®

Check for
updates

Software Architecture of Modern Model
Checkers

Fabrice Kordon'®) Michael Leuschel?, Jaco van de Pol?,
and Yann Thierry-Mieg!

1 Sorbonne Université, CNRS UMR 7606 LIP6, 75005 Paris, France
{Fabrice.Kordon,Yann.Thierry-Mieg}@lip6.fr
2 Institut fur Informatik, Univ. Diisseldorf, Universitatsstr. 1, Diisseldorf, Germany
leuschel@cs.uni-duesseldorf.de
3 .
Department of Computer Science,
University of Twente, Enschede, The Netherlands
J.C.vandePol@utwente.nl

Abstract. Automated formal verification using model checking is a
mature field with many tools available. We summarize the recent trends
in the design and architecture of model checking tools. An important
design goal of modern model checkers is to support many input lan-
guages (front-end) and many verification strategies (back-end), and to
allow arbitrary combinations of them. This widens the applicability of
new verification algorithms, avoids duplicate implementation of the anal-
ysis techniques, improves quality of the tools, and eases use of verification
for a newly introduced high-level specification, such as a domain specific
language.

1 Introduction

The evolution of model-based engineering and domain specific languages
(DSL [73]) in industrial practice has led to a proliferation of small executable
languages dedicated to a specific purpose. Model checking is a mature field [20]
with many technological solutions and tools that can guarantee behavioral cor-
rectness of such specifications.

However, due to the complexity of the problem in general, different model
checking tools are better at tackling different classes of systems, and it is difficult
for an end-user to know beforehand which technique would be most effective
for his or her specific model. It is thus highly desirable to embed such expert
knowledge in a tool that integrates several solution engines (e.g. partial order
reduction, decision-diagram based encoding, SAT/SMT techniques, etc.) behind
a unified front-end.

Ideally a modern model checker should be adaptive, able to transparently
select for a given model instance and a given property the best verification
strategy. This design goal forces the software architecture of model checkers to
evolve from tightly integrated or monolithic approaches to more open architec-
tures that rely on pivot representations to support both many languages and
many verification strategies.
© Springer Nature Switzerland AG 2019

B. Steffen and G. Woeginger (Eds.): Computing and Software Science, LNCS 10000, pp. 393-419, 2019.
https://doi.org/10.1007/978-3-319-91908-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91908-9_20&domain=pdf
https://doi.org/10.1007/978-3-319-91908-9_20

394 F. Kordon et al.

The objective of this paper is to summarize the current situation of mod-
ern model checking tools in terms of architecture and usage to solve typical
industrial-like problems, where specifications may not be written in a traditional
verification language such as PROMELA [39], CSP [38], Petri nets [33], B [1] or
TLAT [49].

Recent work also considers software verification (i.e. analyzing programs
directly at the code level). Program verification mainly relies on strong abstrac-
tions of programs to cope with the combinatorial explosion caused by analysis
at the instruction level, thus generating abstract models from software. This
abstraction process for software verification is not considered directly in this
paper; we focus on verification engines for model checking.

Another approach worth mentioning is the Electronic Tool Integration (ETT)
platform [69]. This platform focuses on integration of tools (rather than algo-
rithms) by providing a distributed coordination mechanism, enabling verification
tasks that would not be possible in a single tool. Its successor, JETI [56] uses
webservices technology and Eclipse support for seamless tool integration and
graphical user interfaces. While ETT focuses on integration and coordination of
existing tools, this paper focuses on integrating verification algorithms within a
single, modular tool.

Section 2 presents the current trends in architectures for model checkers;
Sect. 3 shows a first approach involving PROB and existing languages (e.g. Pro-
log, Java) while Sects.4 and 5 are presenting updated visions (language based
and library based) of such an architecture when analyzing high-level languages.
Finally, Sect. 6 details two typical examples before a conclusion.

2 Trends on the Architecture for Model Checking

Model checkers exist now for more than three decades and have proven their
usefulness to understand and debug complex systems. However, their software
architecture is evolving, following a similar evolution as compilers, which were
once monolithic but are now structured for a better reuse of code.

Figure 1 depicts such an evolution. On the left (Fig. la) is the “traditional”
architecture, where a model checker is associated with a dedicated formalism

front-end

| Form.1 | | Form.2 | | Form.N | high-level formalisms

Formalism (Pivot representatlon
Model Checker ﬁ 1

(a) Monolithic (b) Modular

language or library

back-end
verification techniques

\
)
\ middle-end
)
\
)

Fig. 1. Evolution of model checking tool’s architecture.

Software Architecture of Modern Model Checkers 395

and proposes its verification algorithm, possibly with numerous variants and
enhancements to perform its task efficiently. The most emblematic example is
Spin [39].

Unfortunately, such an architecture has several drawbacks. First, the single
entry point of the tool is the formalism it processes. Second, adapting the veri-
fication engine is also quite difficult since all the features of the input language
are exploited and become naturally twisted with the algorithms themselves.

Progressively, several attempts have tried to separate the verification engine
from the input formalism. Then, the notion of “pivot representation” naturally
arises as the interface to an “upper level” dealing with the input specification.
Below this “pivot representation”, is a set of “verification engines” being able to
process this pivot representation. Languages such as AltaRica [5], NUPN [31], or
FIACRE [11], as well as a tool like the model checking Kit [64], could be seen as
early attempts of this approach. Fixed-point equations have also been proposed
as pivot representation to generalize multiple model checking questions [68]. In a
similar fashion, the introduction of SMT-LIB [8] as a standard format for auto-
mated reasoning over data theories can be viewed as the successful introduction
of a pivot representation.

Such an architecture (Fig.1b) is similar to the font-end + middle-end +
back-end architecture of current compilers. It has two main advantages. First,
it decouples the high-level specification language from its verification. Then, the
specification language designer may work independently from the verification
mechanics as long as they provide a sound and formal semantics to their nota-
tion. This is of particular interest when input languages are numerous, because
it does not hinder the access to efficient verification engines via the pivot rep-
resentation. The bridging of AADL with FIACRE for verification purposes is a
typical example of this interest [21].

The second important advantage is the emphasis on the fundamentals of the
semantics (expressed in the pivot representation) required to perform efficient
model checking, thus providing a better access to various verification technologies
(e.g. algorithms based on different approaches such as partial order reduction,
the use of decision diagrams, the use of SAT/SMT solvers, etc.).

Moreover, it avoids, when dealing with the analysis of high-level specification,
to choose between selecting (a priori) one verification technology, or performing
as many translations as the number of selected verification engines.

The modular architecture of Fig. 1b can be interpreted in several ways (see
Fig. 2):

— components may be linked together as object files and libraries, (see Fig. 2a),
as this is the case for LTSmin [42] or SPOT [26],

— components may collaborate via an intermediate language (see Fig.2b), as
this is the case for ITS-Tools [71] (originally relying on enhanced decision
diagrams) or Boogie [6] (originally relying on SMT solvers).

In the library based vision of the modular architecture of model checking
tools, the pivot representation is materialized as an API. The role of such an

396 F. Kordon et al.

Form.1 Ext. code Form.1 Form.2
Form.2 t | T |
adapters adapters /\ ransl.1 ransl.2
Optimization
< T Optimzation
= = | 23 ©
(a) Library based (b) Language based

Fig. 2. The two interpretations of the modular architecture of model checkers

interface is to expose the internal structure of the pivot representation, so that,
efficient algorithms can be built on the one hand, while it remains easy to con-
nect a higher formalism module on the other hand. Basically, formalisms are
connected through adapters implementing the main semantic characteristics of
the input formalism like the definition of a state or the successor function.

The main advantages of the library vision are: (i) it isolates the algorithms
from the input pivot notation, allowing only access to relevant data structures,
and (i) it easily allows to embed executable code in the input formalism (with
the necessary precautions to preserve the soundness of the input formalism
semantics) that can be executed during model checking. Insertion of such code
(e.g. data computation) is performed by the adapter.

