
Model Checking of Cost-Effective
Elasticity Strategies in Cloud Computing

Rawand Guerfel1(B), Zohra Sbäı1,2, and Rahma Ben Ayed1

1 Université de Tunis El Manar, École Nationale d’Ingénieurs de Tunis,
BP. 37 Le Belvédère, 1002 Tunis, Tunisia

{Rawand.Guerfel,zohra.sbai,rahma.benayed}@enit.rnu.tn
2 College of Computer Engineering and Science,

Prince Sattam Bin Abdulaziz University, PO Box 151,
Al-Kharj 11942, Kingdom of Saudi Arabia

Abstract. Cloud computing is a revolution in how computing power is
delivered to business. It offers different measured services to clients who
require them by writing a simple request. These requests are becoming
more and more complex so that services need to be composed to meet
them. Additionally, these Cloud composite business services (CCBSs)
need to be elastic, i.e. their number should be replicated or reduced
according to the number of their user demands. Ensuring these two
operations is done according to a well-defined strategy. We are inter-
ested in this paper in cost-effective elasticity one. Applying this strategy
on CCBSs gives birth to a system that needs to be checked to insure
that SLA constraints, such as deadline specified by the user, are not vio-
lated. In this paper, we present a formal model using Timed Coloured
Petri nets to model, check and compare between these strategies before
implementing them in real Cloud.

Keywords: Cloud computing composition · Cloud elasticity
Cost-effective strategy · SLA · Formal model
Timed Coloured Petri Net

1 Introduction

Cloud computing is a as a service model where different resources and data
such as servers, switches, storage, applications and services are accessed over the
internet. It is a model that enables ubiquitous on demand access to a shared
pool of configurable computing resources which can be rapidly provisioned and
released with minimal management effort.

There are basically three layers to the Cloud that are used differently based
on what they offer. The first layer is Infrastructure as a Service (IaaS) which
offers virtual systems that can be connected using internet. The second layer is
Platform as a Service (PaaS) which is a proof model for running applications
without the hassle of maintaining the hardware and software infrastructure at
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 80–92, 2018.
https://doi.org/10.1007/978-3-319-91764-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_7&domain=pdf


Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 81

the company. The last layer is Software as a Service(SaaS) which is a delivering
way of application as a service. Using this layer, one is not obliged to install and
maintain software [13].
Nowadays, user requirements are becoming more and more complex that some-
times, a single Cloud business service cannot meet user requests. It needs to
communicate and to be combined with other business services to respond to
user demands. In this case, we are treating the composition mechanism in Cloud
computing, an already discussed issue in our previous works [3,4].

The challenge with these composite Cloud services is that they should be elas-
tic [6]. Indeed, elasticity is one of the most important characteristic that Cloud
computing offers to its users. More precisely, it allows the providers to adapt
in term of numbers to the user demands in a transparent way. We distinguish
two types of elasticity. The first type is vertical elasticity which is related to the
scaling up or down of resources of a specific Cloud service without modifying
its number (e.g.: the power or the capacity of servers). The second type is hori-
zontal elasticity which is related to the removing or the adding of Cloud service
instances. In our work, we are interested in horizontal elasticity. More precisely,
in horizontal elasticity type, when the number of user demands for the CCBS
increases, the provider has to replicate as many copies of service instances as this
number. Similarly, when the number of user demands decreases, the provider has
to delete the unused copies of service instances. Replicating and deleting actions
are done according to an elasticity-strategy.

Executing elasticity strategies on composite Cloud business service does not
necessarily imply the replication or the deleting of the whole composite service.
Indeed, according to some indicators, we can apply these operations on only
some of the services involved in the composition. This gives birth to a system
composed of different services that interconnect and communicate between each
other. Users access should be well organised so that the system will not suffer
from some problems such as deadlock, conflit, etc.

