
Checking and Enforcing Security Through
Opacity in Healthcare Applications

Rym Zrelli1(B), Moez Yeddes2, and Nejib Ben Hadj-Alouane1

1 OASIS Reasearch Lab (ENIT), University of Tunis El Manar, Tunis, Tunisia
rym.zrelli@gmail.com

2 OASIS Reasearch Lab (INSAT), University of Carthage, Tunis, Tunisia

Abstract. The Internet of Things (IoT) is a paradigm that can tremen-
dously revolutionize health care thus benefiting both hospitals, doc-
tors and patients. In this context, protecting the IoT in health care
against interference, including service attacks and malwares, is challeng-
ing. Opacity is a confidentiality property capturing a system’s ability to
keep a subset of its behavior hidden from passive observers. In this work,
we seek to introduce an IoT-based heart attack detection system, that
could be life-saving for patients without risking their need for privacy
through the verification and enforcement of opacity. Our main contribu-
tions are the use of a tool to verify opacity in three of its forms, so as
to detect privacy leaks in our system. Furthermore, we develop an effi-
cient, Symbolic Observation Graph (SOG)-based algorithm for enforcing
opacity.

1 Introduction

Real-world usage of IoT in health-care necessitates the dealing with new security
challenges. In fact, and since this type of application would handle medical and
personal information, their employment carries serious risks for personal privacy.
Accordingly, it is paramount to protect any sensitive data against deduction
by third-parties to avoid the compromise of privacy. The most common secu-
rity preservation practice is the use of cryptographic techniques. However, these
techniques do not provide perfect security as the inference of critical information
from non-critical ones remains a possibility. The discovery of vulnerabilities of
simple crypto-systems like that of the Needham-Schroeder public key protocol
[10] proved that cryptography is not enough to guarantee the privacy of informa-
tion. Furthermore, the various techniques available are computationally inten-
sive. This is why they cannot be immediately adopted in IoT where the network
nodes are powered by battery. To facilitate the adoption of IoT in health-care, we
need formal (preferably automated) verification of security properties. Formal
verification ensure that the system’s design conforms to the desired behavior.
Information flow properties are the most formal security properties. In fact, var-
ious ones have been defined in the literature including non-interference, intran-
sitive non-interference and others (e.g. secrecy, and anonymity). Interested in
c© Springer International Publishing AG, part of Springer Nature 2018
L. Braubach et al. (Eds.): ICSOC Workshops 2017, LNCS 10797, pp. 161–173, 2018.
https://doi.org/10.1007/978-3-319-91764-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91764-1_13&domain=pdf


162 R. Zrelli et al.

confidentiality properties, we consider opacity, a general information flow prop-
erty, to analyze IoT privacy in a heart attack detection system. Opacity’s main
interest is to formulate the need to hide information from a passive observer. It
was first introduced in [12] and was later generalized to transition systems [4]. It
has since, been studied several times allowing the formal verification of system
models. Its wide study led to the birth of several variants as well as verifica-
tion and enforcement techniques. If classified according to the security policy,
then we are dealing with simple, K-step, initial, infinite as well as strong and
weak opacity alongside their extensions (e.g., K-step weak and K-step strong
opacity). The efforts of these studies also made possible not only opacity verifi-
cation, but also its assurance via supervision [5], [14] or enforcement [7]. Several
IoT-based solutions [1,8] for healthcare are known in the literature to deal with
privacy issues. A key limitation of these studies is that they have been using
cryptographic methods.

In this paper, we wish to show the practical use of our SOG-based approach
and the relevance of the use of opacity in the real world through the synthesis
of an opaque IoT-based heart attack detection system. Building on the SOG-
based verification approach developed in [3], the purpose is to verify opacity
in three of its forms (simple, K-step weak opacity and K-step strong opacity)
to detect security violations in our synthesized system. Then to contribute an
algorithmic approach that enforces simple opacity by padding the system with
minimal dummy behavior.