Its main drawback is that one must cope with the existing data-structures
when adding a new verification technology. This may hinder the addition of
some new technology for which the existing data structures are not adapted
(like connecting SAT/SMT based algorithms alongside existing automata-based
ones).

In the language based vision of the modular architecture of model checking
tools, the pivot representation is a language itself. Such a language offers a
semantic support that is “agnostic” in the sense it can support various execution
models. Connection with high-level languages is done thanks to a transformation
into the pivot language, thus acting as an “assembly language” dedicated to
verification.

The main advantages of this vision are: (7) it provides a strict barrier between
high-level formalisms and the implemented verification modules that can use var-
ious relevant data structures suitable for the corresponding verification technol-
ogy, and (i) it enables possible optimization at the pivot language level so that
the underlying selected verification algorithm features can be fully exploited. So,
it is easier to plug new verification engines based on very different theory since
adapted data structure can be then developed for this module only.

Unfortunately, it is quite complex to link executable code to a high-level
formalism (under the necessary precautions to preserve the soundness of the
input formalism semantics) without a heavy and complex support included in
the pivot language itself. Such a feature is used in tools like Spin [39] (monolithic
approach) or LTSmin [42] (modular/library based approach).

Software Architecture of Modern Model Checkers 397

Obviously, the two interpretations of the modular architecture can be com-
bined, thus exposing either a pivot language based on an API, or an API using a
pivot language to connect to some underlying verification technology. The next
section introduces some high-level logic based formalisms and investigates how
they can be mapped to an efficient model checking engine.

3 High-Level Logic-Based Input Languages

High-level logic-based languages, i.e., specification languages which are not nec-
essarily executable [36], can provide a convenient way to translate a wide variety
of domain specific formalisms. Logic and set theory pervade large areas of com-
puter science, and are used to express many formalisms, properties and concepts.
On the one hand this explains the popularity of SAT and SMT solvers: many
properties from wide areas of computer science can be expressed or compiled to
logic. Similarly, the dynamic behaviour of a wide variety of languages and for-
malisms can be easily expressed in terms of a state-based formal method using
logic and set theory.

Several formal methods have a common foundation in predicate logic, set
theory and arithmetic: B [1], Event-B [2], TLA™ [49], VDM and Z [66] are the
most commonly used ones. Their high abstraction level make them a target for
conveniently modelling a large class of systems to be validated. Indeed, the high
abstraction level helps avoiding errors in the modelling process and can lead to a
considerable reduction in modelling time [63]. These methods are also convenient
for expressing the semantics of domain specific formalisms and develop model
checking tools for them. E.g., the following tools use a translation to B to obtain
a model checking tool for the source formalism: UML-B [65], SAP choreography
[67], SafeCap [41], Coda [18].

One drawback of such a high-level input language is performance: determin-
ing the successor states of a given state may require constraint solving of logical
predicates with quantification over higher-order data structures. As a simple
example, we present the B encoding of derivation steps for a formal (possibly
context-sensitive) grammar with productions P over an alphabet A. It is maybe
not the most typical model checking example, but shows how easy one can trans-
late a mathematical definition such as a formal grammar derivation step [40] into
a high-level language like B. The B/Event-B model would just have a single event
with four parameters L, R, a, b defined as

event rewrite(L, R, a,b) =
when (L — R)€ PAa€ seq(A)AbE seq(A)ANcur=a"L"b

then cur :=a” R~ b end

This is very close to the mathematical definition in theoretical computer science
books such as [40]. The main difference is the use of " for concatenating sequences
and seq(A) for finite sequences over the set A. Executing this event within a

398 F. Kordon et al.

model checker, however, requires a limited form of constraint solving: to compute
the next state for a given value of cur, one needs to determine the possible
decompositions of cur into three substrings a, L,b such that L is a left-hand
side of a grammar production in P. E.g., given P = {N — [y, N, 2]} and cur =
[z, N, N, x], there are two ways to execute the event, leading to two possible
successor states with cur = [z,y, N, z, N, z] and cur = [z, N,y, N, z, z].

In this section we will focus on B [1] and TLA™ [49], illustrated by the model
checkers PROB [50] and TLC [76].

3.1 Monolithic Approach: Directly Encoding the Semantics

One approach for model checking a high-level specification language is exhib-
ited by the TLC model checker. It directly encodes the operational semantics
expressed in Java in the model checker; i.e., it follows the classical monolithic
approach.

This leads to a quite efficient explicit state model checker (albeit slower than
e.g. Spin) where library functions can be directly written in Java. TLC can be
parallelised, and can run in the cloud.

The disadvantage is that the model checker is really intertwined with the
TLA* implementation and language and cannot be easily used for other lan-
guages, unless these are translated to TLA". TLC also cannot perform constraint
solving, meaning that the above rewrite specification cannot be handled. Such
specifications have to be re-written manually, so that left-to-right evaluation
leads to finite and reasonably efficient enumeration.

3.2 Prolog as an Intermediate Verification Language

From its conception, the animator and model checker PROB was designed to
target multiple specification languages and to use Prolog as a pivot language, or
more precisely as an intermediate verification language (cf. Sect. 4.1) for specify-
ing language semantics. As such, the B semantics (or rather a superset thereof,
denoted by B+ in Fig. 3, which is a pivot language in itself) is expressed using a
Prolog interpreter, which specifies the set of initial states, the successor relation
and the state properties.

| B ||Event-B|| Z |

--===-1 B+ CSP
s Interpreter Interpreter
- 1
¥ sF)’/(r;wFr{n iitflg m evaluation

(only as, prototype)

testcase
generator

refinement
checker

TLA+
TLC model checker

Fig. 3. The TLc and PROB model checkers

Software Architecture of Modern Model Checkers 399

This approach has a few advantages. It is easy to use the tool for other lan-
guages by providing an interpreter (or compiler). This is helped by the fact that
Prolog, aka logic programming, is quite convenient to express the semantics of
various programming and specification languages, in particular due to its sup-
port for non-determinism. E.g., the operational semantics rules of CSP [61] can
be translated into Prolog clauses [51]. Furthermore, within Prolog one can make
use of constraint logic programming for dealing with complex specifications, such
as the grammar rewriting specification above. Finally, it is relatively straight-
forward to combine or integrate several formalisms, as was done for CSP | B
[17].

On the negative side, a Prolog interpreter will be slower (but easier to write)
than a C or Java interpreter or even a compiler. Also, complex Prolog code
such as the B interpreter of PROB, is not suited for analyses required for model
checking optimisations, e.g., dependence information for partial order reduction
or symmetry information. Within PROB such information is provided in an ad-
hoc manner per supported language. Better solutions to this will be shown later,
either by better pivot languages Sect. 4 or by the greybox approach Sect. 5.

Quite a few other tools also use Prolog as an intermediate input language.
E.g, the XMC model checker [60] provides an explicit-state CTL model checker,
targeting languages such as CCS via an interpreter or via translation. Techniques
such as partial evaluation [52] and unfold-fold transformations [29] can be used
for optimization, but also for a form of infinite state model checking. Finally,
constraint programming techniques can be used for various validation tasks [23,
24]. Similarly, in Horn-Clause Verification, SMT solvers are applied to Prolog or
Datalog like specifications [12,58].

3.3 Other High-Level Languages

There are many other high-level modelling languages. The languages VDM and
ASM are very similar in style to B and TLA™, and some translators between
these languages exist. The process algebra CSP [61] also features sets and
sequences as data types, but its operational semantics is quite different. The
successful FDR tool [62] is to some extent a monolithic model checker (or more
precisely refinement checker), even though it also performs an internal lineari-
sation. CSP has also been a popular target for domain specific formalisms such
as Casper [54] for security protocols or Circus [74]. For the latter there is also a
recent translation to CSP||B [75], and Circus itself is sometimes the target for
other formalisms such as UML [16].

The toolset around mCRL, a process algebra with abstract datatypes, is
based on an internal linearisation technique [34]. In the mCRL toolset, linear
processes are viewed as an intermediate verification language (in the sense of
Sect.4.1). Due to their flattened form, they can be subjected to further opti-
mization, and they are well-suited for adaptation to an on-the-fly API (in the
sense of Sect. 5).

