
Chapter 3
Basic Control Architecture

3.1 Open-Loop Control

Suppose a system benefits by tracking relatively slow oscillatory environmental fluc-
tuations at frequency ωe and ignoring much faster noisy environmental fluctuations
at frequency ωn . Assume that the system has an intrinsic daily oscillator at frequency
ω0 = 1, with time measured in days. How can a system build a control circuit that
uses its intrinsic daily oscillator to track slower environmental signals and ignore
faster noisy signals?

We can begin by considering circuit designs that follow the cascade in Fig. 2.1b.
That cascade is a single direct path from input to output, matching the cascade in
Eq.2.3. That path is an open loop because there is no closed-loop feedback.

Using the components in Fig. 2.1b, the internal oscillator is given by

P(s) = ω0

s2 + ω2
0

,

and the external reference signal is given by

R(s) = ωe

s2 + ω2
e

+ ωn

s2 + ω2
n

,

the sum of one low- and one high-frequency sine wave. From Fig. 2.1b, the design
goal seeks to create a preprocess controlling filter, C(s), that combines with the
intrinsic internal oscillator, P(s), to transform the reference input, R(s), into an
output, Y (s) ≈ ωe/(s2 + ω2

e ), that fluctuates at ωe and ignores ωn .
In this case, we know exactly the intrinsic dynamics, P(s). Thus, we can use the

open-loop path in Fig. 2.1b to find a controller, C(s), such that the transfer function
C(s)P(s) gives approximately the input–output relation that we seek between R(s)
and Y (s). For example, by using the controller
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20 3 Basic Control Architecture

Fig. 3.1 Bode plot of an
intrinsic oscillator, P(s),
modulated by a controller,
C(s), in an open loop
L(s) = C(s)P(s). The gold
curves follow Eq.3.3, in
which the actual frequency
of the internal oscillator is
ω̃0 = 1.2 rather than the
value ω0 = 1 that set the
design of the controller. The
underlying blue curves show
the outcome when the
internal oscillator frequency
matches the design
frequency, ω̃0 = ω0 = 1
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C(s) =
(

ω0

s + ω0

)3 (
s2 + ω2

0

ω0

)
, (3.1)

the open-loop system becomes

L(s) = C(s)P(s) =
(

ω0

s + ω0

)3

, (3.2)

because the second term in C(s) cancels P(s). The system L(s) is the low-pass filter
in Eq.2.11 raised the third power. With ω0 = 1, this system has a Bode plot similar
to the blue curve in Fig. 2.2e, f, but because of the exponent in L(s), the gain falls
more quickly at high frequencies and the phase lag is greater.

As with the low-pass filter illustrated in Fig. 2.2, this open-loop system, L(s),
tracks environmental signals at frequency ωe � ω0 and suppresses noisy signals at
frequencyωn � ω0.However, even ifwe could create this controller over the required
range of frequencies, it might turn out that this system is fragile to variations in the
parameters.

We could study robustness by using the differential equations to calculate the
dynamics for many combinations of parameters. However, such calculations are
tedious, and the analysis can be difficult to evaluate for more than a couple of param-
eters. Using Bode plots provides amuch easier way to analyze system response under
various conditions.

Suppose, for example, that in the absence of inputs, the internal oscillator, P(s),
actually fluctuates at the frequency ω̃0 �= ω0. Then, the open-loop system becomes
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L(s) = ω̃0

ω0

(
ω0

s + ω0

)3 (
s2 + ω2

0

ω0

) (
ω̃0

s2 + ω̃2
0

)
, (3.3)

in which the first term adjusts the gain to be one at s = 0.
The gold curves in Fig. 3.1 show the Bode plot for this open loop, using ω0 = 1

and ω̃0 = 1.2. Note the resonant peak in the upper magnitude plot. That peak occurs
when the input frequency matches the natural frequency of the intrinsic oscillator,
ω̃0. Near that resonant frequency, the system “blows up,” because the denominator
in the last term, s2 + ω̃2

0, goes to zero as s = jω → jω̃0 and s2 → −ω̃2
0.

In summary, open-loop control works well when one has accurate information.
Successful open-loop control is simple and has relatively low cost. However, small
variations in the intrinsic process or the modulating controller can cause poor per-
formance or instabilities, leading to system failure.

