other cases, the
enabled commands “compete” to execute their actions: sample times are drawn
from the exponential distributions defined by their rates and the shortest time
“wins”. As showed in [20], this optimization can be performed, e.g., with the
cross-entropy method. The techniques also extend to real-time stochastic systems
(see [22]).

4.2 TImportance Splitting

The earliest application of importance splitting is perhaps that of [24,25], where
it is used to calculate the probability that neutrons pass through certain shielding

! http://www.prismmodelchecker.org/manual/ThePRISMLanguage, .

http://www.prismmodelchecker.org/manual/ThePRISMLanguage/

486 A. Legay et al.

materials. This physical example provides a convenient analogy for the more
general case. The system comprises a source of neutrons aimed at one side of a
shield of thickness T'. The distance traveled by a neutron in the shield defines
a monotonic sequence of levels {5 = 0 < {1 < ly < --- < £, = T, such that
reaching a given level implies having reached all the lower levels. While the overall
probability of passing through the shield is small, the probability of passing from
one level to another can be made arbitrarily close to 1 by reducing the distance
between levels. Denoting the abstract level of a neutron as ¢, the probability
of a neutron reaching level ¢; can be expressed as P(¢ > ¢;) =Pl = ¢; | L >
l;_1)P(€ = ¥;_1). Defining v = P(¢ > {,,) and P(£ > £y) = 1, we obtain

7:HP(€>&‘ | €=t 1). 3)

Each term of (3) is necessarily greater than or equal to v, making their estimation
easier.

The general procedure is as follows. At each level, a number of simulations
are generated, starting from a distribution of initial states that corresponds to
reaching the current level. It starts by estimating P(¢ > ¢41]¢ > {p), where the
distribution of initial states for ¢y is usually given (often a single state). Simula-
tions are stopped as soon as they reach the next level; the final states becoming
the empirical distribution of initial states for the next level. Simulations that do
not reach the next level (or reach some other stopping criterion) are discarded. In
general, P(¢ > 4|¢ > £;_1) is estimated by the number of simulation traces that
reach /;, divided by the total number of traces started from ¢;_;. Simulations
that reached the next level are continued from where they stopped. To avoid a
progressive reduction of the number of simulations, the generated distribution of
initial states is sampled to provide additional initial states for new simulations,
thus replacing those that were discarded.

Score Function. The concept of levels can be generalized to arbitrary systems
and properties in the context of SMC, treating ¢ and ¢; in (3) as values of a
score function over the model-property product automaton. Intuitively, a score
function discriminates good paths from bad, assigning higher scores to paths that
more nearly satisfy the overall property. Since the choice of levels is crucial to the
effectiveness of importance splitting, various ways to construct score functions
from a temporal logic property are proposed in [20].

Formally, given a set of finite trace prefixes w € {2, an ideal score function
S : 2 — R has the characteristics S(w) > S(w') < P(E ¢ |w) > P(E ¢ |
w’), where P(= ¢ | w) is the probability of eventually satisfying ¢ given prefix
w. Intuitively, w has a higher score than w’ iff there is more chance of satisfying
¢ by continuing w than by continuing w’. The minimum requirement of a score
function is S(w) > s, <= w |= ¢, where s, is an arbitrary value denoting that
 is satisfied. Any trace that satisfies ¢ must have a score of at least s, and any
trace that does not satisfy ¢ must have a score less than s,,. In what follows we
assume that (3) refers to scores.

Statistical Model Checking 487

The Fixed-Levels Algorithm. The fixed-levels algorithm follows the general
procedure previously presented. Its advantages are that it is simple, it has low
computational overhead, and the resulting estimate is unbiased. Its disadvantage
is that the levels must often be guessed by trial and error, adding to the overall
computational cost.

In Algorithm 1, 4 is an unbiased estimate (see, e.g., [11]). Furthermore, from
Proposition 3 in [5], we can deduce the following (1 — «)-confidence interval:

I = [&/ <1+ Z\jg) A/ (1 - %)} with 0% > i !)

= i

Confidence is specified via z,, the 1 — a/2 quantile of the standard normal
distribution, while n is the per-level simulation budget. We infer from (4) that
for a given ~ the confidence is maximized by making both the number of levels
m and the simulation budget n large, with all ~; equal.

Algorithm 1. Fixed levels

Let (7&)1<k<m be the sequence of thresholds with 7, = 7,

Let stop be a termination condition

Vi € {1,...,n}, set prefix d)} = e (empty path)

for 1 <k<mdo
Vj € {1,...,n}, using prefix @, generate path w¥ until (S(w¥) >) v stop
Li={vje{l,....n}: S(wh) > m}
A = Ll
Vj € Iy, @ = wf
Vj & I, let LZ);-“H be a copy of wF with i € I, chosen uniformly randomly

y= Hzlzl k

In general, however, score functions will not equally divide the conditional
probabilities of the levels, as required by (4) to minimize variance. In the worst
case, one or more of the conditional probabilities will be too low for the algo-
rithm to pass between levels. Finding good or even reasonable levels by trial and
error may be computationally expensive and has prompted the development of
adaptive algorithms that discover optimal levels on the fly [6,20,21]. Instead
of pre-defining levels, the user specifies the proportion of simulations to retain
after each iteration. This proportion generally defines all but the final conditional
probability in (3).

