Chapter 7 ®)
Stabilization i

The previous chapter assumed that the intrinsic process, P, has a given unvarying
form. The actual process may differ from the given form or may fluctuate over time.
If a system is designed with respect to a particular form of P, then variation in P
away from the assumed form may cause the system to become unstable.

We can take into account the potential variation in P by altering the optimal
design problem. The new design problem includes enhanced stability guarantees
against certain kinds of variation in P.

Variation in an intrinsic process is an inevitable aspect of design problems. In
engineering, the process may differ from the assumed form because of limited infor-
mation, variability in manufacturing, or fluctuating aspects of the environment.

In biology, a particular set of chemical reactions within an individual may vary
stochastically over short time periods. That reaction set may also vary between indi-
viduals because of genetic and environmental fluctuations. In all cases, actual pro-
cesses typically follow nonlinear, time-varying dynamics that often differ from the
assumed form.

We may also have variation in the controller or other system processes. In general,
how much variability can be tolerated before a stable system becomes unstable? In
other words, how robust is a given system’s stability to perturbations?

We cannot answer those question for all types of systems and all types of perturba-
tions. However, the 7, norm introduced earlier provides insight for many problems.
Recall that the #, norm is the peak gain in a Bode plot, which is a transfer function’s
maximum gain over all frequencies of sinusoidal inputs. The small gain theorem pro-
vides an example application of the #H;, norm.
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7.1 Small Gain Theorem

Suppose we have a stable system transfer function, G. That system may represent a
process, a controller, or a complex cascade with various feedback loops. To express
the mathematical form of G, we must know exactly the dynamical processes of the
system.

How much may the system deviate from our assumptions about dynamics and
still remain stable? For example, if the uncertainties may be expressed by a positive
feedback loop, as in Fig. 7.1, then we can analyze whether a particular system, G, is
stably robust against those uncertainties.

In Fig.7.1, the stable transfer function, A, may represent the upper bound on
our uncertainty. The feedback loop shows how the nominal unperturbed system, G,
responds to an input and becomes a new system, G, that accounts for the perturba-
tions. The system, G, represents the entire loop shown in Fig.7.1.

The small gain theorem states that the new system, G, is stable if the product of
the #,, norms of the original system, G, and the perturbations, A, is less than one

G llool|Alloe < 1. (7.1)

Here, we interpret G as a given system with a known #, norm. By contrast, we
assume that A represents the set of all stable systems that have an #, norm below
some upper bound, || A|| . For the perturbed system, G, to be stable, the upper bound
for the H,, norm of A must satisfy

(7.2)
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If G is a system that we can design or control, then the smaller we can make ||G|| o,
the greater the upper bound on uncertainty, ||A||., that can be tolerated by the
perturbed system. Put another way, smaller ||G||s corresponds to greater robust
stability.
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Fig. 7.1 System uncertainty represented by a feedback loop. The transfer function, A, describes
an upper bound on the extent to which the actual system, G = G/(1 — GA), deviates from the
nominal system, G. Here, G may represent a process, a controller, or an entire feedback system
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A full discussion of the small gain theorem can be found in textbooks (e.g., Zhou
and Doyle 1998; Liu and Yao 2016). I present a brief intuitive summary.
The positive feedback loop in Fig. 7.1 has transfer function

G

G = T_GaA" (7.3)
We derive that result by the following steps. Assume that the input to G is w + v,
which is the sum of the external input, w, and the feedback input, v. Thus, the system
outputis n = G(w + v).

We can write the feedback input as the output of the uncertainty process, v = An.
Substituting into the system output expression, we have

n=Gw+v)=Gw+ GAn.

The new system transfer function is the ratio of its output to its external input,
G = n/w, which we can solve for to obtain Eq. 7.3.

The new system, G, is unstable if any eigenvalue has real part greater than or
equal to zero, in which the eigenvalues are the roots of s of the denominator, 1 —
G(s)A(s) = 0.

Intuitively, we can see that G (s) blows up unstably if the denominator becomes
zero at some input frequency, w, for s = jw. The denominator will be greater than
zero as long as the product of the maximum values of G(jw) and A(jw) are less
than one, as in Eq. 7.1. That condition expresses the key idea. The mathematical pre-
sentations in the textbooks show that Eq. 7.1 is necessary and sufficient for stability.

Reducing the H,, norm of G increases its robustness with respect to stability. In
Eq. 7.2, a smaller ||G ||~ corresponds to a larger upper bound on the perturbations
that can be tolerated.

A lower maximum gain also associates with a smaller response to perturbations,
improving the robust performance of the system with respect to disturbances and
noise. Thus, robust design methods often consider reduction of the #, norm.

7.2 Uncertainty: Distance Between Systems

Suppose we assume a nominal form for a process, P. We can design a controller, C,
in a feedback loop to improve system stability and performance. If we design our
controller for the process, P, then how robust is the feedback system to alternative
forms of P?