3.2 Feedback Control

Feedback and feedforward have different properties. Feedforward action is obtained by
matching two transfer functions, requiring precise knowledge of the process dynamics, while
feedback attempts to make the error small by dividing it by a large quantity.

—Åström and Murray (2008, p. 320)

Feedback often solves problems of uncertainty or noise. Human-designed systems
and natural biological systems frequently use feedback control.

Figure2.1c shows a common form of negative feedback. The output, y, is returned
to the input. The output is then subtracted from the environmental reference signal,
r . The new system input becomes the error between the reference signal and the
output, e = r − y.

In closed-loop feedback, the system tracks its target reference signal by reduc-
ing the error. Any perturbations or uncertainties can often be corrected by system
dynamics that tend to move the error toward zero. By contrast, a feedforward open
loop has no opportunity for correction. Feedforward perturbations or uncertainties
lead to uncorrected errors.

In the simple negative feedback of Fig. 2.1c, the key relation between the open-
loop system, L(s) = C(s)P(s), and the full closed-loop system, G(s), is

G(s) = L(s)

1 + L(s)
. (3.4)

This relation can be derived from Fig. 2.1c by noting that, from the error input, E(s),
to the output, Y (s), we have Y = LE and that E = R − Y . Substituting the second
equation into the first yields Y = L (R − Y ). Solving for the output Y relative to the
input R, which is G = Y/R, yields Eq.3.4.
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The error, E , in response to the environmental reference input, R, can be obtained
by a similar approach, yielding

E(s) = 1

1 + L(s)
R(s). (3.5)

If the open loop, L(s), has a large gain, that gain will divide the error by a large
number and cause the system to track closely to the reference signal. A large gain
for L = CP can be achieved by multiplying the controller, C , by a large constant, k.
The large gain causes the system to respond rapidly to deviations from the reference
signal.

Feedback, with its powerful error correction, typically provides good performance
even when the actual system process, P , or controller, C , differs from the assumed
dynamics. Feedback also tends to correct for various types of disturbances and noise,
and can also stabilize an unstable open-loop system.

Feedback has two potential drawbacks. First, implementing feedbackmay require
significant costs for the sensors to detect the output and for the processes that effec-
tively subtract the output value from the reference signal. In electronics, the imple-
mentation may be relatively simple. In biology, feedback may require various addi-
tional molecules and biochemical reactions to implement sensors and the flow of
information through the system. Simple open-loop feedforward systems may be
more efficient for some problems.

Second, feedback can create instabilities. For example, when L(s) → −1, the
denominator of the closed-loop system in Eq.3.4 approaches zero, and the system
blows up. For a sinusoidal input, if there is a frequency, ω, at which the magnitude,
|L( jω)|, is one and the phase is shifted by one-half of a cycle, φ = ±π = ±180◦,
then L( jω) = −1.

The problem of phase arises from the time lag (or lead) between input and feed-
back. When the sinusoidal input is at a peak value of one, the output is shifted to
a sinusoidal trough value of minus one. The difference between input and output
combines in an additive, expansionary way rather than providing an error signal that
can shrink toward an accurate tracking process. In general, time delays in feedback
can create instabilities.

Instabilities do not require an exact half cycle phase shift. Suppose, for example,
that the open loop is

L(s) = k

(s + 1)3
.

This system is stable, because its eigenvalues are the roots of the polynomial in the
denominator, in this case s = −1, corresponding to a strongly stable system. The
closed loop has the transfer function

G(s) = L(s)

1 + L(s)
= k

k + (s + 1)3
,
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which has an eigenvalue with real part greater than zero for k > 8, causing the system
to be unstable. An unstable system tends to explode in magnitude, leading to system
failure or death.

3.3 Proportional, Integral, and Derivative Control

Open loop systems cannot use information about the error difference between the
target reference input and the actual output. Controllers must be designed based on
information about the intrinsic process and the likely inputs.

By contrast, feedback provides information about errors, and controller design
focuses primarily on using the error input. Given the error, the controller outputs a
new command reference input to the intrinsic system process. Precise knowledge
about the intrinsic system dynamics is much less important with feedback because
the feedback loop can self-correct.

