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Abstract. An Internet of Things (IoT) environment should respond
to users’ requirements by providing access to a number of component
services, which can be used to create applications. To meet quality of
service (QoS) requirements, these applications must be able to auto-
matically adapt to changes in the QoS of their component services. In
this paper we show how matrix factorisation (MF) based collaborative
filtering can be used in a self-managing, goal-driven service model for
task execution in the IoT. QoS prediction enables the goal-driven model
to make adaptation decisions, allowing execution paths to dynamically
adapt. This reduces failures and lessens re-execution effort for failure
recovery. Results based on a QoS dataset show the suitability of the pro-
posed mechanism in IoT, where providers are mobile and QoS values of
services can change.

1 Introduction

The development of Internet of Things (IoT) technology has made it possible
to connect various smart objects together through a number of communication
protocols. The number of connected devices is predicted to grow to between 26
and 50 billion connected devices by 2020 [1,2]. These devices will lead to a wide
variety of services from multiple sources such as home applications, surveillance
cameras, monitoring sensors and actuators [3]. These services could potentially
be used in applications in many different domains including smart cities, home
automation, industrial automation, medical aids and many others [4].

IoT applications make use of these services typically through a Service Ori-
ented Architecture (SOA), where the services from the devices are discover-
able, accessible and reusable in an IoT environment [5,6]. An application can be
created by a combination of multiple services and flexible service composition,
which is useful to tackle potentially complex requests. There are a number of
challenges associated with the environment’s openness and dynamism, such as
flexible service composition for services maintained by different hosts and adapt-
able composites to create a new service composition when the network topology
changes the QoS of services in the environment. To address these challenges,
existing works in service composition have used goal-driven reasoning mecha-
nisms to achieve the user’s complex goal, and classic AI backward-chaining to
map the request to services available in the environment [7,8].
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Apart from the functional requirements, a key requirement for service com-
position and adaptation in the IoT is to choose the correct set of services,
which can also satisfy the non-functional requirements [9]. Traditional compo-
sition approaches assume that the QoS values are already known, however in
reality user side QoS may vary significantly due to unpredictable communica-
tion links, mobile service providers moving out of range and the heterogeneous
provider environment [10]. Collaborative filtering uses the QoS values from other
users in the environment to make predictions for candidate services [11,12]. This
allows for more accurate selection of the best service based on the non-functional
requirements such as response time and throughput [13]. This can happen either
before, or during the execution, if the QoS of the currently executing service
begins to degrade. This is especially important for safety critical services such
as those in healthcare, which have strict QoS requirements and where a service
failing can have a serious impact.

In this paper we propose an approach for the self-management of dependable
systems using collaborative filtering and goal oriented service composition [7],
and present our initial results on an established QoS dataset. The remain-
der of the paper is organised as follows: Sect. 2 describes the background and
related work, Sect. 3 presents the QoS-driven service composition and execution.
Section 4 describes the experimental setup and Sect. 5 presents the results of the
experiments. Section 6 outlines the conclusions and future work based on the
results of the paper.

2 Background and Related Work

2.1 Decentralised Service Execution

Service composition is used to create complex applications based on available
services provided by the devices in the environment. Dynamic service compo-
sition becomes increasingly difficult in IoT where there are a large number of
available service providers, which rely on battery-powered, resource-constrained
and potentially mobile devices to provide their services [14]. These devices can
dynamically change their state due to poor wireless links, awake/sleep duty
cycles or battery shortage [3]. In such an environment, a centralised mecha-
nism is a single point of failure, which affects the reliability of the compo-
sition [15]. Recent works have used decentralised composition models to dis-
tribute the reconfiguration decisions across composition participants at runtime
to improve the resilience and performance of the composition [7].

In previous work, we define a service composition mechanism that uses a
goal-driven reasoning approach to model the capabilities of service providers
in the environment and dynamically bind their offered services to an abstract
composition request [8]. Apart from functional requirements and resilient execu-
tion, a service composition mechanism needs to satisfy the users’ non-functional
requirements. This requires QoS management to select the best set of concrete
services in a composition and to replace these services if the QoS requirements
of the application are not satisfied [16]. Most QoS-aware service composition
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approaches assume that the QoS values of service candidates are already known
and usually are provided directly by service providers or through third-party
registries (e.g., UDDI) [17]. A service provider cannot give user-specific QoS as
it can vary based on the user location and time of invocation [10]. Users can
store their user-side QoS in the service registry and use the QoS values from
other users in the environment to make predictions for unknown QoS values by
collaborative filtering.