400 F. Kordon et al.

We would also like to mention the PAT model checker [53,77]. Its conception
is similar to PROB but using C-Sharp instead of Prolog as an intermediate
language.

Finally, instead of validating high-level specifications, it is also quite com-
mon to work directly with programming languages such as Java or C. The Java
Pathfinder [35] tool translates a Java program to Promela for modelling with
the Spin model checker [39]. Here, only certain aspects of the programming lan-
guage are modelled (such as concurrency), abstracting away from other aspects.
Another successful tool is CBMC [45] for bounded model checking, which pro-
vides bit-precise modelling for C and checking specific properties such as buffer
overflows and exceptions. An alternative to model checking is abstract interpre-
tation, such as used by the ASTREE analyzer [22] which has been successfully
used for verification of C programs.

3.4 Summary

In summary, high-level logic-based languages are very popular for modelling and
for expressing domain specific formalisms. We have shown how an intermediate
pivot language like Prolog provides a good way to integrate formalisms, and
allows a model checker to target a variety of dialects and related formalisms.
The downside is performance: efficient model checking is very difficult to achieve
in Prolog, and some information like symmetry and dependence for partial order
reduction is difficult to extract from more involved Prolog representations. The
approaches in the following sections will provide solutions to this. Section 4 pro-
vides other internal representations, while Sect. 5 presents a greybox API app-
roach, which enables to connect a low-level model checking engine written in C
with interpreters for higher-level languages. In Sect.6.1 we will actually show
how this has led to the latest generation model checking technique for B, by
combining PROB’s Prolog interpreter with LTSmin’s model checking C engine.

4 Using an Intermediate Language as a Pivot

As discussed in Sect. 2, the role of an intermediate representation is to allow sepa-
rate evolution of input languages with respect to model checking and verification
algorithms. This section focuses on approaches reifying this pivot representation
using an intermediate verification language (IVL). Section4.1 presents the gen-
eral approach, while Sect. 4.2 details a specific instance of an IVL called Guarded
Action Language.

4.1 Intermediate Verification Language

An IVL is a language specifically designed to fit the role of pivot: rather than
a language particularly comfortable for end users, it is designed as a general
purpose input for a verification engine. The focus when designing an IVL is on
providing a small set of semantic bricks while preserving good expressivity. The

Software Architecture of Modern Model Checkers 401

end-user manipulates a user-friendly domain specific language (DSL) [73] that
is translated into the IVL prior to the actual model checking or verification.

Historically, most model checkers were built in monolithic fashion, with a
single supported input language and a single solution engine. This prevented
a lot of reuse of actual code between model checkers, similar algorithms being
reimplemented for each language. In this setting, to use a particular solver, you
need to translate manually or automatically your specification to the solver’s
language.

For instance Promela the language of Spin [39] has often been used as a
target for translation [15]. However it is a complex language with many semantic
idiosyncrasies such as the support for embedded C code or the behavior attached
to the atomic keyword. It also offers a wide variety of syntactic constructs, that
make direct modeling in Promela comfortable for end-users. These features make
life hard for a provider of a new algorithm or verification strategy. Because the
language is complex, the development cost of supporting Promela in a tool is
high. Many third-party tools for Promela analysis [42,71] only support a limited
subset of Promela (typically excluding C code, and/or dynamic task creation).

IVL in the Literature. Hence while Promela has been used as an IVL it is
not particularly well suited for that purpose, since it was not a design goal of
the language. However many recent verification efforts include the definition of
an intermediate languages, explicitly designed to be an intermediate verification
language (e.g. [5,6,11,71]).

The SMV language [19] was designed to support symbolic verification (using
either BDD or SAT based solvers) and serves as language based front-end to
these technologies. The semantics is synchronous and thus well adapted to mod-
eling of hardware components, but makes expression of asynchronous behaviors
cumbersome.

In Sect. 3.2 we have already discussed the use of Prolog as a pivot language,
and its limitations, e.g., related to partial order reduction or symmetry detection.

For program verification, the Boogie language (Microsoft) [6] is expressly
designed as an intermediate language, helping to bridge the gap from programs
to SMT based verification engines. Initially designed to support Spec#, i.e. anno-
tated .Net bytecode, it has been extended to cover a host of programming lan-
guages using this intermediate language approach. All of these input languages
thus benefit from improvements made to the verification engine (development of
interpolants, new verification conditions,...).

The standard format SMT-lib [7] for SMT problems is itself a pivot inter-
mediate language sharing many design goals with an IVL, but with a broader
scope than the pivot languages considered in this paper.

Focusing more on concurrent semantics and finite state systems, the Guarded
Action Language (GAL) [71] is an IVL that is supported by a decision diagram
based symbolic verification engine. It helps bridge the gap between asynchronous
and concurrent systems expressed in a variety of formalisms (Promela, Petri
nets, timed automata,. . .) and a symbolic expression of their transition relation.

402 F. Kordon et al.

Section 4.2 presents the design choices we made when defining this language and
the architecture of the ITS-tools model checker built around it.

Domain Specific Languages and Verification. This intermediate language
approach integrates well with current model-based industrial practice. It helps
solve two large stumbling blocks that prevent more widespread adoption of model
checking. Firstly, due to automated translations, the end-user is isolated from
ever needing to know about the specifics of how the verification is performed.
This reduces adoption cost since training software engineers to build formal mod-
els is a difficult task, and helps achieve the “push-button” promise of automated
verification. Secondly, the DSL models are developed with several purposes in
mind, that typically include code generation or simulation. This means the mod-
els developed have precise behavioral semantics necessary for analysis, and also
reduces the gap between what you prove correct (the formal model) and the
running system. Provided the translations are correct and consistent with one
another, the running system and the formal model both conform to the seman-
tics of the DSL. Verification of the more abstract DSL is however usually easier
than analyzing models extracted from actual implementations of the design.

Language Engineering. Language engineering using metamodeling technol-
ogy has evolved rapidly over the last two decades, pushed by the OMG consor-
tium and the development of the UML standard. Because UML is a particularly
complex language, with a very broad scope, new technologies for model defini-
tion and manipulations were defined based on the concept of metamodel. These
tools are now mature with industry strength quality (e.g. EMF [70]), and can
be applied to a variety of models and languages that bear no relationship with
UML.

In a model-centric approach, a metamodel is defined to describe a language,
where models are instances of this metamodel. Because the metamodel is itself
an instance of a metametamodel, common to all language definitions, powerful
tools can be engineered that take a language (a metamodel) as input.

Tools such as XText [28] make development of new languages easier, with a
full-blown modern end user experience (code completion, on the fly error detec-
tion...) available at a very low development cost.

Using model transformations to build formal models expressed in an IVL
can thus be done using several alternative technological paths [27], and is well-
understood by modern software engineers. This facilitates third-party adoption.

Technology Agnostic. The underlying verification engine is weakly con-
strained by an intermediate language approach. Model checking can use struc-
tural analysis, SAT technology, decision diagrams, explicit state...with solvers
implemented in any programming language.

Because an IVL offers a complete view of the semantics to the analysis tools
(in the absence of black-box behavior such as embedded code) it is still possible
to write property specific abstractions such as slicing and simplifications such as
constant removal. Such abstractions can usually be expressed as a transformation
to a simpler model expressed in the same language. Hence all analysis tools

Software Architecture of Modern Model Checkers 403

benefit from their existence. Section 5.3 will present how some of these issues
can be addressed using a greybox API (e.g. to provide partial order reduction),
but the abstractions that can be offered using an IVL are more powerful in
general.

Modular Decomposition. Support for modular definition of a specification
in the IVL is highly desirable. It helps support modular verification scenarios
where only part of the system is analyzed to prove system-wide properties. This
requires some weak hypothesis on how a component interacts with its environ-
ment to make compositional reasoning possible. The Mocha environment [4] uses
such compositional reasoning, thanks to founding the semantics with reactive
modules [3]. Other examples based on I/O automata [55], assume/guarantee con-
tracts for components [59], or asynchronous composition such as in CADP [32]
try to exploit compositional reasoning to provide simpler proofs.

