Chapter 6 ®)
Regulation i

The regulation problem analyzes how quickly a perturbed system returns to its equi-
librium setpoint. For this problem, we assume that the setpoint does not change. We
can, without loss of generality, assume that the external reference signal is » = 0.

With no external reference signal, we can express the general form of the regulation
problem as in Fig. 6.1. We take the process, P, as given, subject to uncertainties or
disturbances represented by the input, d. We seek an optimal controller, C, with
respect to particular design tradeoffs.

6.1 Cost Function

The cost function summarizes the design tradeoffs. We use a cost function based on
the H; norm, similar to Eq.5.5. The H, norm describes the response of the system
to perturbations when averaged over all input frequencies. Minimizing the H, norm
minimizes the extent to which the system responds to perturbations. Recall that the
‘H» norm is often equivalent to the signal energy, which is the total squared deviation
of a signal from zero when measured from the time of an initial perturbation until
the time when the signal returns to zero.

From Fig. 6.1, the two inputs are the load disturbance, d, and the sensor noise, 7.
The two outputs are the process output, 1, and the control signal, u. We can write
the outputs as transfer functions, 1 (s) and U (s), and the cost function in Eq. 5.5 as

T = lU|E+ p*lne)]3.

In this case, we need to relate each of the two outputs to each of the two inputs.
We require four transfer functions to describe all of the input—output connections.
For the transfer function between the input 4 and the output n, we write G,4(s), for
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Fig. 6.1 Classic regulation problem illustrated by closed-loop feedback with a constant reference
input signal, » = 0. The disturbance input, d, perturbs the system process. Such perturbations can be
considered as stochasticity in the process, or as uncertainty with regard to the true process dynamics
relative to the assumed dynamics. The noise input, n, perturbs the sensor that produces the output
measurement, y, based on the actual process output, 1. See Fig. 3.2 for context

which we assume that the other input, n, is zero. Using our usual rule for the transfer
functions of a closed loop, the four functions are
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We can express these transfer functions in terms of the sensitivities in Eq. 3.8 by
defining the open loop as L = PC, the sensitivity as S = 1/(1 4+ L), and the com-
plementary sensitivity as 7 = L/(1 4+ L), yielding

Gua =—T Gya = PS
Gun = —CS Gy =—T. (6.2)

Because S+ 7 = 1 at any input, s, these transfer functions highlight the intrinsic
design tradeoffs.

We can now consider the total cost as the sum of the response with respect to the
input d, holding n at zero, plus the response with respect to the input #, holding d at
Zero

T =Gua®I5 + p*1Ga ()13
UG ()5 + PG ()15 (6.3)

For this example, we use impulse function inputs, §(¢), which provide a strong
instantaneous shock to the system, as defined in the caption of Fig. 4.2. We can design
the system to be relatively more or less sensitive to disturbance inputs relative to noise
inputs by weighting the disturbance input by p, sothatd(t) = ud(t) andn(t) = 5(z).
Larger u causes design by optimization to yield better disturbance regulation at the
expense of worse noise regulation.
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The transfer function for an impulse is equal to one. Thus, the transfer functions for
disturbance and noise inputs are, respectively, D(s) = p and N(s) = 1. A system’s
response to an input is simply the product of the input and the system transfer function.
For example, the first term in Eq. 6.3 becomes

I1D(5)Gua ()15 = 1?|Gua ()13,

and the full cost function becomes

T = 1 NGuaI + 12 p*Gra()113

+NGun (I3 + 021G ()13 (6.4)

Using the sensitivity expressions in Eq. 6.2, we can write this expression more simply
as
J =ICSIE + 1 + p)NTIE + 121 P S| (6.5)

6.2 Optimization Method

This section follows Qiu and Zhou’s (2013) optimization algorithm. Their cost func-
tion in the final equation on page 31 of their book is equivalent to my cost function
in Eq. 6.4.

Optimization finds the controller, C(s), that minimizes the cost function. We
search for optimal controllers subject to the constraint that all transfer functions
in Eq. 6.1 are stable. Stability requires that the real component be negative for all
eigenvalues of each transfer function.

A transfer function’s eigenvalues are the roots of the denominator’s polynomial in
s. For each transfer function in Eq. 6.1, the eigenvalues, s, are obtained by solution
of 1 + P(s)C(s) = 0.

We assume a fixed process, P, and weighting coefficients, i and p. To find the
optimal controller, we begin with a general form for the controller, such as

C(s) = q15 + 42

= (6.6)
Pos? + pis + p2

We seek the coefficients p and g that minimize the cost function.