Adaptive importance splitting algorithms first perform a number of simu-
lations until the overall property is decided, storing the resulting traces of the
model-property automaton. Each trace induces a sequence of scores and a corre-
sponding maximum score. The algorithm finds a level that is less than or equal
to the maximum score of the desired proportion of simulations to retain. The
simulations whose maximum score is below this current level are discarded. New

488 A. Legay et al.

simulations to replace the discarded ones are initialized with states correspond-
ing to the current level, chosen at random from the retained simulations. The
new simulations are continued until the overall property is decided and the pro-
cedure is repeated until a sufficient proportion of simulations satisfy the overall

property.

4.3 Rare Events: Comparison of Methods

In this section, we compare the two rare-event approaches with the Monte Carlo
approach.

Model. We consider a chemically reacting system that consists of a set of three
chemical reactions between five molecular species (A, B, C, D, E). These reac-
tions are the following:

A+B—-C (5)
C—D (6)
D—FE (7)

Initially, the system only contains species A and B. Then reactions start
according to a rate that depends on the number of reactants. We model this
system as a continuous time Markov chain (CTMC) using the Reactive Module
Language (RML), the input language of the tools Prism and Plasma Lab. The
code of the model, presented in Fig. 1, contains a single module component with
three transitions to model the three reactions. The quantities of each element
are modeled as an integer variable from 0 to 1000. A and B start with 1000
elements, while C, D, and E start at zero. A transition that models a chemical
reaction is composed of a guard, that is always true, a rate, e.g., a x b, and a set
of updates, e.g., (a/ =a —1). The rate of the transition defines the speed of the
reaction as the rate of an exponential distribution: the higher it is the faster will
be the reaction. An example of a simulation of this system is presented in Fig. 2.
It shows how the quantities of each species may evolve over time, where time is
presented as the number of steps (chemical reaction) performed by the system.

Property. We consider a bounded linear temporal logic formula as the property
of this system to be verified:

@ 1= F < 3000(d > 470)

It checks if a level of 471 for species D can be reached within 3000 steps. We
would like to estimate the probability of satisfying this formula. As we can see
in a typical simulation run of this system in Fig. 2, species D tends to reach a
maximum of 400 before being transformed into species E.

Model Checking. The first approach to compute the probability of ¢ would be
to use a probabilistic model checker like PRISM to compute its exact value.
However, this model checking problem is intractable due to the size of its state
space (101°).

Statistical Model Checking 489

ctmc

module chem

a [0..1000] init 1000;
b [0..1000] init 1000; °
c : [0..1000] init O; 3
d [0..1000] init O; 3 _
e : [0..1000] init O; g .
[] true —> axb : g 37
(a’=a—1) & (b'=b-1) & (c'=c+1) g i
? £ o
[] true — c : 2 &7
(c'=c—1) & (d'=d+1); o
[] true —> d : e
(d'=d—1) & (e'=e+1): 0 500 1500 2500
endmodule Steps
Fig. 1. CTMC model of chemical reactions Fig. 2. Simulation of the evolution
written in the Reactive Module Language of chemical species through time (in

number of steps)

Monte Carlo. Consider next the Monte Carlo statistical model checking app-
roach. We used Plasma Lab to run 1,000,000 simulations on an 8-core 2.6 GHz
computer. It took 839s, but we were not able to find even one trace that satis-
fies the formula. To have an idea of the evolution of the probability according
to maximum value of species D checked by the property, we plot in Fig.3 the
results of Monte Carlo analyses with 100,000 simulations for several values of
the maximum value from 350 to 450. As one can see, the probability to reach a
maximum greater than 400 of species D is very low. To estimate the probability
of reaching 471 we need to use statistical techniques for rare events.

Importance Splitting. Importance splitting works by splitting the verification of a
rare property into a sequence of less rare properties. For instance, in our problem,
any trace that eventually satisfies the formula ¢, satisfies the formulas F' <=
3000(d > 460), F' <= 3000(d > 450), F <= 3000(d > 440), etc. Therefore, the
maximum value of d reached by a trace defines a natural notion of a level that
can be used to split the rare property into a sequence of less-rare properties.
We implement this decomposition in Plasma Lab by writing an observer that
computes the score of a trace, i.e., the maximum value of d along the trace.

We can then use the adaptive importance splitting of Plasma Lab to estimate
the probability of . The results are summarized in Table 1. We performed three
experiments of the algorithm with a different number of simulations (100, 200,
500). Each experiment is repeated 20 times and we report the average value of the
estimated probability, number of levels, and computation time. We also report
the standard deviation of the probability and the relative standard deviation
(quotient of standard deviation and average probability).

490 A. Legay et al.

1
0,9
0,8
0,7
0,6
0,5
0,4

Probability

0,3
0,2
0,1

0

350 360 370 380 390 400 410 420 430 440 450

Property values

Fig. 3. Probability estimation with Monte Carlo for a maximum value on D that ranges
from 350 to 450

Using this technique we are able to find traces that satisfy the property in
5s with 1 core of a 2.6 GHz computer, using only a budget of 100 simulations.
However, we were not able to run the adaptive algorithm with a budget of 1000
as we ran out of memory. Indeed this algorithm is more memory-intensive than
classical Monte Carlo as it needs to keep in memory all the traces.

The relative standard deviation is a good measure of the performance of
the estimator. A reliable estimator should have a relative standard deviation
lower than 0.3. As can be seen, the relative standard deviation of our adaptive
estimator is much higher. It tends to decrease when increasing the number of
simulations, but using this algorithm we are limited by the memory.