4.2 GAL Within ITS-Tools

ITS-tools offers model checking (CTL, LTL) of large concurrent specifications
expressed in a variety of formalisms: communicating process (Promela, DVE),
timed specifications (Uppaal timed automata, time Petri nets) and high-level
Petri nets. The tool is focused on verification of (large) globally asynchronous
locally synchronous specifications. Its architectures is presented in Fig. 4.

TA TPN HLPN Promela DVE

trans.+abst. trans.+abst. trans.+ anl. transl. transl.

—

Parametric GAL

Fig. 4. Instantiation of the modular architecture for I'TS-tools

It leverages model transformation technology to support model checking of
domain specific languages (DSL). Models are transformed to the Guarded Action
Language (GAL), a simple yet expressive language with finite Kripke structure
semantics.

Guarded Action Language. GAL is a pivot language that essentially
describes a generator for a labeled finite Kripke structure using a C like syn-
tax. This simple yet expressive language makes no assumptions on the existence
of high-level concepts such as processes or channels. While direct modeling in
GAL is possible (and a rich eclipse based editor is provided), the language is
mainly intended to be the target of a model transformation from a (high-level)
language closer to the end-users.

404 F. Kordon et al.

A GAL model contains a set of integer variables and fixed size integer arrays
defining its state, and a set of guarded transitions bearing a label chosen from
a finite set. We use C 32 bit signed integer semantics, with overflow effects;
this ensures all variables have a finite (if large 23?) domain. GAL offers a rich
signature consisting of all C operators for manipulation of the int and boolean
data type and of arrays (including nested array expressions). There is no explicit
support for pointers, though they can be simulated with an array heap and
indexes into it. In any state (i.e. an assignment of values to the variables and
array cells of the GAL) a transition whose boolean guard predicate is true can
fire executing the statements of its body in a single atomic step. The body of the
transition is a sequence of statements, assigning new values to variables using
an arithmetic expression on current variable values. A special call(\) statement
allows to execute the body of any transition bearing label A, modeling non-
determinism as a label based synchronization of behaviors.

Parametric GAL. specifications may contain parameters, that are defined
over a finite range. These parameters can be used in transition definitions, com-
pactly representing similar alternatives. They can also be used to define finite
iterations (for loop), and as symbolic constants where appropriate. Parameters
do not increase expressive power, the verification engine does not know about
them, as specifications are instantiated before model checking. The tool applies
rewriting strategies on parametric transitions before instantiation, in many cases
avoiding the polynomial blowup in size resulting from a naive parameter instanti-
ation. Rewriting rules that perform static simplifications (constant identification,
slicing, abstraction...) of a GAL benefit all input formalisms.

Model to Model Transformations. Model-driven engineering (MDE) pro-
poses to define domain specific languages (DSL), which contain a limited set
of domain concepts [73]. This input is then transformed using model transfor-
mation technology to produce executable artifacts, tests, documentation or to
perform specific validations. In this context GAL is designed as a convenient
target formally expressing model semantics. We thus provide an EMF [70] com-
pliant meta-model of GAL that can be used to leverage standard meta-modeling
tools to write model to model transformations. This reduces the adoption cost
of using formal validation as a step of the software engineering process.

Third-Party Support. We have implemented translations to GAL for several
popular formalisms used by third party tools. We rely on XText for several of
these: with this tool we define the grammar and meta-model of an existing for-
malisms, and it generates a rich code editor (context sensitive code completion,
on the fly error detection,...) for the target language. For instance, we applied
this approach to the Promela language of Spin [39] and the Timed Automata of
Uppaal [9].

For Promela, channels are modeled as arrays, processes give rise to control
variables that reflect the state they are in. A first analysis of Promela code is
necessary to build the underlying control flow graph (giving an automaton for
each process). There is currently no support for functions and the C fragment

Software Architecture of Modern Model Checkers 405

of Promela. The support for TA and TPN uses discrete time assumptions, and
will be detailed in Sect. 6.2.

Solution Engines. The main solution engine offered by ITS-tools is a symbolic
model checker relying on state of the art decision diagram (DD) technology. A
more recent addition is an SMT based encoding of GAL semantics, that enables
a bounded model checking/induction decision procedure for safety properties.
This SMT encoding also enables many static analysis tests such as computing
interference between events that enable precise partial order reductions. A bridge
from GAL to the PINS API (see Sect.5) enables the many solution engines
offered by LTSmin.

GAL thus successfully plays the pivot role of an intermediate verification
language, allowing to separately choose the input language and the solution
engine for verification. This approach is, however, not always applicable, e.g.,
when embedded code is associated with a model or when executing the high-
level source language requires constraint solving not present in the intermediate
language (cf., Sect. 3.2). The API approach presented in the next section is one
solution for this problem.

5 The API Approach to Reusing Verification Engines

The focus in this section is on generic programming interfaces (API) between
formal specification languages and model checking algorithms. The underlying
wish is to reuse software implementations of model checking algorithms for spec-
ifications in different formal languages.

Semantically, the operational semantics of a specification language gives rise
to a transition system, with labels on states or transitions, or both. Model check-
ing algorithms can be viewed as graph algorithms over these transition systems.
Many model checking algorithms operate on-the-fly, intertwining state space
generation with analysis. In many cases, in particular when hunting for counter
examples, only a fraction of the complete state space is visited. To facilitate
this, the state space graph is often exposed to the algorithm through an API,
providing the functionality to compute the desired part of the graph.

Black-Box API. Clearly, a black-box view on states and transitions would
provide maximal genericity. Here states are opaque objects for the model checker
and it just needs a function to retrieve the initial state, and another one to
compute the next states of any given state. All information on the internal
structure of states and transitions are nicely encapsulated in language modules
specific to a formal language.

A prominent example of this approach is the OPEN/CAESAR interface [30],
which allows the CADP toolset to operate on input models in various pro-
cess algebra-oriented languages, like Lotos, LNT, EXP and FSP. This facili-
tates the reuse of backend algorithms in CADP for model checking, bisimula-
tion checking and reduction, test generation, simulation and visualisation. The
OPEN/CAESAR architecture also allowed to link external toolsets, for instance
pwCRL and LTSmin.

406 F. Kordon et al.

Greybox API, Pins. The disadvantage of a black-box API is that it prohibits
many methods for mitigating the state space explosion. For instance, state space
compression techniques, symbolic model checking and partial-order reduction
require information on the structure of states and transitions. For this reason,
the toolset LTSmin [14,42] introduced a greyboxr API, called PINs, the Parti-
tioned Interface to the Next-State function, cf. Fig.5. Here states are parti-
tioned in vectors of N chunks, and the transition relation is partitioned into
M subtransitions that operate on a part of the state vector. Depending on the
specification language and the intended granularity, chunks can represent state
variables, program counters, or subprocesses. Transitions could represent lines
or blocks of code, or synchronized communication actions. Finally, the language
frontend provides a static Dependency Matrix (DM) that declares which chunks
in the state vector are affected by a certain transition group. Thus, locality of
transitions is exposed to the model checking algorithms. See Table 1 for further
details.

mCRL Promela

adapterc adapterp
PINS

distributed model symbolic
checking model checking

Fig. 5. Original instantiation of the modular architecture in LTSmin

Table 1. Parameters and functions of the PINS greybox API

N Fixed length of the state vector
M Number of disjunctive transition groups
init() Function that returns the initial state vector

next(s, i, f) | Function that calls back f on any successor of s
in transition group 2

DM[M][N] | Dependency Matrix of Booleans: DM[i][j] means
transition group ¢ depends on variable j

In the sequel, we demonstrate how gradually exposing more structure enables
more and more model checking techniques to be applied, basically following the
historical development of the LTSmin toolset.

5.1 Distributed and Multi-core Model Checking

In distributed model checking, it must be frequently tested whether a locally
generated successor state already exists globally. This is usually solved by send-
ing (batches of) states over the network to the machine that “owns” them.