This section discusses controller design for feedback systems. A controller is
a process that modulates system dynamics. For the simplest feedback shown in
Fig. 2.1c, we start with an intrinsic process, P(s), and end up with feedback system
dynamics

G(s) = C(s)P(s)

1 + C(s)P(s)
= L(s)

1 + L(s)
,

in which C(s) is the controller. The problem is how to choose a process, C(s), that
balances the tradeoffs between various measures of success, such as tracking the
reference input and robustness to perturbations and uncertainties.

Figure3.2a includes two kinds of perturbations. The input d describes the load
disturbance, representing uncertainties about the internal process, P(s), and distur-
bances to that internal process. Traditionally, one thinks of d as a relatively low-
frequency perturbation that alters the intrinsic process. The input n describes pertur-
bations that add noise to the sensor that measures the process output, η, to yield the
final output, y. That measured output, y, is used for feedback into the system.

To analyze alternative controller designs, it is useful to consider how different
controllers alter the open-loop dynamics, L(s) = C(s)P(s). How does a particular
change in the controller, C(s), modulate the intrinsic dynamics, P(s)?

First, we can simply increase the gain by letting C(s) = kp > 1, a method called
proportional control. The system becomes G = kp P/(1 + kp P). For large kp and
positive P(s), the system transfer function is G(s) → 1, which means that the sys-
tem output tracks very closely to the system input. Proportional control can greatly
improve tracking at all frequencies. However, best performance often requires track-
ing low-frequency environmental inputs and ignoring noisy high-frequency inputs
from the reference signal. In addition, large kp values can cause instabilities, and it
may be that P(s) < 0 for some inputs.
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Fig. 3.2 Closed-loop feedback. a An extended feedback loop with inputs for disturbance, d, and
noise, n. The function F(s) may be used to filter the reference input, providing a second degree of
freedom in addition to the main controller, C(s). The system can be divided into intrinsic processes
that cannot be adjusted directly and designed processes of control that can be adjusted. Note the
inputs for each block: r and y for the controller, and u, d, and n for the process. b In this panel, the
blocks P and C represent the multicomponent process and control blocks from the upper panel.
The reference signal is assumed to be zero, allowing one to focus on the roles of disturbance and
noise in relation to system stability. c An abstraction of the feedback process, in which the vector y
includes all the signals from the process to the controller, u includes all the control input signals to
the process, w includes all the extrinsic inputs, and z includes any additional signal outputs from
the process. Redrawn from Åström and Murray (2008), © Princeton University Press

Second,we can add integral control by including the term ki/s to the controller.We
can understand why this term is an integrator by considering a few steps of analysis
that extend earlier equations. Multiplying Eq.2.5 by 1/s increases the denominator’s
order of its polynomial in s. That increase in the exponents of s corresponds to an
increase in the order of differentiation for each term on the left side of Eq. 2.4, which
is equivalent to integrating each term on the right side of that equation. For example,
if we start with ẋ = u and then increase the order of differentiation on the left side,
ẍ = u, this new expression corresponds to the original expression with integration
of the input signal, ẋ = ∫

udt .
Integrating the input smooths out high-frequencyfluctuations, acting as a filter that

passes low-frequency inputs and blocks high-frequency inputs. Integration causes a
slower, smoother, and often more accurate adjustment to the input signal. A term
such as a/(s + a) is an integrator for large s and a pass-through transfer function
with value approaching one for small s.
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Perfect tracking of a constant reference signal requires a pure integrator term, 1/s.
A constant signal has zero frequency, s = 0. To track a signal perfectly, the system
transfer function’s gainmust be one so that the output equals the input. For the simple
closed loop in Eq.3.4, at zero frequency, G(0) must be one. The tracking error is
1 − G = 1/(1 + L). The error goes to zero as the gain of the open loop goes to
infinity, L(0) → ∞. A transfer function requires a term 1/s to approach infinity as
s goes to zero. In general, high open loop gain leads to low tracking error.