Table 1. Results of the adaptive importance splitting algorithm

Nb. simulations 100 200 500

Nb. levels 116.6 121.2 127.9
Probability 6.02 x 1071 19.46 x 107 | 2.07 x 107 *°
Std. deviation 1.44 x 10719 1.76 x 1071%| 4.51 x 107*°
Relative std. deviation | 2.39 1.86 2.18

Time (s) 5 14.6 55

The original importance-splitting algorithm uses a fixed number of levels.
This algorithm is less memory intensive because it only keeps in memory the final
states of the simulations. However, we must specify by hand the intermediate
levels that we want to reach. To minimize the variance of the estimator, we
should select as much as possible a set of levels whose conditional probabilities

Statistical Model Checking 491

are equal. We selected 32 levels of d between [380,471] and ran the importance-
splitting algorithm for a different number of simulations. We report the results in
Table 2. They show that when increasing the number of simulations, we improve
the relative deviation of the results.

Table 2. Results of the fixed levels importance splitting algorithm

Nb. simulations 1000 2000 5000
Probability 1.35 x 107191 1.28 x 1071 1 9.83 x 107!
Std. deviation 1.74 x 1071°] 9.07 x 107" | 6.44 x 107!
Relative std. deviation | 1.28 0.706 0.655

Time (s) 30.7 47.3 114

Importance Sampling. In Plasma Lab, we implemented the importance sam-
pling algorithm for the Reactive Module Language. It requires adding sampling
parameters to the model in order to modify the rate of some transitions. To
produce a good result, the sampling parameters should have optimal values.
This is determined using the minimum cross-entropy algorithm. This algorithm
iteratively determines the values of the sampling parameters by running Monte
Carlo experiments and counting the number of times each transition is used.

To use importance sampling on our model, we replace it by the one in Fig. 4.
The three sampling parameters are named lambda. They are each associated
with a counter variable nb_lambda. Parameters are initialized such that every
simulation satisfied the rare property .

We then use the minimum cross-entropy algorithm to determine the optimal
values of the parameters. In a run of the algorithm, we use 50 iterations to
determine the final values of the parameters. Fig.5 illustrates the evolution of
the three parameters during a run of the algorithm. We ran the algorithm 10
times with 50 iterations and 1000 at each iteration. We report the results in
Fig. 6. In this problem, the algorithm provides the best results, with a relative
standard deviation lower than 0.3.

5 Importance Splitting/Sampling for Optimal Planning

In this section, we demonstrate how the incorporation of importance splitting
and importance sampling into SMC for the treatment of rare-event properties has
inspired planning algorithms for Markov decision processes (MDPs), a popular
modeling formalism for policy-based stochastic systems. The goal of Sect.6 is
similar, but in this case for control algorithms. Planning and control often go
hand-in-hand, with planning focused on long-term system objectives (e.g., how
can an autonomous system get from point A to point B by following a sequence
of so-called waypoints), and with control focused on the sub-second decisions
the system must make in order to realize the planning objectives in question.

492 A. Legay et al.

ctmc sampling

const double lambdal 2:
const double lambda2 = 1,;

const double lambda3 0.1;
global nb_lambdal : int init O;
global nb_lambda2 : int init O;
global nb_lambda3 : int init O;

module test
a : [0..1000] init 1000;
b : [0..1000] init 1000;
c : [0..1000] init O;
d : [0..1000] init O;
e : [0..1000] init O0;
[] true —> {lambdal} axb : (a'=a—1)&(b'=b—-1)&(c'=c+1)
& (nb_lambdal’'=nb_lambdal+1);
[] true — {lambda2} ¢ : (c'=c—1)&(d’'=d+1)
& (nb_lambda2’'=nb_lambda2+1);
[] true — {lambda3} d : (d'=d—-1)&(e’'=e+1)
& (nb_lambda3’'=nb_lambda3+1);
endmodule

label "rate_lambdal” = axb;
label "rate_lambda2” = c;
label "rate_lambda3” = d;

Fig. 4. CTMC model of chemical reactions with sampling parameters

=—lambdal == lambda2 lambda3
2

1,8

14

12

1 Nb. sims. 1000
Prob. 1.50 x 10~
o8 Std. dev. 4,03 x 107
Rel. std. dev. 0,269

0,4

0,2

\ Time(s) 118

Fig. 5. Evolution of the three sampling Fig. 6. Results of the importance
parameters during a run of the minimum sampling algorithm with minimum
cross-entropy algorithm cross-entropy

Definition 2. A Markov decision process (MDP) M is a sequential deci-
sion problem that consists of a set of states S (with an initial state sq), a set of
actions A, a transition model T', and a cost function J. An MDP is determin-
istic if for each state and action, T : S X A— S specifies a unique state.

Statistical Model Checking 493

Cost \ LevelT
Lo \ Lo
[1 El

_ A\
' \

Cin \ ziﬂ.
N \r”

> é’NL i
50 81+ 8i s Si+3 State 505180843 ... * State

Fig. 7. Left: If state so has cost ¢ and its successor-state s1 has cost less than ¢;, then
a horizon of length 1 is appropriate. If, however, s; has a local-minimum cost ¢;, one
has to pass over the cost ridge in order to reach level ¢; 11, and therefore ARES has to
adaptively increase the horizon to 3. Right: The cost of the initial state defines ¢y and
the given threshold ¢ defines ¢,,. By choosing m equal segments on an asymptotically
converging (Lyapunov) function (where m is empirically determined), one obtains on
the vertical cost-axis the levels required for ARES to converge.

The particular planning and control problems addressed here are concerned
with V-formation in a flock of birds, a quintessential example of emergent behav-
ior in a distributed stochastic system. V-formation brings numerous benefits to
the flock. It is primarily known for being energy-efficient due to the upwash ben-
efit a bird in the flock enjoys from its frontal neighbor. It also offers each bird
a clear frontal view, unobstructed by any flockmate. Moreover, the collective
spatial mass of a V-formation can be intimidating to potential predators.