2.2 QoS Prediction

Traditional QoS prediction approaches in IoT have focused on the QoS predic-
tion of currently executing services through time-series analysis [18–20]. These
approaches rely on the user executing the service to generate the values, which
can be used for time-series prediction. However, they make no estimates for the
QoS values of candidate services, which could be switched to at runtime. This
is a problem in IoT as due to the large number of candidate services it would
be too time consuming to invoke even a subset of the functionally equivalent
services during a runtime service composition.

An alternative approach to predicting QoS, inspired from recommender sys-
tems, is to use QoS information of similar users to make predictions about the
QoS from possible services, by collaborative filtering [11,21]. These approaches
use matrix factorisation to allow the user to receive QoS predictions of services
that they have not invoked, based on QoS values from similar users. Using the
QoS from other similar users gives more information about candidate services,
which can be chosen either at design time or during runtime service execution.
This also has the additional benefit that we can gather the QoS information with-
out harming the performance of the infrastructure with needless invocations of
services to retrieve QoS values.

Some existing service composition approaches use collaborative QoS pre-
diction in a cloud environment and only consider web services [21,22]. Other
mechanisms have used QoS prediction at design time to estimate changes in the
QoS values at runtime [23]. We propose that these approaches can be used at
the edge of the network in a heterogeneous IoT environment with services from
a number of different devices.

3 QoS-Driven Service Composition and Execution

Figure 1 shows our middleware architecture, which is introduced in this section
with focus on the Service Composition & Execution Engine and the QoS
Monitor [8]. The main components are the Request Handler (RH), the Service
Registration Engine (SRE), the Service Discovery Engine (SDE), the QoS Moni-
tor and the Service Composition & Execution Engine (SCEE). The RH establishes
a request/response communication channel with the user and forwards the request
to the other middleware components. The SRE registers the available services in
the environment. The SDE uses the backward-planning algorithm to identify the
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Fig. 1. Middleware architecture

concrete services, which can be used to satisfy the request and sends this list of
services to the SCEE. The QoS monitor is used to monitor these services and can
predict possible candidate services to switch to if one of the services begins to
degrade, using the prediction engine. The SCEE will use these services to create
a response for the request. This process as well as how it manages the execution
in a dynamic IoT environment is explained in the following section.

3.1 Service Composition and Execution

The SCEE is responsible for the composition and execution of services discovered
by the SDE. Figure 2b illustrates a list of available services in the environment
identified to satisfy a user request, which was received from the RH. These
services are retrieved by the RH from the environment in Fig. 2a, with services
provided from different service types including web services (WS), wireless sensor
networks (WSN), and autonomous service providers (ASP), who are independent
mobile users with intermittent availability. The SCEE creates a list of service
flows based on the concrete service providers received from the SDE. The flows
are then merged based on the service description. If two or more services in the
flow have the same input, the SCEE creates a guidepost to enable the invocation
of one of these services based on QoS requirements (see Fig. 2b).

An execution guidepost G = {Rid, D} is a split-choice control element of the
composition process and maintains a set of execution directions D for a composi-
tion request Rid. These execution directions will be referred to as branches. Each
element in the set D is defined dj = {id, w, q} where j ≤ |D|. The set w repre-
sents the services in the branch and id represents the identifier of the branch. The
value q reflects the branch’s aggregated QoS values [7], which can be calculated
according to predefined formulas [24]. The branch that maximises/minimises an
objective function will be selected by the guidepost during execution.
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Fig. 2. Sample QoS data

In this work, we consider the response time and throughput of each branch.
The formula in Eq. 1 calculates the response time by aggregating the response
time value of each component service in a sequential flow [24]. In this formula,
rti is the response time of service i. The throughput value is calculated using
the formula in Eq. 2, which selects the lowest throughput min( thi) offered by
the services in a sequential flow [24]. These formulas require the response time
and throughput values of each service component in the flow to calculate the
aggregate values. It is possible that these values could not be calculated if the
required QoS data is missing or is out-of-date.