Let’s also note that when applying and choosing an elasticity strategy, one
has to take into account two major factors which are: the deadline parameter
specified by the user and the gained cost for the Cloud provider. Indeed, on the
one hand, SLA has to be ensured. More particularly, when applying an elasticity
strategy, we have to check that the deadline is not violated so the provider does
not pay a penalty. On the other hand, we should make sure that the elasticity
maximizes the cost gained by the provider. This leads to the use of what is
known by “cost-effective elasticity strategy”.

It is in this context that our work is oriented. Indeed, we propose to check the
validity of the model obtained when executing cost-effective elasticity strategies
on composite Cloud business services. This model should ensure the non-violence
of the user deadline constraint. To do so, we use formal modelling. More precisely,
we use Coloured Petri nets (CPN) [8]. CPN allow us to assign time and data
information to each service, so that we can assign cost to each service. Besides,
CPN offers us the possibility to differentiate between multiple users. Indeed,



82 R. Guerfel et al.

coloured tokens are associated with data that could be used as specific ID for
each user.

The reminder of this paper is structured as follows. We start the Sect. 2 with
presenting the system model by giving some important definitions. Then, we
give a motivation example based on two existing strategies. Then, we move to
the Sect. 3 to model the elasticity strategy using CPN tool [14]. Also, in this
section, an algorithm of generation of CCBS model in CPN is detailed. To valid
this model, we check some properties detailed in Sect. 4. Afterwards, we refer,
in Sect. 5, to related works. In Sect. 6, we present conclusions and expose some
future works.

2 Cost-Effective Elasticity Strategy of Composite Cloud
Business Services

Cloud services should be characterized by one of the most important benefic
offered by the Cloud computing which is: elasticity. In fact, by rapid elasticity,
the Cloud can dynamically allocate or deallocate resources based on the customer
configurations [6]. As we already mentioned, this work focuses on horizontal
elasticity.

Horizontal elasticity of composite Cloud business services means adapting
the number of this composite service to the number of user demands. Many
indicators exist to help the provider know when to apply the elasticity strat-
egy namely: the number of user demands, the maximum/minimum number of
active sessions, number of user request per unit of time, etc. In our work, we are
interested in elasticity strategies that are based on these two indicators:

– the maximum and minimum number of user demands that each service can
hold.

– the cost gained when applying the elasticity strategy.

2.1 System Model

Ensuring the elasticity of composite Cloud business services is an important and
necessary step. To do so, many strategies have been proposed. To execute the
necessary actions, most of them are based on the number of users accessing the
CCBS as an elasticity indicator. However, we are interested in ones that add the
cost factor when deciding to process these actions.

In this section, we give some important definitions.

Definition 1 (CBS definition): A CBSi is defined with the tuple
(namei,max-thresi,min-thresi, Resp-Ti, costi, Rep-Costi) where:

• namei: is the name of CBSi

• max-thresi: is the maximum threshold of CBSi

• min-thresi: is the minimum threshold of CBSi

• Resp-Ti: is the response time of CBSi



Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 83

• costi: is the cost of the CBSi

• Rep-Costi: is the cost of replication action of the CBSi

Definition 2 (CCBS definition): A CCBS0 is a combination of n CBSoi ;
where i ∈ 1..n ; and has the following structure:

CCBS0 = (CBS01, CBS02, ..., CBS0n)
= (< name01,max − thres01,min − thres01, Resp − T01, cost01,

Rep − Cost01 >, ..., < name0n,max − thres0n,min − thres0n,

Resp − T0n, cost0n, Rep − Cost0n >)

Definition 3 (CCBS’s response time): The response time of one CCBSi,
noted by Resp-Ti, is the sum of the response time of all its CBSs. It is defined
as follows:

Resp−Ti =
n∑

j=1

Resp−Tij ;

Where n is the number of CBSs that compose the CCBS.

Before accessing these services, a SLA is defined between the user and the
provider. In this SLA, users specify some constraints that should be valid such
as: the availability, the deadline, the budget, the penalty, etc. Some of these
parameters are treated in this paper and detailed in the following definition.

