Chapter 13 ®)
Time Delays i

You suddenly notice a ball flying toward your head. Your first reaction happens after
adelay. To avoid the ball, you must consider where your head will be after its delayed
response in relation to where the ball will be.

This chapter presents models for delay dynamics and discusses a control method
that compensates for delays.

13.1 Background

Delays often occur in the signals that flow between components of a control system.
An uncompensated delay may reduce system performance. Suppose, for example,
that the sensor measuring the system output, y, requires § time units to process and
pass on its measured value as a feedback signal.

The delayed feedback signal reports the system output § time units before the
current time, which we write as y(¢ — §). The calculated error between the current
reference input and the delayed feedback, r(f) — y(t — §), may not accurately reflect
the true error between the target value and the current system output value, () — y(?).

Delays may destabilize a system. If the calculated error overestimates the true
error, then the system may overcompensate, pushing the system output away from
the target reference value rather than toward it.

The robust control methods discussed in earlier chapters can reduce the insta-
bilities created by delays. Robust control creates a significant stability margin. A
large stability margin means that factors not directly included in the design, such as
unknown delays, will usually not destabilize the system.
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Fig. 13.1 Time delays in feedback loops. a Sensor delay. The sensor that measures system output
and passes that value as feedback has a delay of § time units between the system input and the
measured output. The transfer function e =% passes its input unmodified but with a delay of § time
units. b Process delay. The system process, Pe ™%, has a lag of § time units between the time at
which a control input signal, u, is received and the associated system output signal, y, is produced

In addition to general robust approaches, many specific design methods deal
explicitly with delays. The delays are often called dead time or transport lag (Astrom
and Higglund 2006; Normey-Rico and Camacho 2007; Visioli and Zhong 2011).

The design methods typically use a prediction model. A prediction allows the
system to use measured signal values at time ¢ — § to estimate the signal values at
time 7.

13.2 Sensor Delay

Figure 13.1a shows a standard feedback loop with a sensor delay. The sensor that
measures the process output, y, delays passing on the measured value by § time units.

In Fig. 13.1a, the transfer function ¢ % describes the delay. That transfer function
passes its input unmodified, but with a delay of §. Thus, the measured output that
is passed by the sensor as feedback is given by the transfer function Ye=%, which
transforms inputs, y(#), into the time-delayed outputs, y(t — §).

We can derive how the delay influences the closed-loop system response in
Fig. 13.1a. Define the open loop of the system as L = CP, as in Eq. 3.4. Then we can
write the system output as ¥ = LE, the error input, £, multiplied by the open-loop
system process, L.

The error is the difference between the reference input and the feedback output
from the sensor, E = R — Ye~%. Substituting this expression for the error into ¥ =
LE, we obtain the transfer function expression for the closed-loop system response,
G =Y/R, as

L(s)

(13.1)
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13.3 Process Delay

Figure 13.1b illustrates a feedback system with a process delay. The full process,
Pe™% requires § time units to transform its input to its output. Thus, the process
output lags behind the associated control input to the process by § time units.

The open loop in Fig. 13.1b is Le™% = CPe™%. We can derive the closed-loop
system response by the method used to derive Eqs. 3.4 and 13.1, yielding

L(s)e %

(13.2)

The simple transfer function description for signal delays allows one to trace the con-
sequences of delays through a system with many components that are each approx-
imately linear.

13.4 Delays Destabilize Simple Exponential Decay

This section illustrates how delays can destabilize a system. I analyze a simple open-
loop integrator, L(s) = k/s. That transfer function corresponds to dynamics given by
Xx(t) = kr(t), for reference input r, which has solution x(¢) = k fot r(t)dr for initial
condition xp = 0. Thus, the output of L is the integral of its input multiplied by the
gain, k. I assume throughout this section that the output equals the system state,
y(@) = x().

A standard negative feedback system has transfer function G = L/(1 + L), which
for L=k/sis

k

k+s’

G(s) =

which has dynamics
X(t) = —kx(t) + kr(t) = k[r() — x(®)].

The error signal is () — x(¢). The solution is the integral of the error signal.

For constant input, 7 = r(t), the solution is a constant exponential decay toward
the equilibrium setpoint at rate k. Without loss of generality, we can take the setpoint
as 77 = 0 and write the solution as

x(t) = xpe .

We can apply the same approach for the sensor delay system in Eq. 13.1. For
L = k/s, the system transfer function is
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Fig. 13.2 Feedback delay destabilizes a simple integrator process. a Temporal dynamics from
Eq.13.4, with gain kK = 5 and unit step input () = 1. The feedback delays are § = 0, 0.25, 0.33
shown in the blue, gold, and green curves, respectively. b Bode gain plot of the associated transfer
function in Eq. 13.3. Greater feedback lag increases the resonant peak. ¢ Bode phase plot. Note how
the destabilizing feedback lag (green curve) creates a large phase lag in the frequency response

G(s) = (13.3)

ke=% + s’
in which the term e=%
system is

expresses the delay by §. The differential equation for this
x() = k[r(t) —x(t — )1, (13.4)

which, for reference input 7 = 0, is

x(t) = —kx(t —9).

This system expresses a delay differential process. Although this delay differential
system is very simple in structure, there is no general solution. A sufficiently large
delay, §, destabilizes the system because the rate of change toward the equilibrium
setpoint remains too high when that rate depends on a past value of the system state.

In particular, the dynamics in Eq. 13.4 describe a simple lagged feedback system.
At each time, ¢, the error between the target value and the system state from § time
units ago is 7 — x(¢ — 8). That lagged error, multiplied by the feedback gain, k, sets
the rate at which the system moves toward the setpoint.