5.1 The Optimal Plan Synthesis Problem

In [30] we presented ARES, a general adaptive, receding-horizon synthesis algo-
rithm that given an MDP and one of its initial states, generates an optimal
plan (action sequence) taking that state to a state whose cost is below a desired
threshold. To improve the probability of reaching a V-formation in a bird flock
via ARES-based planning, we considered this phenomenon as a rare event and
incorporated importance splitting into the core of the ARES algorithm. This
level-based approach allows ARES to steer the. We then use SMC system towards
the desired configuration to estimate this reachability probability.

Definition 3. The optimal plan synthesis problem for an MDP M, an
arbitrary initial state so of M, and a threshold p, is to synthesize a sequence of
actions a® of length 1 <i<m taking so to a state s* such that cost J(s*) <.

ARES uses the particle swarm optimization (PSO) algorithm [27] at each
time step to incrementally generate a plan. Each particle in a PSO swarm is

494 A. Legay et al.

a realization of a random variable that is taken as a candidate optimal action
(acceleration) sequence which can be used to simulate M. The model is cloned
into My, instances, k = 1,...,n, and a PSO swarm is assigned to each clone.
These clones are later considered as independent simulation runs in the fashion
of importance sampling.

This incremental approach to optimal-plan construction is in principle unnec-
essary, as one could generate an optimal plan in its entirety by calling PSO only
once and running it until the global optimum is found or time bound is reached.
Such an approach, however, is impractical, as each (transition-based) unfolding
of the MDP adds a number of new dimensions to the search space. Consequently,
to obtain adequate coverage of the monolithic optimal-plan search space, one
needs a very large number of particles, a number that is either going to exhaust
available memory or require a prohibitive amount of time to find an optimal
plan.

A simple solution to this problem is to use a short horizon, typically of size
two or three. This is indeed the current practice in model-predictive control
(MPC) [13]. This approach, however, has at least three major drawbacks. First,
and most importantly, it does not guarantee convergence and optimality, as one
may oscillate or become stuck in a local optimum. Second, in some of the steps,
the window size is unnecessarily large thereby negatively impacting performance.
Third, in other steps, the window size may not be large enough to guide the
optimizer out of a local minimum; see Fig. 7(left). One would therefore like to
find the proper window size adaptively, but the question is how can one do this?

5.2 Adaptive Receding-Horizon Synthesis of Optimal Plans

Inspired by the SMC-based importance splitting technique (ISp) described in
Sect. 4.2, we introduce the notion of a level-based horizon, where level ¢y equals
the cost of the initial state, and level £, equals the target threshold ¢. By using
an asymptotic cost-convergence function ranging from ¢ to ¢,,, and dividing its
graph into m equal segments, we can determine on the vertical axis a sequence
of levels ensuring convergence. See Fig. 7(right).

The asymptotic function ARES implements is essentially ¢; = £y (m — 1)/ m,
but specifically tuned for each simulation of M. Formally, if simulation k, k =
1,...,n, has previously reached level Ji(s;_1), then its next target level is within
the distance Ay = Ji(s;—1)/(m —i+1). After passing the thresholds assigned to
the simulations, the values of the cost function in the current state s; are sorted
in ascending order {Jj}7_,. The lowest cost J; should be at least A; apart from
the previous level ¢;_; for the algorithm to proceed to the next level ¢; := jl

The levels serve two purposes. First, they implicitly define a Lyapunov func-
tion, which guarantees convergence. If desired, this function can be explicitly
generated for all states, up to some topological equivalence. Second, the levels
¢; help PSO overcome local minima; see Fig. 7(left). If reaching the next level
requires PSO to pass over a state-cost ridge, then ARES incrementally increases
the size of the horizon h, up to a maximum size h,,q... For simulation k, passing

Statistical Model Checking 495

the thresholds Ay means that it reaches a new level, and the definition of Ay
ensures a smooth degradation of its threshold.

Another idea imported from the statistical model checking of rare-event prop-
erties is importance sampling (IS). In our context, it means that we maintain n
clones {My}7_, of the MDP M (and its initial state) at any time ¢, and run
PSO for prediction horizon h on each h-unfolding M} of M. This results in an
action sequence aﬁ of length h (see Algorithm 2). This approach allows us to
call PSO for each simulation and desired horizon, with a very small number p of
particles per simulation.

To check which simulations have overcome their associated thresholds, we
sort the simulation traces according to their current cost, and split them into two
sets: the successful set, having the indexes 7 and whose costs are lower than the
median among all clones; and the unsuccessful set with indexes in {1,...,n}\Z,
which are discarded. The unsuccessful ones are further replenished, by sampling
uniformly at random from the successful set Z (see Algorithm 3).

The number of particles in PSO is increased to p = p + pine if no simulation
trace reaches the next level, for all horizons chosen. When this happens, we reset
the horizon to one, and repeat the process. In this way, we adaptively focus our
resources on escaping from local minima. From the last level, we choose the
state s* with the minimal cost, and traverse all of its predecessor states to find
an optimal plan comprised of actions {a’};<;<.m that led MDP M to the optimal
state s*. In our running example, we select a flock in V-formation and traverse
all its predecessor flocks. The overall ARES procedure is shown in Algorithm 4.

Proposition 1 (Optimality and Minimality). (1) Let M be an MDP. For
any initial state sqg of M, ARES is able to solve the optimal-plan synthesis
problem for M and so. (2) An optimal choice of m in function Ay, for some
simulation k, ensures that ARES also generates the shortest optimal plan.