The real process, P’, may differ from P because of inherent stochasticity, or
because of our simple model for P misspecified the true underlying process.

What s the appropriate set of alternative forms to describe uncertainty with respect
to P? Suppose we defined a distance between P and an alternative process, P’. Then



58 7 Stabilization

a set of alternatives could be specified as all processes, P’, for which the distance
from the nominal process, P, is less than some upper bound.
We will write the distance between two processes when measured at input fre-
quency w as
S[P(jw), P'(jw)] = distance at frequency w, (7.4)

for which § is defined below. The maximum distance between processes over all
frequencies is
8y(P, P") = max §[P(jw), P'(jw)], (7.5)

subject to conditions that define whether P and P’ are comparable (Vinnicombe 2001;
Qiu and Zhou 2013). This distance has values 0 < §, < 1, providing a standardized
measure of separation.

To develop measures of distance, we focus on how perturbations may alter system
stability. Suppose we start with a process, P, and controller, C, in a feedback system.
How far can an alternative process, P’, be from P and still maintain stability in the
feedback loop with C? In other words, what is the stability margin of safety for a
feedback system with P and C?

Robust control theory provides an extensive analysis of the distances between
systems with respect to stability margins (Vinnicombe 2001; Zhou and Doyle 1998;
Qiu and Zhou 2010, 2013). Here, I present a rough intuitive description of the key
ideas.

For a negative feedback loop with P and C, the various input—output pathways
all have transfer functions with denominator 1 + PC, as in Eq. 6.1. These systems
become unstable when the denominator goes to zero, which happens if P = —1/C.
Thus, the stability margin is the distance between P and —1/C.

The values of these transfer functions, P(jw) and C(jw), vary with frequency,
. The worst case with regard to stability occurs when P and —1/C are closest; that
is, when the distance between these functions is a minimum with respect to varying
frequency. Thus, we may define the stability margin as the minimum distance over
frequency

bp.c = min §[P(jw), —1/C(jo)]. (7.6)

Here is the key idea. Start with a nominal process, P;, and a controller, C. If an
alternative or perturbed process, P», is close to Pj, then the stability margin for P,
should not be much worse than for P;.

In other words, a controller that stabilizes P; should also stabilize all processes
that are reasonably close to P;. Thus, by designing a good stability margin for Py,
we guarantee robust stabilization for all processes sufficiently near P;.

We can express these ideas quantitatively, allowing the potential to design for a
targeted level of robustness. For example,

bPz,C > bPl,C —8,(P1, Pp).
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Read this as the guaranteed stability margin for the alternative process is at least as
good as the stability margin for nominal process minus the distance between the nom-
inal and alternative processes. A small distance between processes, J,, guarantees
that the alternative process is nearly as robustly stable as the original process.

The definitions in this section depend on the distance measure, expressed as

lc1 — ¢
V141214 e

Here, c; and ¢; are complex numbers. Transfer functions return complex numbers.
Thus, we can use this function to evaluate 6[ P (jw), P>(jw)].

S(CI’ C2) =

7.3 Robust Stability and Robust Performance

The stability margin bp ¢ measures the amount by which P may be altered and still
allow the system to remain stable. Note that bp ¢ in Eq. 7.6 expresses a minimum
value of § over all frequencies. Thus, we may also think of bp ¢ as the maximum
value of 1/§ over all frequencies.

The maximum value of magnitude over all frequencies matches the definition
of the H,, norm, suggesting that maximizing the stability margin corresponds to
minimizing some expression for an H,, norm. Indeed, there is such an #, norm
expression for bp . However, the particular form is beyond our scope. The point
here is that robust stability via maximization of bp ¢ falls within the #5, norm theory,
as in the small gain theorem.

Stability is just one aspect of design. Typically, a stable system must also meet
other objectives, such as rejection of disturbance and noise perturbations. This section
shows that increasing the stability margin has the associated benefit of improving a
system’s rejection of disturbance and noise. Often, a design that targets reduction of
the H,, norm gains the benefits of an increased stability margin and better regulation
through rejection of disturbance and noise.

The previous section on regulation showed that a feedback loop reduces its
response to perturbations by lowering its various sensitivities, as in Eqs. 6.2 and
6.5. A feedback loop’s sensitivity is S = 1/(1 + PC) and its complementary sensi-
tivityis T = PC/(1 + PC).

Increasing the stability margin, bp ¢, reduces a system’s overall sensitivity. We
can see the relation between stability and sensitivity by rewriting the expression for
b p,c as

-1
bpc = [max VISP +ICS]>+ PSP+ |T|2]
w

This expression shows that increasing bp ¢ reduces the total magnitude of the four
key sensitivity measures for negative feedback loops.