Third, we can add derivative control by including the term kds. We can understand
why this term differentiates the input term by following the same steps as for the
analysis of integration. Multiplying Eq.2.5 by s increases the numerator’s order of
its polynomial in s. That increase in the exponents of s corresponds to an increase
in the order of differentiation for each term on the right side of Eq. 2.4. Thus, the
original input term, u(t), becomes the derivative with respect to time, u̇(t).

Differentiating the input causes the system to respond to the current rate of change
in the input. Thus, the system responds to a prediction of the future input, based on
a linear extrapolation of the recent trend.

This leading, predictive response enhances sensitivity to short-term, high-
frequency fluctuations and tends to block slow, low-frequency input signals. Thus,
differentiation acts as a high-pass filter of the input signal. A term such as s + a mul-
tiplies signals by a for low-frequency inputs and multiplies signals by the increasing
value of s + a for increasingly high-frequency inputs. Differentiators make systems
very responsive, but also enhance sensitivity to noisy high-frequency perturbations
and increase the tendency for instability.

A basic proportional, integral, and derivative (PID) controller has the form

C(s) = kp + ki
s

+ kds = kds2 + kps + ki
s

. (3.6)

PID controllers are widely used across all engineering applications. They work rea-
sonably well for many cases, they are relatively easy to understand, and their param-
eters are relatively easy to tune for various tradeoffs in performance.

3.4 Sensitivities and Design Tradeoffs

Figure3.2a shows a basic feedback loop with three inputs: the reference signal, r , the
load disturbance, d, and the sensor noise, n. How do these different signals influence
the error between the reference signal and the system output? In other words, how
sensitive is the system to these various inputs?

To derive the sensitivities, define the error in Fig. 3.2a as r − η, the difference
between the reference input, r , and the process output, η (Åström and Murray 2008,
Sect. 11.1). To obtain the transfer function between each input and output, we use the
rule for negative feedback: The transfer function between the input and output is the
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open loop directly from the input to the output, L , divided by one plus the pathway
around the feedback loop, 1 + L .

If we assume in Fig. 3.2a that there is no feedforward filter, so that F = 1, and
we define the main open loop as L = CP , then the output η in response to the three
inputs is

η = L

1 + L
r + P

1 + L
d − L

1 + L
n, (3.7)

in which each term is the open loop between the input signal and the output, η,
divided by one plus the pathway around the full loop, L . If we define

S = 1

1 + L
T = L

1 + L
S + T = 1, (3.8)

with S as the sensitivity function and T as the complementary sensitivity function,
then the error is

r − η = Sr − PSd + Tn. (3.9)

This expression highlights the fundamental design tradeoffs in control that arise
because S + T = 1. If we reduce T and the sensitivity to noise, we increase S. An
increase in S raises the error in relation to the reference signal, r , and the error in
relation to the load disturbance, d. If we reduce S, we increase T and the sensitivity
to noise, n. These sensitivity tradeoffs suggest two approaches to design.

First, the sensitivities S(s) and T (s) depend on the input, s. Thus, we may adjust
the tradeoff at different inputs. For example, we may consider inputs, s = jω, at
various frequencies, ω. Sensor noise, n, often arises as a high frequency disturbance,
whereas the reference input, r , and the load disturbance, d, often follow a low fre-
quency signal. If so, then we can adjust the sensitivity tradeoff to match the common
input frequencies of the signals. In particular, at low frequency for which r and d
dominate, we may choose low S values whereas, at high frequency for which n
dominates, we may choose low T values.

Second, we may add an additional control process that alters the sensitivity trade-
off. For example, we may use the feedforward filter, F , in Fig. 3.2a, to modulate
the reference input signal. With that filter, the transfer function from the input, r , to
the error output, r − η, becomes 1 − FT . If we know the form of T with sufficient
precision, we can choose FT ≈ 1, and thus we can remove the sensitivity of the
error to the reference input.

Note that adjusting the tradeoff between S and T only requires an adjustment
to the loop gain, L , which usually does not require precise knowledge about the
system processes. By contrast, choosing F to cancel the reference input requires
precise information about the form of T and the associated system processes. In
other words, feedback is relatively easy and robust because it depends primarily on
adjusting gain magnitude, whereas feedforward requires precise knowledge and is
not robust to misinformation or perturbation.
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