This paper is organized as follows: Sect. 2 establishes all necessary basic
notions including the SOG structure and the opacity property. In Sect. 3, we
detail the case study. In Sect. 4, we illustrate the practical usefulness of the opac-
ity verification approach in the heart attack detection system. Section 5 details
our proposed approach to enforce simple opacity. Finally, we conclude in Sect. 6,
and list some potential future works.

2 Preliminaries

2.1 Petri Nets, WF-net and oWF-nets

To model the services under consideration in our case study, we use Petri nets. A
service can be considered as a control structure describing its behavior in order
to reach a final state. We can represent it using a Workflow net, a subclass of
Petri nets. A WF-net satisfies two requirements: it has one input place i and
one output place o, and every transition t or place p should be located on a
path from place i to place o. To model the communication aspect of a service,
we can use open Work-Flow nets which is enriched with communication places
representing the (asynchronous) interface. Each communication place represents
a channel to send or receive messages to or from another oWF-net.

Definition 1 (oWF-net [11])
An open Work-Flow net is defined by a tuple N = (P, T, F,W,m0, I, O,mf ):



Checking and Enforcing Security 163

– (P, T, F, W ) is a WF-net;
• P is a finite set of places and T a finite set of transitions;
• F is a flow relation F ⊆ (P × T ) ∪ (T × P );
• W : F → N is a mapping allocating a weight to each arc.

– m0 is the initial marking;
– I is a set of input places and O is a set of output places (I ∪ O: the set of interface

places).
– mf is a final marking.

Having the same semantics as Petri nets, the behavior of WF-nets and oWF-nets
can be represented by Labeled Transition Systems (LTS).

2.2 Labeled Transition System

An LTS is defined as follows:

Definition 2 (Labeled Transition System)
A Labeled Transition System is a 4-tuple G = (Q, qinit, Σ, δ):

– Q: a finite set of states;
– qinit: the initial state;
– Σ: actions’ alphabet;
– δ : Q × Σ → Q: the transition function where: q, q′ ∈ Q and σ ∈ Σ, δ(q, σ) = q′

meaning that an event σ can be executed at state q leading to state q′.

The language of an LTS G is defined by L(G) = {t ∈ Σ∗, q0
t−→ qf}. An LTS can

be considered as an automaton where all states are accepting final states.
To reflect the observable behavior of an LTS, we specify a subset of events

Σo ⊆ Σ and Σ − Σo = Σu where Σo is the set of events visible to a given
observer and Σu is the set of events which are invisible to said-observer. The
behavior visible is defined by the projection PΣo

from Σ∗ to Σ∗
o that removes

from a sequence in Σ∗ all events not in Σo. Formally, Po: Σ∗ → Σ∗
o is defined:

⎧
⎪⎨

⎪⎩

PΣo
(ε) = ε;

PΣo
(u · σ) =

{
PΣo

(u) if σ /∈ Σo;
PΣo

(u) · σ otherwise.
Where:σ ∈ Σ and u ∈ Σ∗.

2.3 Opacity

Opacity’s main interest is in capturing the possibility of using observations and
prior-knowledge of a system’s structure to infer secret information. It reflects a
wide range of security properties. Opacity’s parameters are a secret predicate,
given as a subset of sets or traces of the system’s model, and an observation
function. This latter captures an intruder’s abilities to collect information about
the system. A system is, thus, opaque w.r.t. the secret and the observation
function, if and only if for every run that belongs to the secret, there exists
another run with a similar projection from the observer’s point of view and that
does not belong to the secret [5,6,9]. In this paper, we focus on 3 opacity variants
as defined in [6]: simple, K-step weak and K-step strong opacity.



164 R. Zrelli et al.

Definition 3 (Simple opacity [6])
Given an LTS G = (Q, q0, Σ, δ) with Σo ⊆ Σ is the set of observable events and S ⊆ Q
is the set of secret states. The secret S ⊆ Q is opaque under the projection map PΣo

ou (G, PΣo) − opaque iff: ∀u ∈ LS(G), ∃v ∈ L(G) : (v ≈Σo u) ∧ (v /∈ LS(G)).