Definition 4 (User requirement): A user requirement is given as follows:
UR=(name, dead, budget, penalty); knowing that:

– Name: is the name of either the CCBS or the CBS. In fact, the user can
access to just one Cloud business service.

– Dead: is the maximum time given to the provider to respond to the user
requirement.

– Budget: is the price offered to the provider if the service is given before Dead.
– Penalty: is the penalty to be paid by the provider if the request is given after

Dead, the parameter specified by the user.

2.2 Motivation

Let’s suppose that we have four Cloud business services CBS11, CBS12, CBS13

and CBS14 composing the CCBS1.
Each CBS is defined as follows:

CBS11 = (CBS11, 30, 5, 0.3, 0.2, 0.25)
CBS12 = (CBS12, 35, 5, 0.4, 0.35, 0.45)
CBS13 = (CBS13, 40, 3, 0.5, 0.55, 0.7)
CBS14 = (CBS14, 21, 6, 0.2, 0.15, 0.2)



84 R. Guerfel et al.

Let’s suppose that this CCBS is required by multiple users in the same time. So,
an elasticity strategy must be applied.

Let’s suppose that at time t1, 20 users want to access to CCBS. Note that
the deadline of 2 users are not respected.

Then, at time t2, 20 other users want to access to CCBS. All deadlines are
respected but only 15 users are a cost gain for the provider perspective.

Finally, at time t3, 25 users leave.
To make the necessary decision, an elasticity strategy has to be applied.

In fact, our work is based on two essential elasticity strategies detailed in the
following.

Elasticity strategy 1 [5]:
First of all, the provider checks in every unit of time (e.g. second) the maximum
and the minimum threshold of each CBS. If the maximum one is reached, then,
he calculates the cost benefit when applying a replication action. If the cost
is a gain for the provider perspective, then, a replication action is processed.
Else, he waits for more users having a higher budget. Let’s note that if the
minimum threshold of one CBS is reached, then, a deletion action of this service
is automatically done. Indeed, the provider has nothing to lose when executing
this action. In this strategy, they supposed that all deadlines specified by users
are already checked.
Applying this strategy to the previous scenario gives the following result :
At time t1,accept only 18 users. Here, no service will be replicated.
At time t2, accept only 15 users. In this case, CBS11 and CBS14 reach their
maximum thresholds and have to be replicated to CBS21 and CBS24.
At time t3, eliminate 25 users. CBS21 and CBS24 reach their minimum thresh-
olds and have to be removed and replaced by CBS11 and CBS14.

Elasticity strategy 2 [7]:
In this strategy, the provider checks in every unit of time if the deadlines specified
by users are respected. If 90% of users have a response time lower than their
deadlines, so, accept the other 10% of users whatever the penalty to be paid and
do the replication action. Else, if less than 90% have a response time lower than
their deadlines, the provider does not accept them and waits for other users that
satisfy this condition.
Applying this strategy to the previous scenario gives the following result:
At time t1,accept 20 users. Here, no service will be replicated.
At time t2, accept all the 20 users. In this case, CBS11, CBS12 and CBS14

reach their maximum thresholds and have to be replicated to CBS21, CBS22

and CBS24.
At time t3, eliminate 25 users. CBS21, CBS22 and CBS24 reach their minimum
thresholds and have to be removed and replaced by CBS11, CBS12 and CBS14.



Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 85

3 Formal Modeling of Elasticity of CCBS

The specification of complex systems play an important role in their reliability
control. Indeed, they serve as reference for system implementation. The use of
formal methods [2] is then the best way to assist the design and validation of
these specifications.

More specifically, we use CPN which are an extension of Petri nets(PN).
Indeed, PN are used to model the dynamic behavior of discret systems. They
are composed of two types of objects which are: places, that represent the states
of the system and contain information represented by tokens, and transitions
which represent the events of the system. Places and transitions are related by
arcs. However, with PN, it is impossible to model similar behaviors using a single
condensed representation. This limitation of PN does not allow us to differentiate
between users. That’s why we use CPN.

