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Abstract. Chatbots are text-based conversational agents. Natural Lan-
guage Understanding (NLU) models are used to extract meaning and
intention from user messages sent to chatbots. The user experience of
chatbots largely depends on the performance of the NLU model, which
itself largely depends on the initial dataset the model is trained with.
The training data should cover the diversity of real user requests the
chatbot will receive. Obtaining such data is a challenging task even for
big corporations. We introduce a generic approach to generate training
data with the help of crowd workers, we discuss the approach workflow
and the design of crowdsourcing tasks assuring high quality. We evaluate
the approach by running an experiment collecting data for 9 different
intents. We use the collected training data to train a natural language
understanding model. We analyse the performance of the model under
different training set sizes for each intent. We provide recommendations
on selecting an optimal confidence threshold for predicting intents, based
on the cost model of incorrect and unknown predictions.

Keywords: Conversational agents · Natural Language Understanding
Crowdsourcing

1 Introduction

Messenger applications, such as Facebook Messenger, Telegram, Whatsapp and
WeChat, represent a popular medium of communication, which people use to
interact with friends, colleagues, and companies. In 2015 the total number of
active users of such applications surpassed the total number of users of conven-
tional social network applications [12]. Chatbots, on the other hand, are com-
puter programs living in messenger applications and emulating a conversation
with a human to provide a certain service [19].

To make chatbots understand their users, natural language understanding
(NLU) machine learning models process incoming messages and classify them
according to a list of supported intentions – intent recognition – such as “get
weather forecast” or “purchase a ticket”, and identify associated information –
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entity or parameter extraction – such as the city for weather forecast or the des-
tination for ticket purchase. In a live uncontrolled environment user phrasings
are very diverse from lexical and syntactical perspectives. Users’ messages might
include grammatical mistakes, emojis, and ambiguous abbreviations. NLU is a
crucial part of a chatbot, as if it fails, not matter how good other chatbot com-
ponents (e.g. dialogue management, response generation) perform, the chatbot
execution will likely be incorrect.

To ensure robust performance from the NLU model, its training should be
performed upon a diverse high quality training data set, featuring a good cover-
age of messages the chatbot will receive in production from live users. Acquiring
such training set is not a an easy job, even for big companies. Such dataset
should be labeled with intents and entities, and the number of available could
training data greatly vary across domains.

While crowdsourcing is a suitable solution, the acquisition of high quality
training data from open crowds is not trivial: brainstorming new request phras-
ings is a creative task, where quality control is harder to implement with respect,
for instance, to more deterministic tasks like image labelling. While different
approaches for collecting training data using crowdsourcing were introduced in
the literature [2,14,16,20,21,28], we propose an end-to-end solution, which starts
from an information need, a generic approach to collect relevant labelled exam-
ples, a collection of ways to enrich the training dataset, using this dataset to train
an intent classifier, and a heuristic-based model suggesting an optimal confidence
threshold for this classifier in order to achieve business goals set for the conver-
sational agent. In this paper, we provide the following original contributions:

– A domain-independent end-to-end approach to generate high quality training
data for chatbot’s NLU using the crowd, enriching this data, and training
intent classifier;

– A data collection experiment where we collect training data using a crowd-
sourcing platform for 9 different intentions from 3 diverse domains and eval-
uate its quality;

– An NLU model training experiment where we train a model with the collected
data and evaluate its performance with training sets of a different size;

– An approach that supports the selection of an optimal confidence threshold
for the intent classifier, by means of a cost function that accounts of the costs
caused by incorrect and unknown classifications.

The remainder of the paper is organised as follows: Sect. 2 presents the end-
to-end pipeline that constitutes our domain independent approach. Section 3
details the data generation step, and presents and discusses the results of a
data collection experiment. Section 4 studies the performance of an NLU model
trained with the content generated in the previous step, and discusses a cost
function for the selection of an optimal confidence threshold. Section 5 presents
related work. Section 6 concludes.
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Fig. 1. Dataset generation pipeline for training chatbots natural language understand-
ing models.

2 End-to-End Pipeline

Our pipeline is designed to target chatbots serving information retrieval (e.g.
“when is the next train to the airport?”) or transactional (e.g. “purchase a
ticket for the next train.”) purposes, rather than ones aiming to sustain a generic
conversation with users. As such, the chatbot could be seen as a user interface
for a Web service.