While simple opacity deals with the non-discloser of the fact that the system
is currently in a secret state, K-step weak opacity ensures that the system wasn’t
in a secret state K observable events ago, and K-step strong opacity formulates
the need to make sure that, K-steps backwards, the system does not end, and
have not crossed any secret states.

2.4 Symbolic Observation Graph

The SOG is an abstraction of the reachability graph. It is constructed by explor-
ing a system’s observable actions which are used to label its edges. The unobserv-
able actions are hidden within the SOG nodes named aggregates. The definition
of an aggregate and that of the SOG are given in the following:

Definition 4 (Aggregate)
Given an LTS G = (Q, q0, Σ, →, δ) with Σ = Σo ∪ Σu. An aggregate a is a non empty
set of states satisfying: q ∈ a ⇔ Saturate(q) ⊆ a where: Saturate(q) = {q′ ∈ Q : q

w−→
q′and w ∈ Σ∗

u}.

Definition 5 (Deterministic SOG)
A deterministic SOG(A) associated with an LTS G = (Q, q0, Σo ∪ Σu, δ) is an LTS
(A, a0, Σo, Δ) where:

1. A a finite set of aggregates with:
(a) a0 ∈ A is the initial aggregate s.t. a0 = Saturate(q0);
(b) For each a ∈ A, and for each σ ∈ Σo, ∃q ∈ a, q′ ∈ Q : q

σ−→ q′ ⇔ ∃a′ ∈ A :
a′ = Saturate({q′ ∈ Q, ∃q ∈ a with q

σ−→ q′}) ∧ (a, σ, a′) ∈ Δ;
2. Δ ⊆ A × Σo × A is the transition relation.

3 Motivating Scenario

Heart disease is the first cause of morbidity and mortality in the world, account-
ing for 28.30% of total deaths each year in Tunisia alone [13]. Investment in
preventive health care such as the use of IoT monitoring devices may help lower
the cost of processing and the development of serious health problems. Inte-
grating clinical decisions with electronic medical records could decrease medical
errors, reduce undesirable variations in practice, and improve patient outcomes.

Our case study considers IoT integration with cloud computing. We use a
connected bracelet, fog nodes, a private and a public Cloud, and a mobile applica-
tion, which together form a medical application. This latter provides continuous
monitoring of the vital data of a given patient. Regular or routine measure-
ments could help to detect the first symptoms of heart malfunction, and makes
it possible to immediately trigger an alert. The vital information collected by the



Checking and Enforcing Security 165

bracelet includes cardiac activity, blood pressure, oxygen levels and, tempera-
ture. As mentioned earlier, we consider an IoT application in a hybrid cloud/fog
environment. The cloud [16] is considered as a highly promising approach to
deliver services to users, and provide applications with low-cost elastic resources.

Public clouds provide cheap scalable resources. Making it useful for analyzing
the patient’s data which would be costly as it requires extensive computing and
storage resources. However, we must take into account that storage of health
records on a public environment is a privacy risk. To avoid such security leaks,
we could deploy the application on a secure private cloud. But seeing this latter’s
limited resources, this may degrade the overall performance. To prevent this, the
workflow can be partitioned between a private cloud and a public one. Therefore,
the confidential medical data will be processed on the private cloud. Other work-
flow actions can be deployed on the public cloud dealing with anonymized data.
The use of a cloud-based framework poses the problem of delay when sending
and receiving data between the objects and geographically far cloud resources
thus jeopardizing the patients’ well-being given that triggering timely responses
is the purpose of this data. To resolve this issue, data gathering can be moved
from the cloud domain to that of the fog [2]. Bringing this action closer to the
connected object shortens the transmission time, and reduces the amount of
data transferred to the cloud. The proposed workflow is described as follows:

– A patient may register via the mobile app by entering his information. This infor-
mation include personal data and medical history (personal and family medical
histories, surgical history, drug prescriptions, and the doctors’ notes).