Software Architecture of Modern Model Checkers 407

Ultimately, the network bandwidth forms the performance bottleneck of this
approach. In this section, we show how partitioning the state vector enables
state space compression and leads to a reusable solution.

A distributed database and compression scheme was proposed for the yCRL
toolset [13], which reduced the bandwidth to roughly two integers per state. That
compression approach depends on (recursively) indexing the first and second half
of a state vector, thus forming a binary tree of databases. The leaves of this tree
consist of an index of algebraic data terms of pCRL. A piggy-backing scheme
ensured global consistency of all databases.

The original motivation of the LTSmin toolset [14] was to offer this approach
to multiple model checkers with their own specification languages, in particular
to Promela models in SPIN. There were three considerations to combine these
languages for distributed model checking: First, the interface had to support the
action-based process algebra pCRL, as well as the state-based Promela models
of SPIN. Also, besides the algebraic data-types of pCRL, it had to support
the direct machine integer-representation of SPIN models. Finally, the database
compression technique required access to various parts of a single state. These
considerations led to the greybox PINS interface (Table 1), supporting both state
and edge labels, and assuming and exposing a fixed-length state vector.

The separation provided by PINS turned out to be quite versatile for fur-
ther experimentation: Initially, we conceived to link the MPI/C code of the
distributed model checker directly to SPIN generated code, but this was deemed
to be too fragile. The PINS interface allowed to switch freely to NIPS-VM, a vir-
tual machine to interpret Promela models, and to SpinJa, a compiler for SPIN
models. Actually, these experiments can be viewed as instances of combining
a fixed API to various intermediate language representations in the spirit of
Sect. 4.

Currently, LTSmin supports an arbitrary number of edge and state labels,
allowing to handle for instance Mealy machines (input/output), probabilistic
automata (actions/probabilities) and games (actions/players). By now, several
more language modules have been constructed, enabling to reuse the same model
checking algorithms for DVE (DiViNE), PetriNets (PNML), mCRL2, Timed
Automata (Uppaal, cf. Sect.6.2), B models (PROB, cf. Sect.6.1), etc.

Finally, when we developed new multi-core algorithms, based on concurrent
hash tables in shared memory and concurrent tree compression [48], the PINS
interface allowed to effortlessly and directly carry out scalability experiments on
benchmark models from this large variety of specification languages.

5.2 Symbolic BDD-Based Model Checking

The effectiveness of state compression can be explained from the locality of
transitions, leading to the relative independence of the system components (e.g.
processes). Binary Decision Diagrams (BDD) provide even more opportunities
to compress sets of state vectors, by sharing common prefixes and suffixes. Can
we gain more than just a concise representation? Here we want to emphasize
that by exposing transition locality explicitly, we can also achieve computations

408 F. Kordon et al.

on sets of states. That is, we obtain the benefits of traditional symbolic model
checking for models that are only provided through an on-the-fly API, without
requiring a symbolic specification of the transition relation.

The main idea is that the static dependency matrix DM provided by PINs
allows to deduce much information from one next-state call, in particular when
the dependency-matrix is sparse (i.e., there is a lot of locality). Consider a state
vector xg,...,T, in which a transition group t; is enabled, that only affects
xo, - .., T;, according to the DM. Then we can deduce the following two facts:

— All successors are of the form xj, ..., 2}, Tit1,..., %y
— All states of the form zg, ..., %, yit1,- .., yn have successors from transition
/ !/
group tj of the form af, ..., 25, ¥iy1,..., Yn-

The short pair xg,...,z; — x,...,o; can be stored in a local BDD Ry and
reused in relational product computations during further state space generation.

So, the PINs interface allows full-fledged symbolic model checking for explicit-
state specification languages (Promela, mCRL2, DVE, PROB, etc.) without the
need for manual symbolic encodings or automated model translations. The price
to pay is that every language module should define transition groups at some
level of granularity, and perform some kind of static analysis to identify the
dependencies on state variables. Rough overapproximations of the dependency
matrix are still correct, but more precise analyses expose more locality. This
effort has to be performed for every specification language only once, and a
precise analysis is rewarded by a more efficient model checker for that language.

Again, the PINS architecture proved to be very flexible, allowing experiments
with among others Multiway Decision Diagrams, List Decision Diagrams, and
also scalable multi-core implementations of decision diagrams [25] on a wide
variety of benchmark models in many specification languages.

Another lesson learnt was that exposing more information leads to more
efficient model checking. This seems obvious, but the sweet spot is not clear.
In [57] we experimented with splitting transition groups in guards and updates,
refining the Dependency Matrix to distinguish read- from write-dependencies.
This led to considerable performance gains in symbolic model checking.

Note that existing language modules wouldn’t profit from this refinement,
but at least they don’t break. Implementing the refined analysis for some speci-
fication language is incentivized by a more efficient model checking procedure.

5.3 Other Extensions as Pins2Pins Wrappers

So far we showed that the PINS-API allows combining multiple model check-
ing algorithms with multiple specification languages, increasing the efficiency
for the whole research community. We can take this one step further: a sin-
gle state space optimization technique could be reused for any model checking
algorithm and any specification language. This is supported by rewiring, using
so-called PINS2PINs-wrappers, as in Fig. 6, which remotely resemble Unix-pipes:
The original model is available on-the-fly to the PINS2PINS wrapper, which in

Software Architecture of Modern Model Checkers 409

[mCRL | [Promela| [PNML | [ProB | .-
¥ ¥ ¥ '
(PINS)
¥ ¥ ¥ v
cross Reordering Partial Order
product & Caching reductions
LTL / pcalc. regrouping
v ¥ v v
(PINS J

Distributed Symbolic
(minimization) (ucalculus)

Fig. 6. On-the-fly state space transformers provided as PINS2PINS-wrappers in LTSmin

turns provides the reduced state space in an on-the-fly manner to the actual
model checker. In reality, this involves a quite complicated rewiring of the call-
back mechanism.

We will discuss a couple of instances. A simple instance is transition-caching:
For highly expressive specification languages the next-state calculation will be
slow. In case of high locality (sparse Dependency Matrix), it could pay off to
have an intermediate caching layer that stores the results of all next-state calls
for future reuse. This cache has to be implemented once, and can be reused for
all models in all supported specification languages and for all model checking
algorithms. (Note that this is not helpful for the symbolic model checker, since
it already stores these transitions in the local BDDs Ry.)

A second example is reordering state variables and regrouping similar tran-
sition groups. It is well-known that the variable order greatly influences the
efficiency of symbolic model checking. We investigated if the information from
the read-write Dependency Matrix is sufficient to compute a good static vari-
able order. The PINS interface with its DM allowed to apply many bandwidth
reduction algorithms on matrices out-of-the box, and enabled us to compare
them experimentally across multiple specification languages and multiple deci-
sion diagram types [25]. At the same time, we noticed that having too many
transition groups leads to a considerable overhead. So the regrouping layer also
recombines several transition groups that indicate the same (or similar) depen-
dencies.

A third example is the computation of cross-products. For LTL model
checking, the cross-product with a Biichi automaton is conveniently provided
as a PINS2PiINs-wrapper. For p-calculus model checking, another PINS2PINS-
wrapper computes the product of an LTS and a Boolean Equation System,
resulting in a Parity Game (using the fact that LTSmin supports multiple edge
labels to encode players and priorities). A more generic product automata wrap-
per, that could support compositional model checking, is under construction.

Finally, we shortly discuss some experiments with partial-order reduction.
We investigated if the DM contains sufficient information to implement state
space reduction based on the stubborn-set approach to POR [72]. The bad news

410 F. Kordon et al.

is that the achieved reductions would be suboptimal: from the DM it can only be
deduced that two subtransitions are independent (e.g. ¢, doesn’t modify variables
that ¢, reads or writes). However, to achieve the full effectiveness of POR we had
to extend the DM with new matrices, basically indicating whether transition
groups can enable each other. More precisely, one can exploit refined guard
splitting: A new matrix indicates whether executing transition group t; could
enable or disable guard g;.