Response T ime (RT ) =
n∑

i=1

rti (1)

Throughput (T ) = min(thi) (2)

To address this problem, the QoS monitor uses QoS prediction to predict
QoS values across each branch stored in the guidepost. Figure 2b shows the
flows created by the SCEE for User 4 (U4 in Fig. 3). The response time values
recorded during service discovery phase were 0.34 s for service provider WS2,
0.34 s for WS1 and 0.23 s for ASP1. The response time values for WSN1 and
ASP3 were not recorded. When the execution reaches Guidepost G, we can only
aggregate the response time values for Branch 1 (Part 1 in Fig. 2b), which is
not optimal. If the composition selects the branch with the lowest reported QoS
values, it will select Branch 3, which is also not optimal. Only when we use the
predicted values for the missing service QoS does the composition choose the
optimal Branch 2 (Part 2 in Fig. 2b).
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3.2 Collaborative QoS Prediction

Accurate QoS prediction of candidate services is a fundamental component of
goal driven service composition. Incorrect predictions may cause compositions
and adaptations to have worse QoS, which could lead to SLA violations. On-line
prediction approaches have been proposed to detect service failure and QoS devi-
ations of the currently executing services [25,26]. Other approaches propose to
collecting QoS values by invoking the candidate services, but this is not scalable
in IoT due to the large amount of candidate services [27].

Fig. 3. Demonstration of QoS prediction in IoT

To provide QoS values on m IoT services for n users, one needs to invoke
at least n × m services, this is almost impossible in an IoT environment where
we expect a large number of services and users. Without this QoS information,
the service execution engine cannot select the optimal components based on
their QoS and must make a choice based on whatever QoS values are available.
This leads to choosing potentially non-optimal services, which can cause service
degradation at runtime and service execution errors. Figure 4 shows that the
same service can have different values even for the same quality factors such
as response time and throughput for different users and comes from a real life
dataset [10].

We use collaborative filtering, which identifies users who share similar charac-
teristics (e.g., location, response time, etc.) to make predictions of what QoS they
will receive when executing a service. The QoS value of IoT service s observed
by user u can be predicted by exploring the QoS experiences from a user similar
to u. A user is similar to u if they share similar characteristics, which can be
extracted from their QoS experiences on different services by collaborative filter-
ing. By sharing local QoS experience among users these approaches can predict
the QoS value of a range of IoT services including ASP, web services and WSN
even if the user u has never invoked the service s before [28].

We give a demonstration based on a subset of the implementation in Fig. 2a,
where we have a number of different service providers, who are able to pro-
vide functionally equivalent services from heterogeneous devices. We model this
as a bipartite graph G = (U ∪ S,E), such that each edge in E connects a
vertex in U to S. Let U = {u1, u2, ..., u4} be the set of component users and
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S = {ASP1, ASP2, ...,WSN2} denote the set of IoT services and E (solid lines)
represent the set of invocations between U and S. Given a pair (i, j), ui ∈ U and
cj ∈ S, edge eij corresponds to the QoS value of that invocation. Given the set
E the task is to predict the weight of potential invocations (broken lines).

We visualise the process of matrix factorisation for the demonstration in
Fig. 3b, in which each table entry shows an observed weight in Fig. 3a. By using
the latent factor model [29] a number of algorithms first factorise the sparse
user-component matrix and then use V TH to approximate the original matrix,
where the low-dimensional matrix V denotes the user latent feature space and
the low-dimensional matrix H represents the low-dimensional item latent feature
space. The latent feature space represents the underlying structure in the data,
computed from the observed features using matrix factorisation. As the matrices
V and H are dense it is then possible to use a neighbourhood-based collaborative
method, as shown in Fig. 3c.
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Fig. 4. Sample QoS data

4 Experimental Setup

4.1 Dataset Description

Invoking thousands of IoT services in the wild is difficult because some of the ser-
vices may have limited range and may not be publicly available on the Internet.
To evaluate the prediction quality of these approaches, we use a QoS dataset,
which consists of a matrix of response time and throughput values for 339 users
by 5,825 services [10], which would be provided by the monitoring component.

4.2 Metrics

The predictive composition process uses the predicted values generated through
collaborative filtering to choose the optimal flow. The composition process with-
out the predicted values has access to the percentage of QoS values given by the
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matrix density. Once the optimal flow has been selected we report the actual
values based on the original data. Two metrics are considered in this work:
response time and throughput. The response time for each branch is aggregated
using Eq. 1. The branch which has the lowest response time is used in the com-
position. The throughput value for each branch is aggregated using Eq. 2. The
branch which has the highest throughput is used in the composition.