– The patient’s medical history is then transmitted to the private cloud. After recep-
tion, this latter anonymizes the data by stripping off all that could identify the
patient leaving only medical data, which it sends to the public cloud.

– The public cloud receives the anonymized data, and proceeds to the classification
attaching to each medical file a class.

– The patient is equipped with a measuring bracelet connected to the processing
components (Fog nodes). The data sent to the fog domain is a set of vital data
recorded over a period of time.

– The fog node collects the data then compares it to its predecessors, searching for
any vital signs changes. When the node determines that a change has occurred, it
sends the data to the private cloud.

– The private cloud links the gathered data with the patient, transmitting this data
and the class ascribed to the patient, to the public cloud.

– The public cloud reads the data, analyzes it, and then provides results. When the
risk of heart attack is detected, it immediately notifies the patient’s app.

4 Modeling and Verification

The case study contains five services, namely, a connected bracelet (Br), a fog
node (Fog), a private cloud (CPr), a public cloud (CPub), and a smartphone
application (App). Figure 1 depicts the oWF-nets of the Br, Fog, CPr, CPub
and the App, respectively. We note that the transitions entailing the sending



166 R. Zrelli et al.

Fig. 1. Case study oWF-nets.



Checking and Enforcing Security 167

(respectively reception) of a messages are indicated by adding a ! (respectively
a ?) mark. In this case study, we want to illustrate the ability of the SOG-
based verification approach to meet privacy demands. The first step is to create
the underlying LTS of each oWf-net. Secondly, we identify the observable and
unobservable actions of each net as well as the secret states. Then, we build the
SOG models from each net’s LTS verifying, at the same time, their opacity.

The Br workflow (Fig. 1(a)) starts by collecting data (T1), which will then
be sent to the closest Fog node. Next it creates the message comprising the data
(T2) and sends this message (T3?). Not having any security requirements for the
bracelet, thus, there is no need to check its opacity.

The Fog WS (Fig. 1(b)) has an internal set of operations, and a set of external
cooperative ones. After receiving the data (T1!), we consider two scenarios. The
first is when the Fog communicates for the 1st time with the bracelet (T3). In
this case, it sends a request (T5?) to the App to retrieve data from the patient’s
medical history. Then, it will receive these data through (T6!). The second sce-
nario begins by selecting the last recorded data (T4). The next step is to compare
(T7) the data retrieved by one of the mentioned scenarios with the data sent by
the Br. When the node detects a change in values (T9), it will immediately trans-
mit the data to CPr (T10?). If there is no change (T8), the Fog doesn’t perform
any processing. Finally, the new data will be stored locally in the Fog (T11). To
ensure the privacy of fog secret information, we define the secret state S = {S6}
which is related to receiving patient’s medical history. To conform with the secu-
rity needs, the observable transitions of the Fog are Σo = {T1!, T5?, T6!, T10?},
while the unobservable part is Σu = {T2, T3, T4, T7, T8, T9, T11}. Using this data,
we proceed to the opacity verification which is done while creating the SOG-
abstraction of the model. We get the SOG in Fig. 2(a) and we can conclude that
the fog’s SOG is both simple, and K-step weakly and strongly opaque.

The CPr workflow (Fig. 1(c)) contains two scenarios. The first one starts by
receiving the data of a registered patient (T1!). The CPr subsequently proceeds
with the recording (T2) and the anonymization (T3) of the received data. The
anonymised data will then be transmitted to the CPub (T4?). After receiving
(T5!) the class, this latter is associated with the patient (T6). The second sce-
nario starts when the CPr receives (T7!) the data sent by the Fog. The CPr
combines the data with the patient by searching for its ID (T8). If the ID can-
not be found (T9), the CPr sends a request to the App so that the patient
re-enter his information (T10?). Thereafter, it receives the requested data (T11!)
and it pursues the first scenario. For the second case, when the ID is found,
the CPr transmits the data and the class to which the patient belongs to the
CPub (T13?). Afterwards, the CPr receives and records respectively 3 types of
messages, each one belongs to an alert type: low (T14! & T15), medium (T16!
& T17) and high (T19! & T20). To protect the privacy of patients, the CPr
need to hide the update procedure performed on the patient’s personal infor-
mation. It must keep secret the states related to the patient registration (S4