The good news is that extending PINS with information on enabling/
disabling relations between transition groups, allows the full reduction power
of stubborn-set POR method [47]. LTSmin comes up with a reasonable default
for the new POR-related matrices. Language modules that take the effort to
derive more precise transition dependencies are again rewarded with more effec-
tive state space reduction power. Thus, a partial-order reduction block can be
provided, which is suitable for all specification language modules implementing
Pins and potentially supports all model checking algorithms based on the PINS
interface.

One may wonder if this provides effective partial-order reduction for sym-
bolic model checking? Unfortunately, after partial order reduction all dependency
information is lost, so symbolic model checking on the reduced state space would
be correct, but not effective. Similarly, in the case of timed automata, all transi-
tions involve manipulating the clocks, so partial-order reduction of TA is correct,
but not effective. Positive cases, where POR is effective, are the explicit multi-
core model checking algorithms, both for safety and LTL properties, applied to
mCRL2, Promela, DVE, PNML, or B models.

6 Application Examples

This section shows how the variants of the modular approach (library-based or
language-based) can be instantiated in real situations.

6.1 PRrOB to LTSmin API: Linking High-Level Languages
with Other Model Checkers

In [10] we have presented a first integration of PROB with LTSmin. We thereby
managed to keep the full power of the constraint solving of PROB’s Prolog inter-
preter to compute successor states for complicated events (see Sect. 3). But we
also gained access to the symbolic model checking engine of LTSmin, to con-
struct a symbolic BDD-style representation of the reachable states. For some
experiments, this resulted in the reduction of the model checking time of an
order of magnitude or more. The crux lies in the fact that through the greybox
API, LTSmin gains information about read/write dependencies of events, which
is crucial to build up the symbolic representation of the state space. Note that
PRrROB’s representation of B’s datastructures are hidden to LTSmin: LTSmin does
not need to know about higher-order sets and relations, nor about symbolic rep-
resentations for infinite B functions, just to mention a few possible data values.

Software Architecture of Modern Model Checkers 411

All LTSmin needs to know is the variables of the B model and the read-write
dependencies. For example, suppose we have a state (z = 10,y = {{2},{4}})
(where the variable y is a set of sets) and the event inc produces the single
successor state (z = 11,y = {{2},{4}}). Given the information that inc reads
and writes only z, LTSmin knows, without having to query PROB, that the only
successor of (x =10,y = {{1,2}}) is (x = 11,y = {{1,2}}).

On a technical side, the communication was achieved by ZeroMQ. In ongo-
ing work [44] the bridge has been extended to support partial order reduction
and parallel LTL model checking, again with sometimes impressive speedups
compared to PROB’s internal explicit state model checker.

6.2 Analysis of Timed Automata

Uppaal’s networks of timed automata are the de facto standard for the high-
level specification of real time systems, with a well-integrated tool support in the
Uppaal tool suite. For this reason, Uppaal is also used as a target of model trans-
formation, as an IVL. Uppaal’s efficient solver is based on zone based abstraction
with subsumption. However, due to its tight integration, Uppaal uses a mono-
lithic approach (Fig. 7a): all algorithms are tightly connected to Uppaal models,
and not available as open source components, except the DBM library, which
offers zone abstraction through Difference Bound Matrices.

We discuss two approaches to analyze Uppaal models using the API approach
(linking Uppaal to LTSmin) or the IVL approach (translating Uppaal models to
GAL specifications as in ITS-Tools).

LTSmin Approach. A bridge between Uppaal and LTSmin was devised, cf.
Fig. 7b, which supports full multi-core LTL model checking of Uppaal networks
of timed automata [46]. The advantage of this approach is that it maximizes code
reuse. It uses OPAAL to generate C-code from Uppaal models, which was adapted
to implement the PINS interface. Furthermore, the next-state function directly
calls the DBM-library. For LTSmin’s multi-core algorithms, a state vector just
contains an opaque pointer to a DBM to represent a symbolic time zone. In

simplif. GAL
0
Uppaal parallel/distributed

model checking

(a) Uppaal (b) LTSmin (c) ITS-tools

Fig. 7. Three architectures for TA model checkers.

412 F. Kordon et al.

this way, Uppaal users obtain a scalable multi-core LTL model checker in a
transparent manner.

Two issues arise, however: First, timed automata based on timed zones have
abstract states, which require subsumption for efficient state space reduction.
This was solved by (again) extending the PINs interface with an extra function
(to reuse the DBM-library for checking subsumption of symbolic states). Another
issue is that time manipulation happens in every transition group, which leads
to a dense dependency matrix. Hence symbolic model checking and partial-order
reduction are not effective on timed automata.

ITS-Tools. The support for TA uses discrete time assumptions to be able
to model the semantics using GAL, as in Fig. 7c. Fortunately, analysis in the
discrete setting has been shown to be equivalent to analysis in a dense time
setting provided all constraints in the automata are of the form = < k& but not
x < k [37]. We thus can build a transition that represents a one time unit delay
and updates clocks appropriately. This transition is in fact a sequence of tests for
each clock, checking if an urgent time constraint is reached (time cannot elapse),
if the clock is active (increment its counter) or if it is inactive either because it will
be reset before being read again, or because it has reached a value greater than
any it could be tested against before a reset (do nothing). This test for inactive
clocks corresponds to an abstraction that preserves observable behaviors, but
prevents clock values from growing indefinitely, yielding an infinite state space.

Strengths. This discrete time approach is very effective to deal with systems
where the number of concurrently enabled locations or clocks grows, since in such
cases the classic explicit state with zones represented as DBM does not scale well.
However, when the maximum bounds on clocks grow, even decision diagrams
have trouble dealing with the state space explosion in the discrete setting. The
two approaches thus have good complementarity, allowing to address different
kinds of systems.

Weaknesses. Overall the main difficulty when developing support for timed
automata is that the classical dense time semantics of TA cannot be feasi-
bly encoded just using GAL which have discrete semantics. The correctness
of switching to discrete semantics was fortunately already established [37], but
in general mapping of arbitrary semantics to GAL is not always possible. It
is much easier to map arbitrary semantics to a language such as Prolog (see
Sect. 3.2) but this comes at the cost of verification power and efficiency. The dis-
crete time models have a very large state space, and cannot feasibly be analyzed
using non symbolic solution engines, so despite the pivot language approach,
the choice of this path limits the choice of the solution engine. However explicit
state approaches are of course still available on TA using the Uppaal verifier or
LTSmin.

7 Discussion

This paper summarizes the evolution of modern model checking tools in terms
of their architecture and usage to solve typical industrial-like problems, which

Software Architecture of Modern Model Checkers 413

are more and more stated using high-level, domain specific languages instead of
the “traditional” specification languages. Moreover, complementary techniques
are often used to solve particular situations. For example, explicit techniques
may scale less but algorithms to compute counter-examples are simpler. On the
contrary, symbolic techniques usually scale better but computation of a counter
example is not trivial.

To cope with such situations, an intermediate level has been introduced, the
pivot representation, which provides a modular architecture to link high-level
specifications with a backend for verification. This pivot representation can be
either a library offering an API, or a language itself. Both approaches co-exist
today and show their own advantages and drawbacks. This is of interest to enable
transparent activation of a given technique. This can be seen as a configuration
issue (choice of a technique/algorithm at a given stage of the verification process)
or to some preprocessing phase. It is thus particularly important to benefit from
a large portfolio of techniques available in a given environment, and linked to the
pivot representation. Such a situation is observed in the Model Checking Contest
[43] where some tools concurrently operate several techniques and retrieve results
from the first that finishes. Let us also refer to CIL that is used as an entry in
the software competition to operate various tools and techniques (or PNML that
has a similar role in the model checking contest).

In both approaches, the problem of translating counter examples back to the
user level exists. Due to their tight integration, monolithic architectures can also
offer an integrated user experience, which can be viewed as an advantage. For
modular approaches, it takes some effort to link between transformations (this is
typically supported by MDE-based approaches) but this is more difficult when
there are several translations (e.g. optimization phases).