Lets assume the chatbot’s Web service for which we plan to generate training
set is REST API. Then API endpoints map with message intents, and API end-
point parameters map with entities. Figure 1 depicts the pipeline, which consists
from 3 main stages:

1. Dataset Generation
2. Dataset Enrichment
3. Model Training

The goal of the first stage is to collect request examples from the crowd for
given intents. The goal of the second stage is to enlarge the dataset collected in
stage (i) using various techniques. In the last stage we train an intent classifier
and tune it to meet business needs of the conversational agent being developed.

Below we extensively discuss stage 1 (Sect. 3) and stage 3 (Sect. 4). We skip
the enrichment stage due to space limit, which and refer the interested reader
to existing literature [14,21].

3 Dataset Generation

Let us assume the development of a chatbot to get weather forecast using some
API. For simplicity reasons, we let users get a forecast by two parameters: location
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and period. Users of the chatbot can ask for a forecast with using different phrasing
and mentioning these parameters (not necessarily all of them) in any order. Valid
request examples would be: “How is it in San Francisco today?”, “What is the
weather next week?” (location is missing).

As a result of extensive experiments with crowd workers, we consolidated the
following 5 steps approach to generate a dataset to train NLU model (Fig. 1):
1. Generate N sequence combinations of P parameters. In the real world,
users could submit requests to the chatbot mentioning parameters in any order.
Having this assumption in mind, a reasonable strategy for training set genera-
tion would be to collect several request examples for every possible sequence of
parameters. For that we create a list of possible parameter sequences, which we
later use in the brainstorming task.

The number of possible sequences is calculated as:

Nsequences =
P−1∑

i=0

P !
i!
,

where P is the number of parameters.
2. Brainstorm K new phrasings for each sequence. For each sequence
from the pool of sequence combinations we collect K examples from the crowd.
As in live scenario chatbot users will write their requests with high diversity of
phrasing, we need to account for such diversity in this step. The fact that we ask
people from different countries and with different background and demographics
already injects some diversity in the examples. To ensure the creation of rea-
sonable amount of examples from the crowd, we introduce the following quality
control techniques (including validators as in Fig. 2).

Fig. 2. An example of how validators work in the brainstorming task on CrowdFlower.

Instructions - a short instruction is given to workers, where we describe the
expect contribution;
Example - to give a feeling about the expected result we give an example of a
request example which fits the given sequence;
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Language control - even though we ask workers to provide requests in a given
language (e.g. English), some workers might provide examples in other languages.
To control this, we use a third party service (https://detectlanguage.com) which
we call using JavaScript before the task form is submitted, and if the service
predicts language different than English we give feedback to the worker and ask
to write it in English instead;
Sequence control - even though we ask workers to follow the requested sequence
of parameters, we need to assure it, so we validate the sequence before the task
form is submitted;
Uniqueness control - even thought we ask workers to come up with their own
phrasing and parameter values, some where copying our example and were
adding a letter in the end of the sentence. To address that we calculate Lev-
enshtein distance of our example and the one by the worker and see if they are
far apart enough.
3. Get Judgments for each phrasing example. Despite the use of different
validators. It is still possible to obtain low quality requests from crowd workers.
To address this problem we introduce another layer of quality control, where we
launch another crowdsourcing task and ask several workers to evaluate requests
we collected from the brainstorming task. To make sure workers understand well
this validation task we have some ground truth data and give real tasks only to
people who pass the qualification round of the task.
4. Keep phrasings positively judged by T × J crowd workers. For each
request from the brainstorming task we have several judgments about its fitness
to the specified intent. Depending on the specified requirement, we define some
agreement threshold, which is used to use this request to train NLU model or
not:

A =

{
1, if Jpositive

Jpositive+Jnegative
� Taccept

0, if Jpositive

Jpositive+Jnegative
< Taccept

}
, Tacceptance ∈ [0, 1]

5. Enrich phrasings. More training examples could be automatically generated
by: (i) sentence paraphrasing [14,21], (ii) adding some extensions (e.g. “what
is the weather today?” → “hey chatbot, what is the weather today?”), (iii)
replacing parameter values with others (e.g. “what is the weather today?” →
“what is the weather tomorrow?”), (iv) generating big pools of parameter values
from open data sources (e.g. thousands of location options could be generated
from Google Maps API), (v) swapping two or more consecutive letters to account
for possible misspellings (e.g. “what is the weather today?”). These and many
other strategies can help to increase the size of the training set and make the
NLU model more robust.