Actually, CPN offer three types of extension which are: extension with time,
extension with data and extension with hierarchy. Since we can represent users
with tokens, the extension with data allows us to assign information specified by
users in their requirements. The extension with time allows to assign a commun
time to the group of users demanding the CCBS at the same moment. This helps
us organize and differentiate between different users.

Below is the formal definition of CCBS using CPN.

Definition 3: CCBSi is a CPN (P, T,C,E,M0) where:

• P is the set of places. They represent the states of the CBSs composition.
• T is the set of transitions. Each transition represents a CBS.

Note that: P ∪ T = φ and P ∩ T = φ
Each transition has a specific price (the cost of the service). So, we assign to
each transition a variable pri indicating its price if it is not replicated, else,
the price of its replication.
For example, the price of the transition Ti1 is defined as follows: val pri1 = 0.4;

• C is the set of colours. It defines for every place its colour domain. In our
proposal, every place has as type “Info” defined as follows:

• colset Info = product U*RE*RE timed; knowing that:
• colset U = index us with 0..n; : every token belonging to CCBSi has the

value us(i). us(i) represents the set of users that can be handled by one
CCBSi.

• colset RE = REAL; : an integer type. The first RE represents the number
of users that can be handled by one CCBS, and the second one represents
the sum of their budgets.

Let’s note that Info is timed to indicate the evolution of the process through
time. For example, the token (u(1), 25, 26)@1 indicates that at time 1, we
have 25 users whose budget is 26.

• E is an arc expression function. The colour of each arc must be the same
colour of the place to which the arc is entering or outgoing.



86 R. Guerfel et al.

It is defined as follows: (us,nb,bd) knowing that these variables are declared
as follows:
var us: U; var nb,bd: RE; us, nb and bd represent respectively users ID, their
number and their budgets.

• M0 is the initial marking of the net. It describes, in a net, how coloured tokens
are situated in different places at a specific time of the execution.

Notation: Let N be a CPN representing CCBSi, p ∈ P, t ∈ T and k is the
defined arc colour. We note:

• •t = {p ∈ P | W− > 0}: Input places of t.
• t• = {p ∈ P | W+ > 0}: Output places of t.
• Pre : P × T → {k, 0}. If an arc links Pm to Tn, then, Pre(Pm, Tn) =

(us, nb, bd), else, Pre(Pm, Tn) = 0.
• Post : P × T → {k, 0}. If an arc links Tn to Pm, then, Post(Pm, Tn) =

(us, nb, bd-prin ∗ nb), else, Post(Pm, Tn) = 0.

After having defined the modeling of each CCBS, we move now to explain the
modeling of elasticity strategies, using the Algorithm 1.

In fact, when a transition Tik of one CCBSi is not replicated and used from
another CCBSj , i.e. Tjk ← Tik, then, two cases exist:

• Tik is the first transition of the CCBSi, i.e., Tik ← Ti1. In this case, we
create a transition named T linkj having as input place Pi0 of CCBSi and
output place Pj0 of CCBSj . Then, use the non-replicated transition Tj1 from
CCBSj and link it to the input places of the next transition of CCBSi. This
is given by the steps 6–17 in the Algorithm 1.

• Tik is any transition of the CCBSi, except the first one. In this case, we link
the previous transition of Tik to the input places of Tjk. Then, Tik is linked
to the input places of the next transition of Tik, which is Ti(k+1). Steps 24 to
36 of the Algorithm 1 model this replication.

Let’s note that the replication of only one transition requires the creation of a
new CCBS.

The deletion action of just one transition implies the deletion of its input
places. Its output places will be linked to the same non-replicated transition.
However, if all the CCBS will be deleted because of the decrease in number
of user demands, then, all its transitions and places will be deleted and the
rest of users will be assigned to the previous existing CCBSs. By applying this
algorithm, the modeling of the strategies 1 and 2 using CPN Tool is represented
by the Fig. 1.



Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 87

4 Verification of Elasticity Strategies

4.1 Formal Analysis of the Proposed System Modeling

The use of formal methods for software and hardware design is motivated by the
welling to achieve the appropriate mathematical analysis, which can contribute
to the reliability and robustness of a design. This guarantees safe operation of
these critical designs. Indeed, the first question that may arise after designing our
model is if this model checks the specification and if it is correct and coherent. It
therefore seems essential to check our graph. To do so, we use formal verification.

Indeed, our composition model is a combination of many CCBSs. Each one
of them is a CPN having a specific initial marking. A case in one CCBS starts
with a token located in the initial place. After a series of steps, this token evolves
towards a final marking that should be located in the final place. So, an impor-
tant property to be checked in this model is the reachability property. In fact,
we must ensure that from such an initial marking, it must be possible to reach
the final place. This is what we call the reachability property of the marking
of output places from the marking of input places [11].

Fig. 1. Modeling of elasticity strategy using CPN tool

Moreover, we should check the absence of dead transitions in every CCBS.
That is to say, all transitions can be enabled. This is called the absence of
deadlock property [12].

In order to express specific properties and verify them, first of all, a gener-
ation of state graph must be processed. CPN tool automatically generates and
calculates this state graph using a strongly connected components (SCC) graph.
Then, we can express properties and query them so that CPN tool checks them.
In our case, two properties are checked which are:



88 R. Guerfel et al.

Algorithm 1. Modelling of CCBSs replication using CPN
1: for CCBSi in CCBSLi do
2: Pi0 ← P10;
3: Pim ← P1m;
4:

∑p
k=1 Tik =• Pi0

5: for j=1 to p do
6: if (Tik ∈ S2) then
7: Pre(Pi0, Tik) = (us, nb, bd);
8: else if (Tik is used from CCBSl) then
9: Pre(Pi0, T linkl) = (us, nb, bd);

10: Post(Pk0, T linkl) = (us, nb, bd);
11: Tik ← Tlk;
12: T •

lk ← (T •
lk +• Ti(k+1));

13: Post(•Ti(k+1), Tlk) = (if us = u(i) then 1‘(us, nb, bd-prlk ∗ nb)
14: else empty);
15: Post(•Tl(k+1), Tlk) = (if us = u(l) then 1‘(us, nb, bd-prlk ∗ nb)
16: else empty);
17: end if
18: end for
19: for k=(p+1) to n do
20: if (Tik ∈ S2) then
21: Tik ← Replication of (Tlk);
22: •Tik ← Replication of (•Tlk);
23: Pre(•Tik, Tik) = (us, nb, bd);
24: else if (Tik is used from CCBSl) then
25: T •

i(k−1) ←• Tlk;
26: Post(•Tlk, Ti(k−1)) = (us, nb, bd-pri(k−1) ∗ nb);
27: Tik ← Tlk;
28: if (T •

lk! = Plm) then
29: repeat step 12-16;
30: else
31: T •

lk ← (T •
lk + Pim);

32: Post(Pim, Tlk) = (if us = u(i) then 1‘(us, nb, bd-prlk ∗ nb)
33: else empty);
34: Post(Plm, Tlk) = (if us = u(l) then 1‘(us, nb, bd-prlk ∗ nb)
35: else empty);
36: end if
37: end if
38: end for
39: end for

• Reachability: This property consists in checking if all output places are reach-
able. Indeed, the reachability of output places confirms that the process of each
CCHS is successfully done. CPN tool offers us a simulation palette to check the
execution of different tokens situated in the initial places. Our model was sim-
ulated more than 100 times to check if output places are reached. All of these
simulations have showed the success reachability of the four output places.



Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 89

However, this not enough to confirm that output places are always reachable
from the initial marking. So, a query for each output place was executed to
confirm this property. The expression of this query is as follows: SccReach-
able’(p1,p2) ; knowing that:

p1: is the initial state of the model, i.e., when input places are marked.
p2: is the final state of a specific CCBS, where the output place of CCBS

is marked and all other places do not contain the token of the current CCBS.
This query returns either false is the final node is not reachable or true with
the specific path if the final node is reachable.
The state of different places is detected from the SCC graph. Let’s note that
the initial state is 1 and the final states of CCBS1, CCBS2 are respectively:
73 and 87 So, two different queries must be checked which are: SccReach-
able’(1,73) and SccReachable’(1,87). Both of these two queries were success-
fully checked and the result is shown in Fig. 2.

• Absence of deadlock: A deadlock corresponds to a CPN marking in which no
more transition is allowed. So, there must be no dead transitions. This can
be checked in CPN tool using the following query: ListDeadTIs(). When
executing this query, we can have two possible results: even a list of dead
transitions or an empty list. In our model, this query returned an empty list,
as shown in Fig. 2, a result that confirms the non-existence of deadlock.

Fig. 2. Formal verification of CCBSs using CPN tool

Thus, we can confirm that the proposed modelling is valid. It does not contain
any deadlock and reaches always the final states.

5 Related Work

Cloud Elasticity is a highly studied topic. Several mechanisms have been pro-
posed to ensure it. However, we focus on works which were proposed to minimize
the cost when applying elasticity.



90 R. Guerfel et al.

Liu et al. [9] proposed an algorithm allowing them to minimize the cost
of used SaaS by decreasing the unused Virtual machines from the IaaS. This
algorithm aims at not violating the performance provided to the final user.

Wu et al. [15] proposed a system that maximizes the accepted number of users
requesting a certain SaaS. This is done by an efficient placement of requests on
Virtual machines offered by different IaaS providers. In fact, they proposed an
algorithm that maximises the use of already initiated VMs so that many users
can access them after being classified according to the waiting time. This solution
is a cost benefic for the provider perspective.

Han et al. [5] have also focused on cost reduction when applying an elastic
scaling approach of multi-tier applications in Cloud computing. Indeed, they
proposed an approach that detects the bottlenecks in a class of these applications
so that they can accordingly scale up and down resources at these points.

The above cited works are dealing with the vertical elasticity whereas we are
handling horizontal one. Besides, the proposed models were not checked, which
is a very important task to ensure their validity.

However, Narkos et al. [10] proposed a model, based on Markov Decision
Chain, allowing the automatic elasticity by increasing and decreasing the num-
ber of Virtual machines. Indeed, the action that should be processed to ensure the
elasticity operation is checked and expressed using PCTL. Besides, the reach-
ability property is checked in this model using PRISM tool. This work treats
also the vertical elasticity, which is not the case for our work. Moreover, we are
handling the composite Cloud services and not the atomic Cloud services.

It is in this sens that the work of Amziani et al. [1] is oriented. Indeed, they
proposed a controller to check the behavior of service-based business process in
the Cloud when applying elasticity operations. The controller is modeled by high
level Petri nets. Time and maximum and minimum thresholds of one service are
the main indicators of elasticity actions. Their work was a start point for us but
our work differs from them in three main points which are:

• Additionally to the threshold, our approach focuses on cost when applying
elasticity actions.

• Our approach checks the validity of the obtained model before comparing
between strategies.

• The modeling that we propose allows even the modeling of just one Cloud
service in case it is required atomically.

6 Conclusion

Cloud computing has proven to be more secure, more reliable, more scalable
and more affordable than traditional IT. These are some of the Cloud charac-
teristics that made it widely used in many fields. As a result, many sectors of
this field used the Cloud architecture to offer their services that must be com-
posed to perfectly meet the demand of their users, whose number is more and
more increasing. So, a replication of the composite service, called CCBS, must
be processed to answer to user queries at the same time. Some strategies were



Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing 91

proposed in this context. Our contribution in this paper was to check the valid-
ity of these strategies using formal models and to compare between them. To do
so, our composition was modeled using CPN and was validated by checking the
reachability and the absence of deadlock properties.