& S16) and the anonymization of his data (S7 & S21). It is also required to
withhold secret the states related to sending alerts (S22 & S23). So the set of



168 R. Zrelli et al.

Fig. 2. The SOGs of the case study WSs.

secret states for the CPr is S = {S1, S3, S4, S7, S16, S21, S22, S23}, where S1

stands for the marking related to the reception of the data sent by the fog,
while S3 reflects that related to patient ID search. The observable transitions of
the CPr are Σo = {T1!, T4?, T5!, T7!, T10?, T11!, T13?, T14!, T16!, T18?, T19!, T21?},
while the unobservable ones are Σu = {T2, T3, T6, T8, T9, T12, T15, T17, T20}. With
this configuration, we conduct the verification and get the SOG in Fig. 2(b).
Thus, the CPr workflow is not opaque and is not k-step weakly and strongly
opaque. Indeed, the two secret states S22 and S23, each belonging to an aggre-
gate that doesn’t hold other non-secret states. An attacker can then disclose
secret information after the traces T7T13T16T18 and T7T13T19T21. The CPr ser-
vice is therefore unsafe and needs to be improved. Taking into account that the
CPub is available for public use, we don’t have secrets to be hidden from an
external observer. So, we will only describe the CPub actions (Fig. 1(d)) and we
won’t proceed the opacity verification. The first set of CPub actions concerns the
internal operations which include the processing of the data sent by the CPr: the
classification (T2) and the prediction (T5) which aims to detect the risk of heart
attack. As regards the external operations, the CPub receives two messages from
the CPr. The first one (T1) includes the anonymised data and the second (T4)
includes the data collected by the Br and the class to which the patient belongs.
In response to the received messages, the CPub sends the classification result to
the CPr (T3) and sends 3 types of alerts according to the prediction results: T6

for the low alert, T7 for the medium alert and T8 for the high alert.
The last service is that of the App (Fig. 1(e)). The set of its internal opera-

tions are the notification (T9) and the application to register (T1) which allows



Checking and Enforcing Security 169

a new patient to deposit his information. After registration, the provided infor-
mation will be sent (T2) to the CPr. The App shares patient information with
the Fog (T3! & T4?) when this latter communicates for the first time with the
Br. It also shares the medical history with the CPr (T5! & T6) when it fails to
find the patient ID. At the end, the App receives two types of alerts (T7? for
the medium and T8? for the high) when the risk of a heart attack is detected.
The App must be opaque with regards to its set of secret states when dealing
with either the CPr or the Fog. To match these needs the observable transi-
tions are Σo = {T2?, T3!, T4?, T5!, T6?, T7!, T8!}, while the unobservable ones are
Σu = {T1, T9}. The set of secret states are S = {S2, S6, S7, S9, S10, S11}, with
S2 is related to the request to register a patient, S6 is that related to sending
patient data, S7 is that triggered due to the sending of personal information of
a new patient, S11 is related to sending the medical history, and finally S9 and
S10 reflect the secrets associated with sending the notification. Conducting the
opacity verification, we obtain the SOG depicted in Fig. 2(c). We say that the
App SOG is not opaque, and it is not K-step weakly, and strongly opaque.

5 SOG-Based Enforcement of Opacity

In this section, we describe the opacity enforcement problem introducing algo-
rithms to secure the heart attack detection system. Considering a language L
and a secret language L(ϕ) ∈ L, when opacity fails of a secret ϕ for a finite
system S, we provide an effective method to synthesize automatically a system
S′ obtained by minimally modifying the system S so that the secret ϕ is opaque
for S′. To synthesize S′, we focus on language modification. If a secret language
L(ϕ) is not opaque for a system behavior described by the language L(S), we
can modify the behavior by padding it with dummy behaviors. We can then
extend the language by computing a minimal super-language of L. In [15], the
author has derived an algorithm to compute min

∏ϕ
super to assist the designer

develop a system that satisfies the opacity property for a secret language.