3.1 Experiment Setup

To test the effectiveness of our approach we conduct an experiment, where we
collect data for 9 intents (Table 1) in 3 different domains: travel information

https://detectlanguage.com
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(which is popular among chatbots selling tickets and providing timetable), meet-
ing scheduling (multiple chatbots, such as X.ai and Calendar.help [6], work in
the same domain), and software development (to challenge our approach, as it
is generally perceived that it is only possible to perform tasks on crowdsourcing
platforms not requiring a specific knowledge). In each domain we test the app-
roach with 3 types of intents: (1) read - where users retrieve some information,
(2)create - where users intend to perform a new transaction, (3) update - where
users intent to edit information. For intents with 3 parameters (15 sequence com-
binations) we requested examples from 7 workers, for intents with 4 parameters
(64 sequence combinations) – from 4 workers. Later each request is judged by 3
workers in the validation task.

As the main focus of this work is on getting high quality results from crowd
workers, we test only the first 4 steps of our approach, considering that the data
enrichment step is a topic on its own, requiring a separate extensive analysis.
We launch all tasks on CrowdFlower not concurrently, at different working days
at the same time span. To make sure the results we collect are representative we
repeat all tasks 3 times.

Table 1. We collect training data for 9 intents of 3 types (read, create, update) from
3 domains (travel information, scheduling meetings, software development).

Travel Meeting Software

Read Intent Ask for navigation Availability check “How to” questions

Parameters source, destination,

mode of transport

time, alternative time,

place

progr. language, OS,

package/tool

Create Intent Purchase a ticket Create a meeting Deploy software

Parameters source, destination, trip

purpose, date

time, participants,

place, duration

action, OS, memory

requirement

Update Intent Modify a ticket Modify a meeting Modify software

Parameters source, destination,

date

time, participants,

place, duration

error, progr. language,

OS, package/tool

3.2 Metrics

We first manually check all the results coming from the brainstorming step of
the pipeline. To evaluate the effectiveness of our approach we use the following
formulas to calculate accuracy before validation step (Abv), accuracy after the
validation step (Aav):

Abv =
Ncorrect

Ncorrect + Nincorrect
, Aav =

Ncorrect∩accepted

Naccepted
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3.3 Results

The results1 of the experiment are summarized in Table 2. The mean accuracy
of the brainstorming task before the validation task is 88.66% (standard devi-
ation = 5.72). Varying the threshold of acceptance Taccept we got the following
accuracies: 93.57% (for Taccept = 0.33), 96.37% (for Taccept = 0.33), and 98.21%
(for Taccept = 1). The higher the threshold of acceptance, the higher the mean
accuracy and lower its standard deviation. The lowest accuracy (86.53%) is for
modify ticket in travel domain with acceptance threshold = 0.33. The highest
accuracy (99.85%) is for creating meeting intent with acceptance threshold = 1.
From the diversity perspective 99.8% of collected examples are different. If we
fill up parameters (slots) with the same values, then 77% of requests are different
(meaning that the rest have the same phrasing but different parameter values).
Here are some request examples collected from the crowd:

– Valid example: What is the best route to go by {car} to {CN Tower} from
{Yonge Station}

– Invalid example, caught in review task: go to {vegas} to {boise}
– Invalid example, not caught in review task: How to go to {public transport}

from {Dasmarinas City}?

Table 2. Training data generation pipeline results. All results are averaged over 3
repetitions.

Brainstorming Validation

Accuracy, % Accuracy, %
T = 0.33

Accuracy, %
T = 0.66

Accuracy, %
T = 1.00

Travel Read 90,15 97,57 98,92 99,58

Create 94,39 97,14 98,7 99,63

Update 79,36 86,53 90,31 94,87

Meeting Read 88,25 91,47 96,46 97,78

Create 98,82 99,47 99,73 99,85

Update 81,85 92,46 95,87 99,2

Software Read 89,83 93,71 97,09 98,21

Create 90,79 94,17 96,49 97,16

Update 84,5 89,59 93,72 97,63

Mean 88,66 93,57 96,37 98,21

1 The sequences of parameters for each intent, examples collected in brainstorming
task, and judgments from the validation task are available here https://github.com/
HumanAidedBots/NLU.

https://github.com/HumanAidedBots/NLU
https://github.com/HumanAidedBots/NLU


Effective Crowdsourced Generation of Training Data for Chatbots NLU 121

3.4 Discussion

Crowd workers brainstormed examples for read and create intents very well,
but shown problems with update intents. Further analysis shown that crowd
workers considered update intent tasks more confusing, which also explains the
poor performance in the validation step. This suggests the need for improved
user interface and instructions for such tasks, to enable the generation of better
content.