Qiu and Zhou (2013) solve the example in which P (s) = 1/s2, for arbitrary values
of u and p. The accompanying Mathematica code describes the steps in the solution
algorithm. Here, I simply state the solution. Check the article by Qiu and Zhou
(2013) and my Mathematica code for the details and for a starting point to apply the
optimization algorithm to other problems. The following section applies this method
to another example and illustrates the optimized system’s response to various inputs.

For P = 1/s2, Qiu and Zhou (2013) give the optimal controller
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V2ou (P + i)s + put
S +VI(p+VR)s + (VP + VA)

with associated minimized cost,

T* = 2[12Jp + p* Vi + 20 (VE + /)]

For p = 1, the controller becomes

C(s) =

V2u(1+ yr)s +

cwr= 2+ V2 (14 yi)s + (1+ yi)

(6.7)

with associated minimized cost,

T =V2 [ + Vi +2u(J/i+ D).

We can see the tradeoffs in design most clearly from the controller with p = 1. When
w is small, load disturbance inputs are smaller than sensor noise inputs. An optimal
system should therefore tolerate greater sensitivity to load disturbances in return for
reduced sensitivity to sensor noise.

In the optimal controller described by Eq. 6.7, a small value of u produces low
gain, because C(s) becomes smaller as ¢ declines. We can see from Eq. 6.1 that a
small gain for the controller, C, reduces the sensitivity to noise inputs by lowering
G, and G,,. Similarly, a small gain for C raises the sensitivity of the system output,
n, to disturbance inputs by raising G,g.

The optimal system achieves the prescribed rise in sensitivity to disturbance in
order to achieve lower sensitivity to noise.

6.3 Resonance Peak Example

This section applies the previous section’s H, optimization method to the process

1

P(s)=——
© = o1

(6.8)

This process has a resonance peak near w = 1.

My supplemental Mathematica code derives the optimal controller of the form in
Eq. 6.6. The optimal controller is expressed in terms of the cost weightings p and p.
The solution has many terms, so there is no benefit in showing it here.
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Fig. 6.2 Relative H> values for the transfer functions in Eq. 6.1, with G, = G, inred, G4 in
gold, and G, in green. The H; value for each transfer function is divided by the total H, values
over all four functions. The transfer functions were derived from the process in Eq. 6.8 and the
associated optimal controller. The weighting parameters in the cost function of Eq. 6.4 are u = 1
and p varying along the x-axis of the plot. Swapping values of  and p gives identical results,
because of the symmetries in Egs. 6.1 and 6.4

The general solution in terms of u and p provides a simple way in which to
obtain the optimal controller for particular values of i and p. For example, when
uw = p = 1, the optimal controller is

0.609(s — 0.81)
C(s) ~ > .
s?+1.735 +2.49

Similar controller expressions arise for other values of x and p. Those controllers
may be used in the closed loop of Fig.6.1 to form a complete system.

Figure 6.2 shows the relative H, values of the four input—output transfer functions
in Eq. 6.1. The H, values express sensitivity over all frequencies.

To interpret this figure, look at Eq. 6.4. As the product of the weightings, wp,
increases, the output of G4 (gold curve) plays an increasingly important role in the
total cost relative to the output of G, (green curve).

As the relative cost weighting of G, increases, its H, value declines. Similarly,
as the relative cost weighting of G, decreases, its H, value increases. Once again,
we see the sensitivity tradeoffs in response to the relative importance of different
perturbations.

The top row of Fig. 6.3 compares the Bode plots for the process, P, and the input—
output transfer functions in Eq. 6.1. As p increases in the columns from left to right,
the rise in the green curve for G, is the strongest change. We can understand that
change by examining the cost function in Eq. 6.4. Because G,q = G, arise in p
reduces the weighting of G, relative to all other terms.

The strongest increase in relative weighting as p rises occurs for G,4, shown in
gold. The mild decline in the gold curve with increasing p is consistent with the
increased relative cost weighting of that signal.
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Fig. 6.3 Response of the process in Eq. 6.8 in blue and the transfer functions in Eq. 6.1, with
Gua = Gy inred, Gyq in gold, and G, in green. Top row shows Bode magnitude plots. Bottom
row shows impulse responses. The input signal weights in Eq. 6.4 are © = 1 and, for the three
columns from left to right, p = 0.25, 1, 4. Swapping values of p and p gives identical results,
because of the symmetries in Eq. 6.1 and 6.4

The bottom row shows the impulse responses. As with the Bode plots, an increase
in p favors reduced response of G4, in gold, causing a smaller impulse response in
the right plot with high p relative to the left plot with low p. Similarly, an increase
in p weakens the pressure on the G, transfer function in green, causing a larger
impulse response with increasing p.

6.4 Frequency Weighting

The H, norm sums a system’s gain over all input frequencies, as in Eq. 5.4. That
sum weights all input frequencies equally.