Proof (Sketch; see [30] for the details). (1) The dynamic-threshold function Ay
ensures that the initial cost in sg is continually decreased until it falls below .
Moreover, for an appropriate number of clones, by adaptively determining the
horizon and the number of simulations needed to overcome Ay, ARES always
converges, with probability 1, to an optimal state, given enough time and mem-
ory. (2) This follows from convergence property (1), and from the fact that ARES
always gives preference to the shortest horizon while trying to overcome Ay.

Algorithm 2. Simulate (M, h, %, {Ax, Jx(si—1)}7_1)

foreach M;, € M do
[al, M}] — particleswarm(My,p, h); // use PSO to determine best next
action sequence for MDP My, with RPH (receding prediction horizon) h
Ji(si) < Cost(MP al, h); // calculate cost function if applying the
sequence of optimal actions of length h
if Jk(si—l) — Jk(si) > Ay then
| Ar — Jx(ss)/(m —1); // new level-threshold

496 A. Legay et al.

Algorithm 3. Resample ({ M}, Jy.(si)}r_,)

T «— Sort ascending M} by their current costs; // find indezxes of MDPs
whose costs are below the median among all the simulations
for k=1tondo
if k ¢ 7 then
| Sample r uniformly at random from Z; My — M?";
else
| My — M} // Keep more successful MDPs unchanged

Algorithm 4. ARES

Input : M7 @y Pstart; Pincs Pmax, hmaa:7 m,n
Output: {a’'}ici<m // synthesized optimal plans

Initialize £y < inf; {Jx(80)}re1 < Inf; p < Pstart; @ < 1; h— 1; Ay — 0;
while (¢; > ¢) V (i <m) do
// find and apply best actions with RPH h
[{GZ, Ji (Si)7 MZ}ZZI] —Simulate (M, h, 1, {Alﬂ Ji (Si—l)}Z:l);
Ty — sort(Ji(s:), ..., Jn(s:)); // find minimum cost among all
stmulations
if ;o1 — Ji > A then
l; — j\l; // new level has been reached
i — i+ 1; h— 1; p — pstart; // reset adaptive parameters
{ My }i_y — Resample ({ M, Ji(si)}iz1);
else
if h < hmaz then
| h <« h+1; // improve time exploration

else

if p < Prmaz then

| h<«1; p— D+ pinc; // tmprove space exploration

else
| break;

Take a clone in the state with minimum cost ¢; = J(s;) < ¢ at the last level 4;
foreach i do
L {si_1,a'} < Pre(s;); // find predecessor and corresponding action

We assess the rate of success in generating optimal plans in form of an (e, J)-
approximation scheme, for the desired error margin ¢, and confidence ratio 1—9.
Moreover, we can use the state-action pairs generated during the assessment (and
possibly some additional new plans) to construct an explicit (tabled) optimal
policy, modulo some topological equivalence. Given enough memory, one can
use this policy in real time, as it only requires a table lookup.

To experimentally validate our approach, we have applied ARES to the prob-
lem of V-formation in a flock of birds (with a deterministic MDP) as described
in [37,38]. The cost function to be optimized is defined as a weighted sum of

Statistical Model Checking 497

the (flock-wide) clear-view (CV), velocity alignment (VA), and upwash benefit
(UB) metrics. CV means that no bird’s frontal view is obstructed by a flockmate,
whereas VA is essential for maintaining formation (like V-formation) once it has
been reached. Regarding UB, by flapping its wings, a bird generates a trailing
upwash region off its wing tips; a bird flying in this region (left or right) can
save energy. Note that in V-formation, all birds but one (the leader) enjoy UB.

We ran ARES on 8000 initial states chosen uniformly at random, such that
they are packed closely enough to benefit from UB, but not too close to colliding.
We succeeded to generate a V-formation 95% of the time, with an error margin
of 0.05 and a confidence ratio of 0.99 computed using SMC. These statistics
improve significantly if we consider all generated states as independent initial
states. The fact that each state within a plan is independent of the states in all
other plans allows us to do this.

6 Importance Splitting for Optimal Control

As in Sect. 5 where our focus was on optimal planning, in this section, we show
how SMC-style importance splitting can be brought to bear on the problem of
optimal control. In particular, we present the AMPC algorithm, short for level-
based Adaptive-horizon Model-Predictive Control. We also consider stochastic
two-player reachability games on MDPs (between a controller and an attacker)
and demonstrate resiliency of AMPC control in this setting. As in Sect. 5, we con-
sider the problem of V-formation in a flock of B birds as a motivating example.

6.1 Adaptive-Horizon Model-Predictive Control

The AMPC algorithm performs step-by-step control of a given MDP M by
looking h steps ahead and predicting the next best state to move to [35]. We use
PSO to identify the potentially best actions a” in the current state achieving
the optimal value of the fitness function in the next state. The fitness function,
Fitness(M,a", h) of a" is defined as the minimum fitness metric J obtained
within A steps by applying a” on M. Formally, we have

. h o . r
Fitness(M,a" h) = 1rSnTngth(sah) (8)

where 57, is the state after apply the 7th action of a" on M. For horizon h, PSO
searches for the best sequence of 2-dimensional acceleration vector of length h,
thus having p = 2Bh parameters to be optimized. The number of particles used
in PSO is proportional to the number of parameters, i.e., p = 23Bh.

The pseudocode for the AMPC algorithm is given in Algorithm 5. A novel
feature of AMPC is that, unlike classical MPC that uses a fixed horizon h, AMPC
adaptively chooses an h depending on whether it is able to reach a fitness value
that is lower than the current fitness by our chosen quanta A;, Vi € {0,...,m}.