The fact that we achieve 97% accuracy for read and create intents, suggests
that the method can already be used for acquiring large corpus of training data,
as such level of accuracy was achieved for all 3 domains.

For parameters most of the workers provided very short examples (e.g. not full
addresses, company names). Several request examples contain grammar mistakes
(e.g. “How to go from faro by plain?” all workers in the validation task accepted,
while “w would I go from Lima by train to Ica?” all workers rejected). This is an
interesting observation, that shows how crowd workers are likely to have mistakes
and typos while interacting with a chatbot as well.

In our work we do not focus a lot on enforcing diversity, apart from the fact
that we collect examples from a diverse group of people from different countries
and we double check that they provide examples which are significantly different
(using Levenshtein distance) than the example we give them.

There are multiple methods could be applied to assure diversity (e.g. GWAP
style game where workers need to come up with phrasings never used by other
workers, but at the same time rated as highly relevant). We discuss such approach
as future work.

4 NLU Model

To provide a measure of the quality of the collected sentences, we study how the
performance of NLU model trained with the content generated in the data collec-
tion experiment varies for different training data sizes and different intents. It is
often not reasonable to blindly trust predictions given by the model. Therefore,
we as well study how the NLU model prediction combined with a parametric
threshold level can be used to trade off between incorrect and unknown predic-
tions (those which have confidences below the threshold).

We acknowledge that testing the performance of the NLU model trained
with data generated using the same approach can lead to over fitting, and that
an evaluation performed with test data coming from a different source (ideally
from a live chatbot with real users) would be more appropriate. As we lack access
to such data, the goal of our experiment is to explore how the performance of
the trained NLU model vary with alternative training data sizes and confidence
thresholds.
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4.1 Experiment Setup

In our experiments we used the popular open-source platform Rasa NLU2. This
platform allows to train intent classifier and use this classifier locally with no
need to have internet connection and send data to third-party services. Rasa
NLU intent classifier is based on support vector machines (SVM). Further we
only discuss the performance of the intent classifier (not the entity recognition)
with a training data collected in the previous section.

We divide 4158 request examples we collected from the crowd into 90% (3742)
training set and 10% (416) test set. We vary training size from 15 to 3742 request
examples (approximately doubling it every time, so we have 10 possible sizes).
We keep our training sets and the test set balanced with respect to the number
of requests from each intent. We performed an N-fold validation, where having
multiple training sets for each training size (e.g. 5 sets, for 15, 30, 59, 117, 234,
and 468; 3 sets 936, and 1 set for 2700 and 3742 dataset sizes) are used for
training, and the resulting performance averaged.

4.2 Results

Figure 3 reports the performance of NLU model trained with different dataset
sizes. For each setting we show 9 stacked bars corresponding to the number of
correct predictions (green), incorrect predictions (red) and unknowns (grey) -
predictions with prediction confidence less than the confidence threshold (which
we vary from 0.1 to 0.9 with a step of 0.1). The performance for different intents
is not consistent, such with a very small training data set of just 30 training
examples the performance of Travel Read is over 90%, while Software Create is
below 10%. For intent Meeting Create with training size 3742 all test requests
were classified correctly.

Looking at the combined performance (the bottom part of the figure) with
the training data of less than 117 request examples the model has very low
performance (less than 90%). Increasing the training data 16 times helps to reach
95% accuracy level. Further dataset size increase gives only slow improvement
in its performance. Interesting to notice, that the model with training set 117
and confidence threshold 0.5 gives the same number of incorrect predictions as
the model with training set 3742 and confidence threshold 0.1.

4.3 Discussion

Different intents assume different level of diversity of user requests, such ques-
tions about navigation information (Travel Read) or purchasing a ticket (Travel
Create) are quite standard and typical, while questions about meeting scheduling
or software development vary greatly, therefore requiring more training exam-
ples to reach reasonable performance. Still with training sets of several thousands
(e.g. 3742) the performance across different intents is quite consistent.

