
Chapter 10
Nonlinearity

Real systems are nonlinear. Before discussing nonlinear theory, I review three reasons
why the core theory of control focuses on linear analysis.

First, feedback compensates for model uncertainty. Suppose we analyze a feed-
back system based on a linear model of dynamics, and the true model is nonlinear.
If the linear model captures essential aspects of the dynamics sufficiently, the true
nonlinear feedback system will often have the same qualitative response characteris-
tics as the modeled linear system. As Vinnicombe (2001, p. xvii) emphasized: “One
of the key aims of using feedback is to minimize the effects of lack of knowledge
about a system which is to be controlled.”

Second, the fundamental principles of control systems apply to both linear and
nonlinear dynamics. The comprehensive theory for linear systems provides insight
into nonlinear systems. For example, strong feedback signals often help to minimize
error but can create instabilities. Controllers can be added at different points in a
system to filter signals or modulate inputs that drive processes. Primary goals of
analysis and design often emphasize stability, disturbance rejection, regulation or
tracking. Certain tradeoffs inevitably arise. Integral control smooths response toward
a long-term target. Derivative control improves the speed of response by using a
simple prediction.

Third, the main tools for the analysis and design of nonlinear systems typically
extend the tools developed for linear systems. For example, nonlinear systems are
approximately linear near a particular operating point. One can study the linear
approximation around that point, and then switch to an alternative linear approxi-
mation as the system moves to another operating domain. By piecing together the
different linear approximations in neighboring domains, one develops a sequence
of linear systems that together capture much of the nonlinear characteristics. Other
tools of nonlinear analysis typically leverage the deep insights and methods of linear
analysis (Slotine and Li 1991; Isidori 1995; Khalil 2002).

This chapter presents a few brief illustrations of nonlinear control systems.
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10.1 Linear Approximation

In cellular biology, the concentration of amolecule,m, often responds an input signal,
φ, by the Hill equation

m = k
( φn

1 + φn

)
,

with parameters k and n. In this example, I let k = 1.
The nonlinear reaction system

ẋ1 = 1 − x1 + u
(10.1)

ẋ2 = xn1
1 + xn1

− γ x2

describes the change in the output, y = x2, as driven by a Hill equation response to
x1 and an intrinsic decay of x2 at a rate γ . In the absence of external input, u, the
internal dynamics hold the concentration of x1 at the equilibrium value of x∗

1 = 1,
which in turn sets the equilibrium of the output at x∗

2 = 1/2γ . The system responds
to external control signals or perturbations through u, which drives the concentration
of x1, which in turn drives the concentration of x2.

We can study the dynamics and control of this system by linearizing the dynamics
near a particular operating point,

(
x̂1, x̂2

)
. In this example, we use as the operating

point the equilibrium,
(
x∗
1 , x

∗
2

)
, in the absence of external input, u = 0. The linearized

system expresses the deviations from the equilibrium point as

ẋ1 = −x1 + u
(10.2)

ẋ2 = nx1/4 − γ x2.

Figure10.1 shows the response to an impulse perturbation by the nonlinear system
and the linear approximation. In the left panel, with a weak impulse and small devi-
ation from the equilibrium, the nonlinear and linear dynamics are nearly identical.
As the impulse becomes stronger in the right panels, the deviation from equilibrium
increases and the dynamics of the linear approximation diverge from the original
linear system.

10.2 Regulation

We can analyze the benefits of feedback for regulating nonlinear dynamics. One
approach analyzes feedback for the linear approximation near the target equilibrium.
The feedback for the linear approximation should provide good regulation when
applied to the nonlinear system near the equilibrium.
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Fig. 10.1 Response to an impulse perturbation by a nonlinear system and a linearized approxi-
mation, shown as the deviation from equilibrium. The nonlinear response in blue arises from the
system in Eq.10.1. The linearized response in gold arises from the system in Eq.10.2. The panels
from left to right show increasing magnitudes of the Dirac delta impulse perturbation at time zero,
with the impulse weighted by 0.1, 0.1

√
10, 1, respectively. Larger impulses cause greater deviations

from the equilibrium point. The greater the deviation from the equilibrium, the less accurate the
linearized approximation of the dynamics

This section applies the linear state feedback regulation approach. I used that
approach in a previous chapter, in which the cost function in Eq.9.3, repeated here,

J =
∫ T

0

(
u′Ru + x′Qx

)
dt,

balances the tradeoff between the cost of control inputs and the cost of state deviation
from equilibrium. The model is written so that the equilibrium states are x∗ = 0. We
obtain the optimal state feedback by applying the methods described in the prior
chapter (see also the supplemental Mathematica code).

Consider the linear approximation in Eq.10.2. That system has one input, for
which we letR = 1 and scale the state costs accordingly. For each state, assume that
the cost is ρ2, so that the integrand of the cost becomes u2 + ρ2

(
x21 + x22

)
.

We can calculate the feedback input that minimizes the cost for the linearized
approximation. Using the optimal feedback, we can form a closed-loop system for
both the linearized system and the original nonlinear system.

Figure10.2 shows the response to an impulse perturbation for the closed-loop
systems. In each panel, the nonlinear (blue) and linear (gold) responses are similar,
showing that the design for the linear system works well for the nonlinear system.