AMPC is hence an adaptive MPC procedure that uses level-based horizons
introduced in Sect.5, which was in turn inspired by the importance-splitting
technique introduced in Sect.4.2. It employs PSO to identify the potentially

498 A. Legay et al.

Algorithm 5. AMPC: Adaptive Model-Predictive Control

Input : M, ¢, hmae, m, B,Fitness
Output: {a'}i<i<m // optimal control sequence

Initialize o <« J(s0); J — inf; p— 28Bh; i« 1; h «— 1; Ag — (bo —)/ m;

while (¢;_1 > ¢) A (i <m) do
// find and apply first best action out of the horizon sequence of length h

[ah7 f] «—particleswarm(Fitness, M, p, h);

if £io1 —J > A;V h = hia then
// if a new level or the mazimum horizon is reached
at —al; M — M, // apply the action and move to the next state
L; — J(s(M)); // update €; with the fitness of the current state
A; — i/ (m —1); // update the threshold on reaching the next level
i—i+1; h—1; p— 28Bh; // update parameters

else

L h — h+1; p— 28Bh; // increase the horizon

best next actions. If the chosen actions improve (decrease) the fitness of the
next state J(sg4n), ¥V E€{0,...,m - hinas }, in comparison to the fitness of the
previous state J(si) by the predefined A;, the controller considers these actions
to be worthy of an optimal solution.

In this case, the controller applies the actions to each agent (bird) and tran-
sitions to the next state of the MDP. The threshold A; determines the next level
l; = J(Sk+}7) of the algorithm, where h < h is the horizon with the best fit-
ness. The prediction horizon h is increased iteratively if the fitness has not been
decreased enough. Upon reaching a new level, the horizon is reset to one (see
Algorithm 5). Having the horizon h > 1 means it will take multiple transitions
in the MDP in order to reach a solution with improved fitness. However, when
finding such a solution with A > 1, we only apply the first action to transition
the MDP to the next state. This is explained by the need to allow the other
player (environment or an adversary) to apply their action before we obtain the
actual next state. If no new level is reached within h,,.,; horizons, the first action
of the best a” using horizon A4, is applied.

The dynamic threshold A; is defined as in [30]. Its initial value Ag is obtained
by dividing the fitness range to be covered into m equal parts, that is, Ay =
(bo — L) / m, where o = J(so) and £, = @. Subsequently, A; is determined by
the previously reached level ¢;_1, as A; = ¢;_1/(m — i + 1). This way AMPC
advances only if ¢; = J(sk+ﬁ) is at least A; apart from ¢;,_1 = J(sg).

This approach allows us to force PSO to escape from a local minimum, even
if this implies passing over a fitness-function ridge (see also Fig. 7(left), by grad-
ually increasing the exploration horizon h. We assume that the MDP is con-
trollable and that the set G of goal states is nonempty, which means that from
any state, it is possible to reach a state whose fitness decreased by at least A;.
Algorithm 5 presents our approach.

Statistical Model Checking 499

Theorem 1 (AMPC Convergence). Let M = (S, A, T, .J) be an MDP with
a positive and continuous fitness function J, and let G C .S be a nonempty set of
target states with G = {s|J(s) < }. If the transition relation T is controllable
with actions in A, then there is a finite mazimum horizon hm.. and a finite
number of execution steps m such that AMPC is able to find a sequence of
actions a, . .., any that brings a state in S to a state in G with probability one.

Proof. In each (macro-)step of horizon length h, from level £;_; = J(si) to level
ti = J(s;,7), AMPC decreases the distance to ¢ by A; > A, where A > 0 is
fixed by the number of steps m chosen in advance. Hence, AMPC converges to a
state in G in a finite number of steps for a properly chosen m. AMPC is able to
decrease the fitness in a macro step by 4A; by the controllability assumption and
the fairness assumption about the PSO algorithm. Since AMPC is a randomized
algorithm, the result is probabilistic.

Note that AMPC is a general procedure that performs adaptive MPC using
PSO for dynamical systems that are controllable, come with a fitness metric,
and have at least one optimal solution.

6.2 Resiliency of the AMPC Algorithm

Inspired by the emerging problem of CPS security, we introduced the concept
of controller-attacker games [35]. A controller-attacker game is a two-player
stochastic game, where the two players, a controller and an attacker, have antag-
onistic objectives. A controller-attacker game is formulated in terms of an MDP,
with the controller and the attacker jointly determining the transition probabil-
ities.

Definition 4. Let M = (S, A,T,J,I) be an MDP. A randomized strategy o
over M is a function of the form o : S+ PD(A), where PD(A) is the set of
probability distributions over A. That is, o takes a state s and returns an action
consistent with the probability distribution o(s).

Definition 5. A controller-attacker game is an MDP M = (S, A, T, J,I)
with A = C x D, where C and D are action sets of the controller and the
attacker, respectively. The transition probability T'(s,c X d,s') is jointly deter-
mined by actions c € C and d € D.

We also introduced a class of controller-attacker games we call V-formation
games, where the goal of the controller is to maneuver the plant (a simple model
of flocking dynamics) into a V-formation, and the goal of the attacker is to
prevent the controller from doing so.