Theorem 1. [15] Let a language L defined on an alphabet Σ = Σo ∪Σu and a static
projection πO defined above on the same alphabet and a secret ϕ ⊆ L, then:

min
∏ϕ

super
(L) = L ∪ (πo(ϕ)\(πo(ϕ) ∩ πo(L\ϕ)))

The proposed approach builds upon the SOG structure to check the system’s
opacity. If the system is not opaque, the SOG construction allows for detection
of all opacity violations provided as a counterexample. These counterexamples
will later be used to improve the system security (opacity) by locating the paths
leading to the disclosure of private information and performing necessary changes
that would render it opaque. Then we compute the minimal super-language that
provides us with the restricted language to be added in order to modify the
system behavior. For each incident of opacity violation, we match a trace among
the calculated super-language and an unobservable event will be added to this
trace. In order to opacify the system, we apply the backtracking method. We
implement adjustments where needed to the SOG and the LTS and we thus
return to the starting model, the Petri net.



170 R. Zrelli et al.

5.1 The SOG-Based Algorithm for the Verification of Simple
Opacity

The use of SOG-based algorithm in the verification of simple opacity proved
efficient [3]. This is due to the symbolic representation of the aggregates, and to
the on-the-fly verification. The SOG construction is stopped when the property
is proven unsatisfied and a trace (counterexample) that violates the opacity is
supplied. To adopt this algorithm for our enforcement approach, we will bring
necessary modifications to it.

Algorithm 1. SOG-based Opaci-
fication

Procedure: SOG-based Opacification
((P, T, F, W ), mo, mS , Σo ∪
Σu)

1 Vertices V ; Edges E;

2 Aggregate a, a′;
3 Stack st, CounterExample;
4 Incidence Matrix C;
5 begin
6 (Q, qinit, Σ, δ) ←

BuildReachabilityGraph(P, T, F, W, mo);

7 S ← mS ;
8 a ← Saturate({qinit});
9 if (a ⊆ S) then

10 CounterExample.Push(ε, a, ε, a);
11 end
12 V ← a;E ← ∅;
13 trace ← ∅;
14 st.push ((a, EnableObs(a)));
15 while (st 	= ∅) do
16 (a, enb) ← st.Top();
17 if (enb 	= ∅) then
18 st.Pop();
19 else
20 t ←

RemoveLast(st.Top.Second());

21 a′ ← Img(a, t);

22 a′ ← Saturate(a′);
23 if (Treated(a’)) then
24 E ← E ∪ t;

25 Save(a
t−→ a′);

26 else
27 if (a′ ⊆ S) then
28 Trace = Print

CounterExample();

29 CounterExample.

Push(trace, a, t, a′);

30 end

31 V ← V ∪ {a′};
32 E ← E ∪ t;

33 Save(a
t−→ a′);

34 st.Push(a′, EnableObs(a′));

35 end

36 end

37 end
38 if (CounterExample 	= ∅) then
39 Opacification();
40 end

41 end

Algorithm 2. Opacification
Procedure: Opacification()

1 begin
2 minSL =

ComputationMinSL(L();
3 while (CounterExample 	= ∅) do
4 (trace, a, t, a′) ←

CounterExample.Top();

5 if (NotTreated(a′)) then
6 foreach u in minSL do
7 if (u = trace) then

/* SOG
Opacification
*/

8 qnew =
new State();

9 a′ ← a′ ∪ {qnew};
10 Save(a

t−→ a′);
/* LTS

Opacification
*/

11 q ←
CounterExample.Top.Fourth();

12 tnew ←
new UnobservableTransition();