However, CPN tool does not allow us to check specific properties. So, as a
future work, we propose to check soundness and temporel properties using a
suitable tool. Besides, we intend to test this mechanism with real CBSs and to
implement a tool allowing the automatic execution of elasticity actions.

References

1. Amziani, M., Melliti, T., Tata, S.: Formal modeling and evaluation of service-based
business process elasticity in the cloud. In: 22nd IEEE International Conference
on Collaboration Technologies and Infrastructure (WETICE 2013), pp. 284–291.
Hammamet, Tunisia, June 2013

2. André, P.: Methodes formelles et a objets pour le developpement du logiciel: etudes
et propositions (1995)

3. Guerfel, R., Sbäı, Z., Ayed, R.B.: On service composition in cloud computing: a sur-
vey and an ongoing architecture. In: IEEE 6th International Conference on Cloud
Computing Technology and Science, CloudCom 2014, Singapore, 15–18 December
2014, pp. 875–880 (2014)

4. Guerfel, R., Sbäı, Z., Ayed, R.B.: Towards a system for cloud service discovery
and composition based on ontology. In: Núñez, M., Nguyen, N.T., Camacho, D.,
Trawiński, B. (eds.) ICCCI 2015. LNCS (LNAI), Part II, vol. 9330, pp. 34–43.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24306-1 4

5. Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications. Future Gener. Comput. Syst.
32, 82–98 (2014)

6. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: what it
is, and what it is not. In: Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 13), pp. 23–27. USENIX, San Jose (2013)

7. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity for
cloud platforms. In: Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering, ICPE 2012, pp. 85–96. ACM, New York (2012)

8. Jensen, K.: Coloured petri nets: a high level language for system design and analy-
sis. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 342–416. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-53863-1 31

9. Liu, Z., Wang, S., Sun, Q., Zou, H., Yang, F.: Cost-aware cloud service request
scheduling for saas providers. Comput. J. 57(2), 291–301 (2014)

10. Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D.,
Konstantinou, I., Sioutas, S.: Cloud elasticity using probabilistic model check-
ing. CoRR, abs/1405.4699 (2014)

11. Sbäı, Z., Barkaoui, K., Boucheneb, H.: Compatibility analysis of time open work-
flow nets. In: International Workshop on Petri Nets and Software Engineering
(PNSE 2014), CEUR Workshop Proceedings, vol. 1160, pp. 249–268, June 2014.
http://ceur-ws.org/Vol-1160/

12. Sbäı, Z., Guerfel, R.: CTL model checking of web services composition based on
open workflow nets modeling. IJSSMET 7(1), 27–42 (2016)

https://doi.org/10.1007/978-3-319-24306-1_4
https://doi.org/10.1007/3-540-53863-1_31
http://ceur-ws.org/Vol-1160/


92 R. Guerfel et al.

13. Inc Sun Microsystems.: Introduction to cloud computing architecture. Technical
report, June 2009

14. CPN tool. http://cpntools.org/
15. Wu, L., Garg, S.K., Buyya, R.: SLA-based admission control for a software-as-a-

service provider in cloud computing environments. J. Comput. Syst. Sci. 78(5),
1280–1299 (2012)

http://cpntools.org/

	Model Checking of Cost-Effective Elasticity Strategies in Cloud Computing
	1 Introduction
	2 Cost-Effective Elasticity Strategy of Composite Cloud Business Services 
	2.1 System Model
	2.2 Motivation

	3 Formal Modeling of Elasticity of CCBS 
	4 Verification of Elasticity Strategies 
	4.1 Formal Analysis of the Proposed System Modeling

	5 Related Work 
	6 Conclusion 
	References