Embedding external code is possible within the API-approach, as long as one
respects the absence of side effects. This is an attractive feature for verifying sys-
tems using complex data structures or libraries. The API approach also allows
to reuse existing implementations of the operational semantics of specification
languages. As a consequence, the transition relation is more opaque, isolating
verification algorithms from the actual representation. This possibly disables
some abstraction opportunities. We demonstrated how greybox API solutions
(PINS) disclose sufficient structural information to enable some important opti-
mizations, like state compression, partial-order reduction and decision-diagram
representations.

The use of a reified intermediate verification language as a pivot preserves the
semantics completely. This means that more solution engines remain available,
such as SMT solvers for encoding data abstractions. The translation needs to
be complete and true to the original semantics. This requires more effort, which
may be hard or impossible in some cases due to the semantic gaps in expressivity
when source and target languages differ too much (i.e., the translation of B to
SMV in fact generates the full state space during the translation). Potential loss
of the modular structure of specifications during the translation could also be

414 F. Kordon et al.

a drawback, since this structure contains useful information that can in general
be exploited by model checking heuristics.

The field of model checking is moving fast: new algorithms, improved data
structures and high-performance implementations are emerging all the time.
This also leads to new application domains, with their own domain-specific,
high-level modeling languages. Within these dynamics, intermediate representa-
tions provide some stability, by decoupling verification algorithms from high-level
specifications. This paper presents a decade of research in sophisticated interme-
diate representations, either as intermediate verification languages, or as on-the-
fly greybox interfaces. Despite an improved understanding of the relationship
between verification capabilities and features of the intermediate representation,
a “golden standard API”, or a “holy grail IVL” has not yet emerged. On the con-
trary, the building blocks of model checking architectures are also still in devel-
opment. Fortunately, the approaches that we have reported combine very well
from a methodological point of view. Several language translations and optimi-
sations can be composed; the resulting “flattened” specification is easily adapted
to an API; and several building blocks can be combined through plug-and-play
with the API. We demonstrated that through these successful combinations one
can obtain very efficient model checkers for high-level specification languages.

Acknowledgements. We would like to thank the many people who have worked
on the various verification tools such as LTSMin and PrROB. In particular, we want
to thank Jens Bendisposto, Philipp Korner, Jeroen Meijer, Helen Treharne, Jorden
Whitefield for their work on the PROB to LTSmin API described in Sect. 6.1.

We also thank Stefan Blom, Michael Weber, Elwin Pater for setting up the archi-
tecture of LTSmin and Alfons Laarman, Tom van Dijk, Jeroen Meijer for recent devel-
opments on multicore and symbolic LTSmin.

On the PROB side we are grateful to many researchers and developers who have
contributed to the tool or its underlying techniques, notably Michael Butler, Joy Clark,
Ivaylo Dobrikov, Marc Fontaine, Fabian Fritz, Dominik Hansen, Sebastian Krings,
Thierry Massart, Daniel Plagge, David Schneider, Joshua Schmidt, Corinna Spermann.

We finally thank the many colleagues who contributed to the development and
algorithms for I'TS-Tools, in particular, Béatrice Bérard, Denis Poitrenaud, Maximilien
Colange, Yann Ben Maissa, and many master students.

The third author has been partially funded from the 4TU NIRICT.BSR project on
Big Software on the Run.

References

1. Abrial, J.R.: The B-Book. Cambridge University Press, Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1),
7-48 (1999)

4. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran,
S.: MOCHA: modularity in model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 521-525. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0028774

https://doi.org/10.1007/BFb0028774
https://doi.org/10.1007/BFb0028774

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Software Architecture of Modern Model Checkers 415

Arnold, A., Point, G., Griffault, A., Rauzy, A.: The altarica formalism for describ-
ing concurrent systems. Fundam. Inform. 40(2-3), 109-124 (1999)

Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364-387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17
Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th IW on Satisfiability Modulo Theo-
ries, Edinburgh, UK (2010)

Behrmann, G., David, A., Larsen, K.G., Hakansson, J., Pettersson, P., Yi, W., Hen-
driks, M.: UPPAAL 4.0. In: QEST, pp. 125-126. IEEE Computer Society (2006)
Bendisposto, J., Korner, P., Leuschel, M., Meijer, J., van de Pol, J., Treharne, H.,
Whitefield, J.: Symbolic reachability analysis of B through PrROB and LTSMIN.
In: Abrahdm, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 275-291.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0-18
Berthomieux, B., Bodeveix, J.P., Filali, M., Lang, F., Le Botland, D., Vernadat,
F.: The syntax and semantic of fiacre. Technical report 7264, CNRS-LAAS (2007)
Bjorner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L..D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24-51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2
Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distributed
state-space generation. J. Log. Comput. 21(1), 45-62 (2011)

Blom, S., van de Pol, J., Weber, M.: LTSMIN: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354-359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_31
Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent pro-
grams by model checking. Auton. Agent. Multi-Agent Syst. 12(2), 239-256 (2006)
Borges, R.M., Mota, A.C.: Integrating UML and formal methods. Electron. Notes
Theor. Comput. Sci. 184, 97-112 (2007). 2nd Brazilian Symposium on Formal
Methods (SBMF 2005)

Butler, M., Leuschel, M.: Combining CSP and B for specification and prop-
erty verification. In: Fitzgerald, J., Hayes, 1.J., Tarlecki, A. (eds.) FM 2005.
LNCS, vol. 3582, pp. 221-236. Springer, Heidelberg (2005). https://doi.org/10.
1007/11526841_16

Butler, M.J., Colley, J., Edmunds, A., Snook, C.F., Evans, N., Grant, N., Marshall,
H.: Modelling and refinement in CODA. In: Derrick, J., Boiten, E.A., Reeves, S.
(eds.) Proceedings 16th International Refinement Workshop, RefineQIFM 2013,
Turku, Finland, 11 June 2013. EPTCS, vol. 115, pp. 36-51 (2013)

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359-364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0-29
Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging (turing award 2007). Commun. ACM 52(11), 74-84 (2009)

https://doi.org/10.1007/11804192_17
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-33693-0_18
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/3-540-45657-0_29

416

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

F. Kordon et al.

Correa, T., Becker, L.B., Farines, J., Bodeveix, J., Filali, M., Vernadat, F.: Support-
ing the design of safety critical systems using AADL. In: 15th IEEE International
Conference on Engineering of Complex Computer Systems, ICECCS, pp. 331-336.
IEEE Computer Society (2010)

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREE analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21-30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0_3
Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.)
TACAS 1999. LNCS, vol. 1579, pp. 223-239. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-49059-0_16

Delzanno, G., Podelski, A.: Constraint-based deductive model checking. STTT
3(3), 250-270 (2001)

van Dijk, T., van de Pol, J.: Sylvan: multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677-691. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0_60

Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E,7 Xu, L.:
Spot 2.0 — a framework for LTL and w-automata manipulation. In: Artho, C.,
Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 122-129. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_8

Eclipse Project: Model-to-Model Transformation MMT, subproject of Eclipse
Modeling (2017). https://projects.eclipse.org/projects/modeling. mmt

Efftinge, S., et al.: XText (2017). http://www.eclipse.org/Xtext/

Fioravanti, F., Pettorossi, A., Proietti, M.: Verifying CTL properties of infinite-
state systems by specializing constraint logic programs. In: Proceedings of VCL
2001, Florence, Italy, September 2001

Garavel, H.: OPEN/C/ESAR: an open software architecture for verification, simu-
lation, and testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68-84.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054165

Garavel, H.: Nested-unit petri nets: a structural means to increase efficiency and
scalability of verification on elementary nets. In: Devillers, R., Valmari, A. (eds.)
PETRINETS 2015. LNCS, vol. 9115, pp. 179-199. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19488-2_9

Garavel, H., Lang, F., Mateescu, R.: Compositional verification of asynchronous
concurrent systems using CADP. Acta Inf. 52(4-5), 337-392 (2015)