13 Q ← Q ∪ qnew;
14 Σu ← Σu ∪ tnew;
15 δ(q, tnew) =

qnew;
/* Petri net

Opacification
*/

16 pnew ←
newPlace();

17 P ← P ∪ pnew;
18 T ← T ∪ tnew;
19 p ← getPlace();
20 F ← F ∪(p, tnew);
21 F ←

F ∪ (tnew, pnew);
22 W ← W ∪

{((p, tnew) �−→
1), ((tnew, pnew) �−→
1)};

23 C(pnew, tnew) ←
W (tnew, pnew) −
W (pnew,tnew );

24 end

25 end

26 end
27 CounterExample.Pop();

28 end

29 end



Checking and Enforcing Security 171

Taking into account that we are trying to opacify Petri nets, the first modifi-
cation needed to the algorithm presented in [3] consists in replacing the input by
a Petri net-modeled system. The petri net has 2 sets of transitions: observable
and unobservable actions, and a set of secret marking subsequently representing
the states judged to be secret in the LTS. We add in line 3 a Stack, namely
CounterExample with all the standard functions (push, pop and top), whose
elements are quadruples composed by the counter-examples, a transition t, an
actual aggregate a and an aggregate a′, successor of a by t. Then, the algorithm 1
starts by constructing (line 6) the reachability graph which represents the LTS.
Once other changes have been made (i.e. line 10 & 29), when the opacity is
violated, neither the verification nor the construction of the SOG stops. All the
paths leading to the disclosure of privacy are stacked into CounterExample.
Once all nodes are explored and the SOG construction is finished, and if the
stack is not empty we proceed to opacification.

5.2 The Opacification Proposed Algorithm

The opacification algorithm has a pretty straightforward mechanism. It begins by
computing the minimal super-language. The next step consists in recuperating
(line 4) the first elements of the stack (CounterExample). Next, the algorithm
goes through the foreach loop which takes each word of the calculated super-
language. If such a word is equivalent with the trace recuperated from the stack,
then we proceed to opacify the SOG. We begin by creating (line 8) a new state
qnew that we will add (line 9) into the aggregate a′. At line 11, we pass to
opacify the LTS. We retrieve the last state q included in the aggregate a′. A
new unobservable transition tnew will be created. Then, the algorithm inserts
(line 13) the new state qnew to the LTS states, adds (line 14) the new transition
tnew to the set of unobservable events Σu, and defines the transition function
between q, tnew and qnew. Starting from line 16, the algorithm performs the
Petri net opacification by creating, at first a new place pnew and adding it to the
set of places. It also adds the transition tnew to the set of transitions. To specify
the flow relation between p, tnew and pnew, the algorithm adds an arc for each
relation and assigns to each arc a weight. Afterwards, it modifies the incidence
matrix. Finally, the algorithm pops the stack and restarts the operations until
the final emptying of the stack presenting the ending test of the while loop.

Being a particular type of Petri nets, oWF-nets require different method of
opacification. When fetching the place p (the execution of getP lace), we have to
exclude the output places. Furthermore, oWF-nets require only one final place
po. So, following the addition of the unobservable transition tnew, we must escape
adding the new place. And a flow relation will be added between tnew and po.
Other specific case that may be necessary, when the place returned by getP lace
is a destination place, we require further changes on the oWF-net. The first step
is to retrieve the transition that following its crossing marked the output place.
Step two is to delete the flow relation between t and po. The following step is to
create a new place pnew and to add the unobservable transition tnew. Then, we



172 R. Zrelli et al.

create the flow relations between t, pnew, tnew and po. For the application of the
opacification function on our case study, see in this paper [17].