4.3 Performance Comparison

We compare the performance of the flow generated using the predicted values
from the CloudPred collaborative filtering algorithm to the flow generated using
no predicted values [11]. We show the optimal service composition to compare
how each of the compositions approach the optimal solution. To evaluate this, we
divided the available set of 5,825 services for each user into sub-sets of services
each of size 50. We used each sub-set to create branches that can be used in a
guidepost. The number of services in a branch was set to 20. The value of each
branch was calculated by aggregating the QoS value assigned to each service
in the branch. These values were stored in the guidepost and used for branch
selection during composition execution. The branch selection uses a function,
which minimises the response time and maximises the throughput. This allows
the branch with the smallest response time to be selected and follow the execu-
tion of the guidepost. We conducted the experiment for a number of different
matrix densities from 10% to 90% to show how the results of both approaches
change as they get access to more data about the users. The results are shown
for 1 user and an aggregation of 100 different users.

5 Results

Figure 5a and b illustrate the response time of service composition, with and
without prediction, for 1 and 100 users. In Fig. 5a we see the response time results
for a number of different matrix densities for one user. In this case the prediction
composition shows a large improvement compared to the composition that has
no prediction. As the matrix density increases we can see that the composition
without prediction gets closer to the optimal value as it has access to more QoS
values. Figure 5b shows the response times for the service flows averaged over
100 users. This graph follows the same trend as one user with a larger difference
in response time between the composition approaches.

Figure 5c and d show how QoS prediction affects the throughput of the com-
posed services. Figure 5c shows the results for one user, when the density is
less than 20% the prediction approach shows a clear improvement with a greater
throughput value. However at 30% density, we see that composition without pre-
diction actually performs better than the predictive approach. When the matrix
density is greater than 40%, both approaches are able to find the optimal com-
position. Figure 5d shows the throughput values averaged over 100 users. In this
case, we can see that the predictive approach has a much larger throughput
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Fig. 5. Impact of prediction on service composition flows

value than the approach without prediction when the density is less than 80%.
When the matrix density is greater than this, the composition without prediction
improves and almost reaches the optimal throughput value.

5.1 Threats to Validity

To assess the validity of the results, we take into account areas where bias
could have been introduced, following the guidelines introduced by Peterson and
Gencel [30]. In particular, we consider the interpretive validity and repeatability
of the experiments.

Interpretive Validity. The interpretive validity is the extent to which the con-
clusions from the experiments are reasonable given the data. In the results section
we present the results for each of the matrix densities to allow the reader to val-
idate the conclusions. We show the results for an individual user as well as an
aggregation of 100 users to show a comprehensive evaluation of the approaches.

Repeatability. Repeatability allows for the complete repetition of the experi-
ment to verify the results and requires detailed reporting of the research method.
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In the experimental setup section, we give a detailed description of the data, met-
rics and the approaches that were used. In Sect. 3 we describe the goal-driven
composition algorithm and collaborative filtering algorithm, which allows for the
repeatability of the experiment to validate the results. The goal-driven service
composition mechanism was introduced by Chen et al. [7] and an implementa-
tion of this mechanism in an IoT scenario is presented in our previous work [8].
This should enable future proposals to reproduce our results and develop new
QoS prediction models for service composition in a decentralised setting based
on our source code, which is available on request. In future work we will test the
prediction composition in a real life environment, which although reducing the
repeatability will increase the internal validity of the results.

6 Conclusion and Future Work

The results of the experiments have a number of interesting conclusions, which
can be used to outline future work. The results from the response time dataset
are encouraging with predictive composition showing clear improvement over all
the matrix densities. For the throughput dataset, the predictive approach showed
clear improvement for low matrix densities (<= 80%) when averaged over 100
users, but for densities greater than this, the composition without prediction
values produced better results. There is a clear difference in the response time
and throughput results, with the response time for the predictive composition
approach selecting close to the optimal flow for most densities. When averaged
over 100 users, the throughput results for the predictive composition do not get
closer to the optimal value as the density increases. This can be attributed to
the different data scales, which can introduce larger errors for the throughput
predictions [28], that can result in selecting the wrong branch.

In IoT, because of the large number of services available, we would expect
that only a small percentage would have relevant, up-to-date QoS information
in the time period required (e.g., within 15 min). This makes the results for low
matrix densities from 10%–30% particularly important, as they illustrate that
we need only a small number of users in the environment to report values to
achieve almost optimal results.

As future work, we will evaluate the overhead introduced by the QoS pre-
diction mechanism when dynamically composing IoT services in a real-world
environment. We also aim to investigate a number of alternative techniques for
preprocessing the data and conducting similarity comparison between the users
and the different types of service providers (e.g. data smoothing, clustering,
PCA, etc.).
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