The panels from left to right show a decreasing cost weighting on the inputs
relative to the states. As the relative input costs become less heavily weighted, the
optimal feedback uses stronger inputs to regulate the response, driving the system
back to equilibrium more quickly.

Minimizing a cost function by state feedback may lead to systems that become
unstable with respect to variations in the model dynamics. Previous chapters dis-
cussed alternative robust techniques, including integral control and combinations
of H2 and H∞ methods. We may apply those alternative methods to the linearized
approximation in Eq.10.2. The linearized system corresponds to the transfer function

P(s) = n/4

s2 + (1 + γ )s + γ
.
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Fig. 10.2 State feedback increases the rate of return to equilibrium for the original nonlinear
system (blue) and a linear approximation (gold). The optimal state feedback was calculated from
the linearized system in Eq.10.2. Each panel shows the closed-loop response to perturbation using
state feedback. The perturbation is an impulse function with weighting of one, corresponding to the
right panel of Fig. 10.1. The weightings of the state deviations in the cost function are, from left to
right, ρ2 = 1, 10, 100

Robust feedback based on this transfer function may be applied to the original non-
linear system.

10.3 Piecewise Linear Analysis and Gain Scheduling

Linear approximations at a particular operating point provide nearly exact descrip-
tions of nonlinear dynamics near the operating point. As the system moves further
from the operating point, the linear approximation becomes less accurate.

In some cases, significant divergence from the operating point causes the quali-
tative nature of the nonlinear dynamics to differ from the linear approximation. In
other cases, such as in Fig. 10.1, the qualitative dynamics remain the same, but the
quantitative responses differ.

The distance from an operating point at which the linear approximation breaks
down depends on the particular nonlinear system. By considering the region over
which the linear approximation holds, one can approximate a nonlinear system by a
sequence of linear approximations.

Starting from an initial operating point, the first linear approximation holds near
that point. Then, as the approximation breaks down away from the initial operating
point, one can use a new approximation around a second operating point.

By repeatedly updating the approximation as needed for new regions, the series
of linear approximations describes the nonlinear system. Each linear approximation
holds in its own region or “piece.” That approach leads to the piecewise linear
approximation method (Rantzer and Johansson 2000).

For each piece, linear methods specify the design of feedback control. The overall
control becomes a sequence of individual controllers based on linear analysis, with
each particular control regime applied when the system is in the associated oper-
ating region. Alternative control in different operating regions is often called gain
scheduling.
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10.4 Feedback Linearization

Consider the simple nonlinear system with an input

ẋ = x2 + u,

in which the output is equal to the single state, y = x (Khalil 2002, p. 473). The
equilibrium x∗ = 0 is unstable because any perturbation from the equilibrium leads
to uncontrolled growth.

The error deviation from equilibrium is x . Classical negative linear feedback
would apply the control input u = −kx , in which the feedback is weighted by the
gain, k. The closed-loop system becomes

ẋ = −kx + x2.

This system has a locally stable equilibrium at zero and an unstable equilibrium at
k. For a perturbation that leaves x < k, the system returns to its stable equilibrium.
For a perturbation that pushes x beyond k, the system grows without bound. Thus,
linear feedback provides local stability. The stronger the feedback, with larger k, the
broader the local region of stability.

In this case, linear feedback transforms an unstable open-loop system into a locally
stable closed-loop system. However, the closed-loop system remains nonlinear and
prone to instability.

If we choose feedback to cancel the nonlinearity, u = −kx − x2, then we obtain
the linearly stable closed-loop system, ẋ = −kx .

Once we have a linear closed-loop system, we can treat that system as a linear
open-loop subsystem, and use linear techniques to design controllers and feedback
to achieve performance goals.

For example, we could consider the feedback linearized dynamics as ẋ = −kx +
v, in which v is an input into this new linearized subsystem. We could then design
feedback control through the input v to achieve various performance goals, such as
improved regulation to disturbance or improved tracking of an input signal.

A nonlinear system can be linearized by feedback if the states can be written in
the form

ẋ = f (x) + g(x)u. (10.3)

Such systems are called input linear, because the dynamics are linear in the input, u.
These systems are also called affine in input, because a transformation of the form
a + bu is an affine transformation of the input, u. Here, f and g may be nonlinear
functions of x , but do not depend on u.

In the example ẋ = x2 + u, we easily found the required feedback to can-
cel the nonlinearity. For more complex nonlinearities, geometric techniques have
been developed to find the linearizing feedback (Slotine and Li 1991; Isidori 1995;
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Khalil 2002). Once the linearized system is obtained, one may apply linear design
and analysis techniques to study or to alter the system dynamics.

Feedback linearization depends on an accurate model of the dynamics. For exam-
ple, if the actual model is

ẋ = ax2 + u,

and the feedback linearization is taken as u = −kx − x2 under the assumption that
a = 1, then the closed-loop system is

ẋ = −kx + (a − 1)x2.

If the true value of the parameter is a = 2, then the feedback system has dynamics
ẋ = −kx + x2, which is unstable for x > k.

This example shows that feedback linearization is not robust to model uncertain-
ties. The following chapter discusses an alternative method that can provide robust
feedback control for nonlinear systems.
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