6 Conclusion and Future Work

In this paper, we used opacity, a generalization of many security properties,
as a means to track the information flow in an IoT-based medical application.
We introduced a model to analyze the behavior of an IoT-based heart attack
detection system discussing how an observer may infer personal patient infor-
mation. Our work aims at detecting security leaks, using SOG-based algorithms
for the on-the-fly verification of opacity variants (simple, K-step weak, and K-
step strong opacity). We have also proposed a novel, SOG-based approach for
opacity enforcement of Petri net-modeled systems. The main contribution of this
work is to propose an efficient algorithm for enforcing simple opacity by padding
the system with minimal dummy behavior. In our future research, we will explore
the same idea of enforcement for other opacity variants such as K-step weak and
K-step strong opacity. We also hope to extend this work to take into account dif-
ferent types of enforcement, such as supervisory control for opacity and finding
the supremal sub-language, instead of computing the minimal super-language.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

2. Bonomi, F., Milito, R.A., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC@SIGCOMM 2012, Helsinki, Finland, August 17,
2012. pp. 13–16 (2012). https://doi.org/10.1145/2342509.2342513

3. Bourouis, A., Klai, K., El Touati, Y., Ben Hadj-Alouane, N.: Checking opacity
of vulnerable critical systems on-the-fly. Int. J. Inf. Technol. Web Eng. (IJITWE)
10(1), 1–30 (2015)

4. Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to tan-
sition systems. Int. J. Inf. Secur. 7, 421–435 (2008)

5. Dubreil, J.: Monitoriting and Supervisory Control for Opacity Properties. Ph.D.
thesis, University of Rennes 1, November 2009

6. Falcone, Y., Marchand, H.: Various Notions of Opacity Verified and Enforced at
Runtime. Technical report INRIA (2010)

7. Falcone, Y., Marchand, H.: Runtime enforcement of K-setp opacity. In: 52nd IEEE
Conference of Decision and Control, pp. 7271–7278, December 2013

8. Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W.: Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption. IEEE Trans.
Parallel Distrib. Syst. 24(1), 131–143 (2013)

9. Lin, F.: Opacity of discrete event systems and its applications. Automatica 47(3),
496–503 (2011)

10. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Inf. Process. Lett. 56(3), 131–133 (1995)

https://doi.org/10.1145/2342509.2342513


Checking and Enforcing Security 173

11. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the soa.
Ann. Math. Comput. Teleinform. 1, 35–43 (2005)

12. Mazaré, L.: Using unification for opacity properties. In: Proceedings of WITS
(Workshop on Information Technology and Systems), vol. 4, pp. 165–176 (2004)

13. World Health Organization: May 2014. http://www.worldlifeexpectancy.com/
tunisia-coronary-heart-disease, consulté le 14/02/2017

14. Saboori, A., Hadjicostis, C.N.: Opacity-enforcing supervisory strategies via state
estimator constructions. IEEE Trans. Automat. Contr. 57(5), 1155–1165 (2012).
https://doi.org/10.1109/TAC.2011.2170453

15. Yeddes, M.: Enforcing opacity with orwellian observation. In: 13th International
Workshop on Discrete Event Systems, WODES 2016, Xi’an, China, 30 May–1
June, 2016, pp. 306–312 (2016). https://doi.org/10.1109/WODES.2016.7497864

16. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

17. Zrelli, R., Yeddes, M., Ben Hadj-Alouane, N.: Checking and enforcing security
through opacity in healthcare applications (2017)

http://www.worldlifeexpectancy.com/tunisia-coronary-heart-disease
http://www.worldlifeexpectancy.com/tunisia-coronary-heart-disease
https://doi.org/10.1109/TAC.2011.2170453
https://doi.org/10.1109/WODES.2016.7497864

	Checking and Enforcing Security Through Opacity in Healthcare Applications
	1 Introduction
	2 Preliminaries
	2.1 Petri Nets, WF-net and oWF-nets
	2.2 Labeled Transition System
	2.3 Opacity
	2.4 Symbolic Observation Graph

	3 Motivating Scenario
	4 Modeling and Verification
	5 SOG-Based Enforcement of Opacity
	5.1 The SOG-Based Algorithm for the Verification of Simple Opacity
	5.2 The Opacification Proposed Algorithm

	6 Conclusion and Future Work
	References