Let x;(t),v;(t),a;(t), and d;(t) respectively denote the position, velocity,
acceleration, and displacement of the i-th bird at time ¢, 1 < ¢ < B. The behavior
of bird 7 in discrete time is modeled as follows:

vi(t+1) = v;(t) + ai(t) 9)

500 A. Legay et al.

{ Controller) c(t) f
olt) = oc (h (), J) Plant
Attacker | od(t) s(t+1) = f(s(t),c(t),d(t))
[a(t) = op (f2,5(t),) i

s(t+1)

Fig. 8. Controller-Attacker Game Architecture. The controller and the attacker use
randomized strategies oc and op to choose actions ¢(t) and d(¢) based on dynamics
f1 = f(s(t),c(t),0) and fo = f(s(¢),0,d(t)), respectively, where s(t) is the state at time
t, and f is the dynamics of the plant model. The controller tries to minimize the cost
J, while the attacker tries to maximize it.

The next state of the flock is jointly determined by the accelerations and the
displacements based on the current state following Eq. 9.

Controllers in V-formation games utilize AMPC, giving them extraordinary
power: we prove that under certain controllability conditions, an AMPC con-
troller can attain V-formation with probability 1.

Definition 6. A V-formation game is a controller-attacker game M = (S,
A, T, J, I), where S = {s|s = {x;,v;}E.|} is the set of states for a flock of
B birds, A = C x D with the controller choosing accelerations a € C and the
attacker choosing displacements d € D, T and J are given in Fgs.9 and 8,
respectively.

We define several classes of attackers, including those that in one move can
remove a small number R of birds from the flock, or introduce random displace-
ment (perturbation) into the flock dynamics, again by selecting a small number
of victim agents. We consider both naive attackers, whose strategies are purely
probabilistic, and AMPC-enabled attackers, putting them on par strategically
with the controller. The architecture of a V-formation game with an AMPC-
enabled attacker is shown in Fig. 8.

While an AMPC-enabled controller is expected to win every game with prob-
ability 1, in practice, it is resource-constrained: its maximum prediction horizon
and the maximum number of execution steps are fixed in advance. Under these
conditions, an attacker has a much better chance of winning a V-formation game.

In Sect.5, we presented a procedure for synthesizing plans (sequences of
actions) that take an MDP to a desired set of states (defining a V-formation). The
procedure adaptively varied the settings of various parameters of an underlying
optimization routine. Since we did not consider any adversary or noise, there was
no need for a control algorithm. Here we consider V-formation in the presence of
attacks, and hence we developed a generic adaptive control procedure, AMPC,
and evaluate its resilience to attacks.

Our extensive performance evaluation of V-formation games uses statistical
model checking to estimate the probability that an attacker can thwart the

Statistical Model Checking 501

controller. Our results show that for the bird-removal game with 1 bird being
removed, the controller almost always wins (restores the flock to a V-formation).
When 2 birds are removed, the game outcome critically depends on which two
birds are removed. For the displacement game, our results again demonstrate
that an intelligent attacker, i.e. one that uses AMPC in this case, significantly
outperforms its naive counterpart that randomly carries out its attack.

Traditional feedback control is, by design, resilient to noise, and also certain
kinds of attacks; as our results show, however, it may not be resilient against
smart attacks. Adaptive-horizon control helps to guard against a larger class of
attacks, but it can still falter due to limited resources. Our results also demon-
strate that statistical model checking represents a promising approach toward
the evaluation of CPS resilience against a wide range of attacks.

7 Conclusions

The field of Statistical Model Checking (SMC) is now more than 15 years old,
and has experienced significant theoretical and practical development during
this time. In this chapter, we have presented a review of SMC as an efficient
technique for the model checking of stochastic systems, and presented three
algorithms representing both the quantitative and qualitative versions of SMC.
We also discussed one of the major challenges facing the SMC approach, namely
the treatment of rare events. Taking advantage of sequential Monte Carlo meth-
ods, we presented efficient procedures for rare-event probability estimation, and
illustrated their utility via our implementation in Plasma. We further demon-
strated the applicability of the SMC-inspired rare-event approach to tackling
plan- and control-synthesis problems for stochastic systems. Looking forward,
there are a wealth of challenges facing the SMC community, such as the verifica-
tion of cyber-physical systems, where SMC can play a crucial role in developing
robust and efficient algorithms.

References

1. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algo-
rithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524-541
(2003)

2. Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical
abstraction and model-checking of large heterogeneous systems. In: Hatcliff, J.,
Zucca, E. (eds.) FMOODS/FORTE - 2010. LNCS, vol. 6117, pp. 32—46. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13464-7 4

3. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., Sifakis, E.: Verification
of an AFDX infrastructure using simulations and probabilities. In: Barringer, H.,
et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 330-344. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16612-9_25

4. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, dis-
tributable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160-164. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-1_12

https://doi.org/10.1007/978-3-642-13464-7_4
https://doi.org/10.1007/978-3-642-16612-9_25
https://doi.org/10.1007/978-3-642-40196-1_12

502

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Legay et al.

. Cérou, F., Del Moral, P., Furon, T., Guyader, A.: Sequential Monte Carlo for rare

event estimation. Stat. Comput 22, 795-808 (2012)

. Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis. Stoch.

Anal. Appl. 25, 417-443 (2007)

. Ciesinski, F., Baier, C.: Liquor: a tool for qualitative and quantitative linear time

analysis of reactive systems. In: Proceedings of 3rd International Conference on
Quantitative Evaluation of Systems (QEST), pp. 131-132. IEEE (2006)

. Ciesinski, F., Grofler, M.: On probabilistic computation tree logic. In: Baier, C.,

Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 147-188. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24611-4_5

. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.