Because the system state used for the feedback calculation comes from a lagged
time period, the feedback may not accurately reflect the true system error at time z.
That miscalculation can destabilize the system.

Figure 13.2a shows how feedback lag can destabilize simple exponential decay
toward an equilibrium setpoint. With no time lag, the blue curve moves smoothly and
exponentially toward the setpoint. The gold curve illustrates how a relatively small
feedback lag causes this system to move toward the setpoint with damped oscillations.
The green curve shows how a larger feedback lag destabilizes the system. The Bode
plots in Fig. 13.2b, c illustrate how feedback delay alters the frequency and phase
response of the system in destabilizing ways.
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Fig. 13.3 Greater process gain, k, can be destabilized by smaller feedback lag, §. Combinations
of gain and lag below the curve are stable. Combinations above the curve are unstable. Stability is
determined by the maximum real part of the eigenvalues for Eq. 13.4 with constant reference input

In earlier chapters, I showed that high gain feedback systems move rapidly toward
their setpoint but may suffer sensitivity to destabilizing perturbations or uncertainties.
Feedback lag may be thought of as a kind of perturbation or uncertainty.

Figure 13.3 shows how the system gain, k, enhances the destabilizing effect of
feedback lag, 6. Combinations of gain and lag below the curve are stable. Combina-
tions above the line are unstable. Systems with greater gain can be destabilized by
smaller feedback lag.

Process delays differ from feedback delays only in the extra lag associated with
the reference input. For the process delay system given by the transfer function in
Eq. 13.2, the dynamics are

x(t) = k[r(t —8) — x(t — d)],

which describe an error integrator lagged by ¢ — §. For constant reference input,
r(t) = r, the process delay dynamics are the same as for the feedback delay dynamics
in Eq.13.4.

13.5 Smith Predictor

Compensating for a time delay requires prediction. Suppose, for example, that there
is a process delay between input and output, as in Fig. 13.1b. The Smith predictor
provides one way to compensate for the delay. To understand the Smith predictor,
we first review the process delay problem and how we might solve it.

In Fig. 13.1b, the time-delay transfer function in the process, e %, maps an input
signal at time  to an output that is the input signal at # — 8. Thus, the open loop CPe ™%
transforms the current input, 7(¢), to the output, y( — §). The measured error between
input and output, r(t) — y(t — &), gives an incorrect signal for the feedback required
to push the tracking error, r(t) — y(¢), toward zero.

One way to obtain an accurate measure of the tracking error is to predict the
output, y(#), caused by the current input, (). The true system process, Pe=% has
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Fig. 13.4 Smith predictor to compensate for time delay in the process output. Redrawn from
Fig.5.1 of Normey-Rico and Camacho (2007), © Springer-Verlag

a lag, and the unlagged process, P, may be unknown. If we could model the way in
which the process would act without a lag, P*, then we could generate an estimate,
y*(2), to predict the output, y(t).

Figure 13.4 shows the feedback pathway through P*. If P* is an accurate model of
P, then the feedback through P* should provide a good estimate of the tracking error.
However, our goal is to control the actual output, y, rather than to consider output
estimates and feedback accuracy. The Smith predictor control design in Fig. 13.4
provides additional feedbacks that correct for potential errors in our model of the
process, P*, and in our model of the delay, &*.

In Fig. 13.4, the pathway through P* and then ¢°"* provides our model estimate,
Ym, of the actual output, y. The error between the true output and the model output,
Y — Ym, is added to the estimated output, y*, to provide the value fed back into the
system to calculate the error. By using both the estimated output and the modeling
error in the feedback, the system can potentially correct discrepancies between the
model and the actual process.

The system transfer function clarifies the components of the Smith predictor
system. The system transfer function is G = Y /R, from input, R, to output, Y. We
can write the system transfer function of the Smith predictor in Fig. 13.4 as

G = ( cr )e—as (13.5)
I+Cc@ +am/ '

in which the modeling error is
AM = Pe™ — P*e™,

The Derivation at the end of this chapter shows the steps to Eq. 13.5.

The stability of a transfer function system depends on the form of the denominator.
In the case of Eq. 13.5, the eigenvalues are the roots of s obtained from 1 + C(P* +
AM) = 0. We know the process, P*, because that is our model to estimate the
unknown system, P.
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To obtain robust stability, we can design a controller, C, under the assumption
that the modeling error is zero, AM = 0. For example, we can use the methods from
the earlier chapter Stabilization to obtain a good stability margin for C relative to P*.
Then we can explicitly analyze the set of modeling errors, AM , for which our robust
controller will remain stable. A design with a good stability margin also typically
provides good performance.

13.6 Derivation of the Smith Predictor

The derivation of Eq. 13.5 begins with the transfer functions obtained directly from
Fig. 13.4 for various outputs

Y = ECPe™%

*

Y*=ECP*=Y
Pe=%s

P*e—é*s
Pefzﬁs

Y, = ECP*e™? =Y
with error input

E=R-Y-Y"+Y,
p* P*efé*s
Peds  Pes )

(P* +AM)

=R-Y(1+

=R-Y

Pe—93s

with
AM — Pe—(ss _ P*e—s*.ﬁ‘.

Substituting the expression for E into the expression for Y yields

Y =CPe ®[R—Y

== (P*+ AM)].

The system response, Y, to an input, R, is G = Y /R, which we obtain by dividing
both sides of the prior equation by R, yielding

G = CPe ™ — GC (P* + AM),

from which we obtain

P
G = C e*és’
1+ C (P* + AM)
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which matches Eq. 13.5. When the model is accurate, P = P* and AM = 0, the
system reduces to
G cp* s
= _— e
14 CP*

for known model P*. This transfer function has the standard form of a negative
feedback system with open loop L = CP*.
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