Girault, C., Valk, R.: Petri Nets for Systems Engineering - A Guide to Model-
ing, Verification, and Applications. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-662-05324-9

Groote, J.F., Ponse, A., Usenko, Y.S.: Linearization in parallel pcrl. J. Log. Algebr.
Program. 48(1-2), 39-70 (2001)

Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder.
Int. J. Softw. Tools Technol. Transf. 2(4), 366-381 (2000). https://doi.org/10.1007/
$100090050043

Hayes, 1., Jones, C.B.: Specifications are not (necessarily) executable. Softw. Eng.
J. 4(6), 330-338 (1989)

Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich,
W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545-558. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55719-9_103

Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666—
677 (1978)

Holzmann, G.: Spin Model Checker, The: Primer and Reference Manual. Addison-
Wesley Professional, Boston (2003)

https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/3-540-49059-0_16
https://doi.org/10.1007/3-540-49059-0_16
https://doi.org/10.1007/978-3-662-46681-0_60
https://doi.org/10.1007/978-3-319-46520-3_8
https://projects.eclipse.org/projects/modeling.mmt
http://www.eclipse.org/Xtext/
https://doi.org/10.1007/BFb0054165
https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/3-540-55719-9_103

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Software Architecture of Modern Model Checkers 417

Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

Iliasov, A., Lopatkin, I., Romanovsky, A.: The SafeCap platform for modelling rail-
way safety and capacity. In: Bitsch, F., Guiochet, J., Kadniche, M. (eds.) SAFE-
COMP 2013. LNCS, vol. 8153, pp. 130-137. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40793-2_12

Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692-707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_61

Kordon, F., Garavel, H., Hillah, L.M., Paviot-Adet, E., Jezequel, L., Rodriguez, C.,
Hulin-Hubard, F.: MCC’2015 — the fifth model checking contest. In: Koutny, M.,
Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Con-
currency XI. LNCS, vol. 9930, pp. 262-273. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53401-4_12

Korner, P.: An integration of ProB and LTSmin. Master’s thesis, Universitat
Diisseldorf, February 2017

Kroening, D., Tautschnig, M.: CBMC — C bounded model checker. In: A’brahém7
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389-391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

Laarman, A., Olesen, M.C., Dalsgaard, A.E., Larsen, K.G., van de Pol, J.: Multi-
core emptiness checking of timed Biichi automata using inclusion abstraction. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 968-983. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_69

Laarman, A., Pater, E., van de Pol, J., Hansen, H.: Guard-based partial-order
reduction. STTT 18(4), 427-448 (2016)

Laarman, A., van de Pol, J., Weber, M.: Multi-core LTSMIN: marrying modularity
and scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 506-511. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5_40

Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855-874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_46

Leuschel, M., Fontaine, M.: Probing the depths of CSP-M: a new FDR-compliant
validation tool. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS,
vol. 5256, pp. 278-297. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88194-0_18

Leuschel, M., Massart, T.: Infinite state model checking by abstract interpretation
and program specialisation. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817,
pp. 62-81. Springer, Heidelberg (2000). https://doi.org/10.1007/10720327_5

Liu, Y., Sun, J., Dong, J.S.: PAT 3: an extensible architecture for building multi-
domain model checkers. In: IEEE 22nd International Symposium on Software Reli-
ability Engineering, ISSRE 2011, Hiroshima, Japan, 29 November—2 December
2011, pp. 190-199 (2011)

Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput.
Secur. 6(1-2), 53-84 (1998)

Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: PODC, pp. 137-151. ACM (1987)

https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-53401-4_12
https://doi.org/10.1007/978-3-662-53401-4_12
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-39799-8_69
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-540-88194-0_18
https://doi.org/10.1007/978-3-540-88194-0_18
https://doi.org/10.1007/10720327_5

418

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

F. Kordon et al.

Margaria, T., Nagel, R., Steffen, B.: jETI: a tool for remote tool integration. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 557-562.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-1_38
Meijer, J., Kant, G., Blom, S., van de Pol, J.: Read, write and copy dependencies
for symbolic model checking. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp.
204-219. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13338-6_16
Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-
culus: a practical approach. Formal Asp. Comput. 20(4-5), 481-505 (2008)
Pasareanu, C.S., Dwyer, M.B., Huth, M.: Assume-guarantee model checking of
software: a comparative case study. In: Dams, D., Gerth, R., Leue, S., Massink,
M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 168-183. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48234-2_14

Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Dong, Y., Du, X., Roy-
choudhury, A., Venkatakrishnan, V.N.: XMC: a logic-programming-based verifica-
tion toolset. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
576-580. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_48
Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Upper
Saddle River (1999)

Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 10%° dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133-152. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0_7
Samia, M., Wiegard, H., Bendisposto, J., Leuschel, M.: High-level versus low-level
specifications: comparing B with Promela and ProB with spin. In: Proceedings
TFM-B 2009, pp. 49-61. APCB, June 2009

Schréter, C., Schwoon, S., Esparza, J.: The model-checking kit. In: van der Aalst,
W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463-472. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1_29

Snook, C., Butler, M.: UML-B: a plug-in for the Event-B tool set. In: Borger,
E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, p. 344.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8_32
Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Upper Saddle
River (1992)

Stefanescu, A., Wieczorek, S., Schur, M.: Message choreography modeling. Softw.
Syst. Model. 13(1), 9-33 (2014)

Steffen, B., Claflen, A., Klein, M., Knoop, J., Margaria, T.: The fixpoint-analysis
machine. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 72-87.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60218-6_6

Steffen, B., Margaria, T., Braun, V.: The electronic tool integration platform:
concepts and design. STTT 1(1-2), 9-30 (1997)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Boston (2009)
Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: Baier, C., Tinellj,
C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 231-237. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0_20

Valmari, A.: A stubborn attack on state explosion. Formal Methods Syst. Des.
1(4), 297-322 (1992)

Voelter, M., et al.: DSL Engineering - Designing, Implementing and Using Domain-
Specific Languages (2013). dslbook.org

https://doi.org/10.1007/978-3-540-31980-1_38
https://doi.org/10.1007/978-3-319-13338-6_16
https://doi.org/10.1007/3-540-48234-2_14
https://doi.org/10.1007/10722167_48
https://doi.org/10.1007/3-540-60630-0_7
https://doi.org/10.1007/3-540-44919-1_29
https://doi.org/10.1007/978-3-540-87603-8_32
https://doi.org/10.1007/3-540-60218-6_6
https://doi.org/10.1007/978-3-662-46681-0_20
http://dslbook.org/

74.

75.

76.

e

Software Architecture of Modern Model Checkers 419

Woodcock, J., Cavalcanti, A., Freitas, L.: Operational semantics for model checking
Circus. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582,
pp. 237-252. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841_17
Ye, K., Woodcock, J.: Model checking of state-rich formalism Circus by linking to
CSP || B. STTT 19(1), 73-96 (2017)

Yu, Y., Manolios, P., Lamport, L.: Model checking TLA™ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54-66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2_6

Zhu, H., Sun, J., Dong, J.S., Lin, S.: From verified model to executable program:
the PAT approach. ISSE 12(1), 1-26 (2016)

https://doi.org/10.1007/11526841_17
https://doi.org/10.1007/3-540-48153-2_6

	Software Architecture of Modern Model Checkers
	1 Introduction
	2 Trends on the Architecture for Model Checking
	3 High-Level Logic-Based Input Languages
	3.1 Monolithic Approach: Directly Encoding the Semantics
	3.2 Prolog as an Intermediate Verification Language
	3.3 Other High-Level Languages
	3.4 Summary

	4 Using an Intermediate Language as a Pivot
	4.1 Intermediate Verification Language
	4.2 GAL Within ITS-Tools

	5 The API Approach to Reusing Verification Engines
	5.1 Distributed and Multi-core Model Checking
	5.2 Symbolic BDD-Based Model Checking
	5.3 Other Extensions as Pins2Pins Wrappers

	6 Application Examples
	6.1 ProB to LTSmin API: Linking High-Level Languages with Other Model Checkers
	6.2 Analysis of Timed Automata

	7 Discussion
	References