Often, we wish to protect against perturbations that occur primarily in a limited
band of frequencies. For example, disturbance loads, d, typically occur at low fre-
quency, reflecting long-term fluctuations or misspecifications in the system’s intrinsic
processes. In that case, our optimization method should emphasize reducing a sys-
tem’s gain at low frequency with respect to disturbance load inputs and accepting
a tradeoff that allows a greater gain at high frequency. By reducing the gain at low
frequency, we protect against the common frequencies for load disturbances.

Tradeoffs between low- and high-frequency bands are common. If we start with

a process transfer function

10 1
G(s) = 0+ D
s+ 10

then at zero frequency, s = jw = 0, the gain is one. As frequency increases, the gain
approaches ten.
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If we weight this process transfer function by W(s) = 1/(s + 1), then the new
system becomes WG = 10/(s + 10). Now, the gain declines with increasing fre-
quency, from a maximum of one at zero frequency to a minimum of zero at infinite
frequency.

By weighting the original system, G, by the weighting function, W, we cause
the H, norm of the combined system, WG, to be relatively more sensitive to low-
frequency disturbances. When we design a controller by minimizing the H, norm
associated with WG, we will typically find a system that is better at rejecting low-
frequency load disturbances than a design minimizing the H, norm associated with
G. For the weighted system, optimization will avoid controllers that reject high-
frequency load disturbances, because the weighted system already rejects those high-
frequency inputs.

Roughly speaking, a weighting function instructs the optimization method to
reduce the gain and sensitivity for certain frequencies and to ignore the gain for other
frequencies. The weighting functions do not alter the actual system. The weighting
functions are only used to alter the cost function and optimization method that deter-
mine the optimal controller.

Figure 6.4 shows the regulation feedback system of Fig.6.1 with additional
weightings for the disturbance and noise inputs. The weightings modify the four sys-
tem transfer functions and associated sensitivities in Eq. 6.2 to be W;G .4, WyG 4,
W,,Gun, and W, G,,. The cost function in Eq. 6.5 becomes

T = P |WaT |3 + n?0?||WaPS||3
+IW,CS|I3 + p*[|Wa T3 (6.9)

Consider an example in which we begin with the process, P, in Eq. 6.8. To
emphasize low-frequency load disturbances, set W; = 1/(s 4+ 0.1) to be a low-pass
filter. That weighting filters out disturbances that are significantly greater than w =
0.1. Toemphasize high-frequency sensor noise, set W,, = s/(s + 10). That weighting
filters out noise that is significantly less than w = 10. By using these two filters,
the optimization method puts very low weight on any disturbances in midrange
frequencies of w = (0.1, 10).

-C

Fig. 6.4 Basic regulation feedback loop in Fig. 6.1 with additional weightings for disturbance and
noise inputs. The weightings alter the cost function to emphasize particular frequency bands for
disturbance and noise, yielding a modified optimal controller
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Fig. 6.5 Role of frequency weighted inputs in the design of optimal M, controllers for system
regulation, illustrated by Bode magnitude plots. a Plot for the unweighted case, matching the plot

in Fig. 6.3c. b Plot for the frequency weighted example in the text, which emphasizes the regulation
of low-frequency load disturbances, d, and high-frequency sensor noise, n

By minimizing the weighted H; cost in Eq. 6.9, we obtain the optimal controller

2.02(s + 1.52)

C)=——""—"—"—.
() s24+1.17s +6.3

I calculated the values for this controller by using the numerical minimization func-
tion in Mathematica to minimize the 7, cost, subject to the constraint that all transfer
functions in Eq. 6.1 are stable. See the supplemental Mathematica code.

Figure 6.5 compares the optimized system response for the unweighted and
weighted cases. Panel a shows the Bode magnitude response of the optimized sys-
tem for the unweighted case, equivalent to the plot in Fig. 6.3c. Panel b shows the
response of the optimized system for the weighted case in this section.

The weighted case emphasizes low-frequency load disturbances and high-
frequency sensor noise, with low weight on midrange frequencies. Comparing the
unweighted case in (a) with the weighted case in (b), we see two key differences.

First, the weighted case allows a large rise in magnitudes and associated sensitivity
to perturbations for midrange frequencies. That rise occurs because the particular
weighting functions in this example discount midrange perturbations.

Second, the gold curve shows that the weighted case significantly reduces the
low-frequency sensitivity of system outputs, 7, to load disturbances, d. The gold
curve describes the response of the transfer function, G,,. Note that, because of the
log scaling for magnitude, almost all of the costs arise in the upper part of the plot.
The low relative magnitude for the lower part contributes little to the overall cost.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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