60 7 Stabilization

(a) (c)
100} J— 400}
8oy 300}
60}
200}
40}
20¢ o //
0 1 2 3 4 5 0.0 0.5 1.0 15 2.0
(b) (d)
3t 1.0}
of 0.8F
0.6F
1 L
[ 0.4
0 0.2F
0.0 0.1 0.2 0.3 0.4 0.5 000 002 004 006 008 0.10

Fig. 7.2 Comparison between the responses of two systems to a unit step input, r = 1. The blue
curves show Pj and the gold curves show P». a, b Systems in Eq. 7.7, with k = 100 and 7' = 0.025.
The top plot shows the open-loop response for each system. The bottom plot shows the closed-loop
feedback response with unit feedback, P/(1 + P), in which the error signal into the system, P,
is 1 — y for system output, y. ¢, d Open (top) and closed (bottom) loop responses for the systems
in Eq. 7.8, with k = 100. Redrawn from Fig. 12.3 of Astrém and Murray (2008), ©Princeton
University Press

7.4 Examples of Distance and Stability

The measure, 6, (P;, P»), describes the distance between processes with respect to
their response characteristics in a negative feedback loop. The idea is that P; and
P, may have different response characteristics when by themselves in an open loop,
yet have very similar responses in a feedback loop. Or P; and P, may have similar
response characteristics when by themselves, yet have very different responses in a
feedback loop.

Thus, we cannot simply use the response characteristics among a set of alternative
systems to understand how variations in a process influence stability or performance.
Instead, we must use a measure, such as §,, that expresses how variations in a process
affect feedback loop characteristics.

This section presents two examples from Sect. 12.1 of Astrém and Murray (2008).
In the first case, the following two systems have very similar response characteristics
by themselves in an open loop, yet have very different responses in a closed feedback
loop
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k k

P=—— Pp=——,
s+1 (s + D(Ts + 1)?

(7.7)

when evaluated at k = 100 and T = 0.025, as shown in Fig.7.2a, b. The distance
between these systems is &, (P, P») = 0.89. That large distance corresponds to the
very different response characteristics of the two systems when in a closed feedback
loop. (Astrom and Murray (2008) report a value of 8, = 0.98. The reason for the
discrepancy is not clear. See the supplemental Mathematica code for my calculations,
derivations, and graphics here and throughout the book.)

In the second case, the following two systems have very different response char-
acteristics by themselves in an open loop, yet have very similar responses in a closed

feedback loop

= k P = k (7.8)
Ts+1 TS0 '

P

when evaluated at k = 100, as shown in Fig.7.2¢c, d. The distance between these
systems is §, (P, P») = 0.02. That small distance corresponds to the very similar
response characteristics of the two systems when in a closed feedback loop.

7.5 Controller Design for Robust Stabilization

The measure bp ¢ describes the stability margin for a feedback loop with process P
and controller C. A larger margin means that the system remains robustly stable to
variant processes, P’, with greater distance from the nominal process, P. In other
words, a larger margin corresponds to robust stability against a broader range of
uncertainty.

For a given process, we can often calculate the controller that provides the greatest
stability margin. That optimal controller minimizes an #, norm, so in this case we
may consider controller design to be an #, optimization method.

Often, we also wish to keep the #5 norm small. Minimizing that norm improves
a system’s regulation by reducing response to perturbations. Jointly optimizing the
stability margin and rejection of disturbances leads to mixed %, and #; design.

Mixed #,, and #5 optimization is an active area of research (Chen and Zhou
2001; Chang 2017). Here, I briefly summarize an example presented in Qiu and
Zhou (2013). That article provides an algorithm for mixed optimization that can be
applied to other systems.

Qiu and Zhou (2013) start with the process, P = 1/s2. They consider three cases.
First, what controller provides the minimum #, norm and associated maximum
stability margin, b, while ignoring the #4 norm? Second, what controller provides
the minimum %, norm, while ignoring the stability margin and #, norm? Third,
what controller optimizes a combination of the #, and #, norms?
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For the first case, the controller

<1+«/§)s+1

C(sy=~ 7
) s+14+2

has the maximum stability margin
—1/2
bpe=(4+2v2) " =038

The cost associated with the #5 norm from Eq. 6.5 is 7 = oo, because the sensitivity
function C'S has nonzero gain at infinite frequency.
For the second case, the controller

2V2s + 1

€ 52 +24/25 + 4
has the minimum 44 cost, 7* = 642 = 8.49, with associated stability marginbp ¢ =
0.24. This controller and associated cost match the earlier example of #5, norm
minimization in Eq. 6.7 with u = 1.

For the third case, we constrain the minimum stability margin to be atleast bp ¢ >
1/ +/10 = 0.316, and then find the controller that minimizes the 76 norm cost subject
to the minimum stability margin constraint, yielding the controller

2.5456s + 1
0.2852 + 1.5274s + 2.88°

C(s) =

which has the cost 7 = 13.9 and stability margin bp ¢ = 0.327.

In these examples, a larger stability margin corresponds to a greater #, cost. That
relation illustrates the tradeoff between robust stability and performance measured
by the rejection of disturbance and noise perturbations.
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