ACM 42(4), 857-907 (1995)

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349-355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1_27

Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Sys-
tems with Applications. Probability and Its Applications. Springer, New York
(2004). https://doi.org/10.1007/978-1-4684-9393-1

Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Prac-
tice. Springer, New York (2001). https://doi.org/10.1007/978-1-4757-3437-9
Garca, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice
- a survey. Automatica 25(3), 335-348 (1989)

Gimbert, H.: Pure stationary optimal strategies in Markov decision processes. In:
Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 200-211. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70918-3_18

Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: Multilevel splitting
for estimating rare event probabilities. Oper. Res. 47(4), 585-600 (1999)

Grosu, R., Smolka, S.A.: Monte Carlo model checking. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 271-286. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31980-1_18

Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic
properties with unbounded until. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF
2010. LNCS, vol. 6527, pp. 144-160. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19829-8_10

Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342-356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0-24

Jansen, D.N., Katoen, J.-P., Oldenkamp, M., Stoelinga, M., Zapreev, 1.: How fast
and fat is your probabilistic model checker? An experimental performance com-
parison. In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 69-85. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77966-7-9

Jegourel, C., Legay, A., Sedwards, S.: Importance splitting for statistical model
checking rare properties. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 576-591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8_38

Jegourel, C., Legay, A., Sedwards, S.: An effective heuristic for adaptive importance
splitting in statistical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2014. LNCS, vol. 8803, pp. 143-159. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45231-8_11

https://doi.org/10.1007/978-3-540-24611-4_5
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-1-4684-9393-1
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1007/978-3-540-70918-3_18
https://doi.org/10.1007/978-3-540-31980-1_18
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/978-3-642-19829-8_10
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-540-77966-7_9
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-642-39799-8_38
https://doi.org/10.1007/978-3-662-45231-8_11
https://doi.org/10.1007/978-3-662-45231-8_11

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Statistical Model Checking 503

Jégourel, C., Legay, A., Sedwards, S.: Command-based importance sampling for
statistical model checking. Theoret. Comput. Sci. 649, 1-24 (2016)

Kahn, H.: Stochastic (Monte Carlo) attenuation analysis. Technical report P-88,
Rand Corporation, July 1949

Kahn, H.: Random sampling (Monte Carlo) techniques in neutron attenuation
problems. Nucleonics 6(5), 27 (1950)

Kahn, H., Harris, T.E.: Estimation of particle transmission by random sampling.
In: Applied Mathematics. Series 12, vol. 5. National Bureau of Standards (1951)
Kahn, H., Marshall, A.W.: Methods of reducing sample size in Monte Carlo com-
putations. Oper. Res. 1(5), 263-278 (1953)

Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of 1995
IEEE International Conference on Neural Networks, pp. 1942-1948 (1995)
Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: a tool for probabilistic
model checking. In: QEST, pp. 322-323. IEEE (2004)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585-591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

Lukina, A., Esterle, L., Hirsch, C., Bartocci, E., Yang, J., Tiwari, A., Smolka, S.A.,
Grosu, R.: ARES: adaptive receding-horizon synthesis of optimal plans. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 286-302. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_17

Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10, 29-35 (1959)

Rosenbluth, M.N.,; Rosenbluth, A.W.: Monte Carlo calculation of the average
extension of molecular chains. J. Chem. Phys. 23(2), 356-359 (1955)

Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202-215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9.16

Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266—280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_26
Tiwari, A., Smolka, S.A., Esterle, L., Lukina, A., Yang, J., Grosu, R.: Attacking the
V: on the resiliency of adaptive-horizon MPC. In: D’Souza, D., Narayan Kumar,
K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 446-462. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68167-2_29

Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117—
186 (1945)

Yang, J., Grosu, R., Smolka, S.A., Tiwari, A.: Love thy neighbor: V-formation as a
problem of model predictive control. In: LIPIcs-Leibniz International Proceedings
in Informatics, vol. 59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)
Yang, J., Grosu, R., Smolka, S.A., Tiwari, A.: V-formation as optimal control. In:
Proceedings of Biological Distributed Algorithms Workshop 2016 (2016)

Younes, H.L.S.: Verification and planning for stochastic processes with asyn-
chronous events. Ph.D. thesis, Carnegie Mellon University (2005)

Younes, H.L.S.: Error control for probabilistic model checking. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 142-156. Springer,
Heidelberg (2005). https://doi.org/10.1007/11609773-10

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-662-54580-5_17
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/11513988_26
https://doi.org/10.1007/978-3-319-68167-2_29
https://doi.org/10.1007/11609773_10

504

41.

42.

A. Legay et al.

Younes, H.LL.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223-235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0_17

Zuliani, P., Baier, C., Clarke, E.M.: Rare-event verification for stochastic hybrid
systems. In: Proceedings of 15th ACM International Conference on Hybrid Sys-
tems: Computation and Control, HSCC 2012, pp. 217-226. ACM, New York (2012)

https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

	Statistical Model Checking
	1 Introduction
	2 Formal Definitions
	3 On Verifying Requirements: The SMC Approach
	3.1 Qualitative Analysis Using Statistical Model Checking
	3.2 Quantitative Analysis Using Statistical Model Checking and Estimation

	4 Rare Events
	4.1 Command-Based Importance Sampling
	4.2 Importance Splitting
	4.3 Rare Events: Comparison of Methods

	5 Importance Splitting/Sampling for Optimal Planning
	5.1 The Optimal Plan Synthesis Problem
	5.2 Adaptive Receding-Horizon Synthesis of Optimal Plans

	6 Importance Splitting for Optimal Control
	6.1 Adaptive-Horizon Model-Predictive Control
	6.2 Resiliency of the AMPC Algorithm

	7 Conclusions
	References