2 https://rasa.ai.

https://rasa.ai
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Fig. 3. Performance comparison of NLU models trained with data of a different size.
In the top-left – combined performance across all intents, other 3 quadrants – detailed
results for each intent for a given training set size. (Color figure online)

4.4 Define Confidence Threshold

Changing the confidence threshold leads to different number of incorrect and
unknown classifications (Fig. 3). Conversational agents are often built to solve
business tasks, such as selling airplane tickets or hotel reservations. To pick the
optimal confidence threshold the system designer needs to identify a potential
cost of incorrect classification and a cost of unknown classification. This cost can
be defined in time, money, or a number of interactions users have to go through
to reach their goal. Further we give an example, how to come up with a cost
model and what is the optimal confidence threshold in different cost models.

Let’s say that it is possible to earn 10 USD with each flight ticket reservation.
Looking at hypothetical historical data, we might say that an incorrect intent
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classification drops the probability of the user to make reservation in half. Such,
the cost of incorrect classification is 5 USD. Unknown intent classifications lead
to extra clarification questions, which lead to the drop of the booking probability
by 10%. Such, the cost of unknown classification is 1 USD.

Fig. 4. Optimal thresholds for different training sizes for 3 different cost models (red
– incorrect classifications are more expensive, blue – incorrect and unknown classifica-
tions have the same cost, green – unknown classifications are more expensive). (Color
figure online)

In Fig. 4 we show optimal confidence thresholds for 3 different cost models:
(i) incorrect – 5 USD, unknown – 1 USD, (ii) incorrect – 1 USD, unknown – 5
USD, (iii) incorrect – 5 USD, unknown – 5 USD. We came up with this figure
based on the data given in the top-left quadrant of Fig. 3, using the following
cost function:

TotalCost = Nincorrect × Cincorrect + Nunknown × Cunknown,

where N is the number of classifications, and C is the cost of correct or incorrect
classifications. Such, if unknowns are more expensive (green line), then it makes
sense to define the confidence threshold as very small, introducing some incor-
rects, because unknowns are anyway more expensive. If the cost of incorrects
and unknowns are the same (blue), then we just need to minimize their total
number, maximizing the number of correct classifications. The most common
case, is when incorrect classification is more expensive than an unknown one
(red). In this case with smaller training sets the optimal threshold is 0.4, and as
we grow the training set the optimal threshold grows towards 0.8.

5 Related Work

Crowdsourcing and human computation are widely used to allow conversa-
tional agents and chatbots to understand their users. Chorus is a conversational
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agent, where all users requests are processed by multiple crowdworkers [11,18].
Guardian is a conversational agent where crowd workers ask questions to the
users to derive parameters and their values to run a request with an underly-
ing API [8]. In InstructableCrowd, users converse with crowd workers to create
if-then rules for their smartphones to perform various actions [9]. While in all
previous systems every user request was processed solely by crowdworkers, the
CRQA question and answering system make automatic algorithm and crowd
workers work in parallel to suggest answers to user requests, with crowd workers
voting for the best answer [23]. Huang et al. introduce an approach to perform
real-time entity extraction with the crowd in chatbot systems [10]. Vtyurina
et al. compare satisfaction and human behaviour of users interacting with a
human expert and a system perceived to be automatic, but backed by a human
worker [27].

While there are many examples of conversational agents where the crowd is
involved in processing every request this is not scalable (at least financially).
In Calendar.help, an email-based conversational agent helping people to arrange
meetings, multiple tiers aim to understand text of emails: automatic natural
language understanding model, crowd micro-tasks (e.g. to identify meeting loca-
tion), and crowd macro-tasks (e.g. in case other tiers fail, to understand how to
proceed with the email and write another email to reply with) [6]. While such
approach seems to be more scalable, the natural language understanding model
requires a dataset to be trained upon.

The importance of rich and diverse dataset for training dialogue systems is
discussed in [25]. There is some research has been done about using the crowd
to collect training data for conversational agents. Most of this research address
spoken language collection (e.g. via Amazon Mechanical TURK [15]), and tran-
scription and annotation of speech corpora [7]. Rothwell et al. discuss collection
and annotation of named entity recognition data using unmanaged crowds [22].

Human computation was historically used a lot for processing or generating
textual information, be it Soylent Word plugin for improving text and proof-
reading [1], image caption generation [3] using computer games [26], text simpli-
fication [17], translation quality evaluation [5], and evaluation of other natural
language tasks [24]. Jha et al. introduce an approach to curate prepositional
phrase attachment corpus by having automated point prediction system and
crowd workers from MTURK working together [13].

Crowdsourcing could be considered as a way to help expert annotators to
come up with training examples for dialogue systems [20]. Lasecki et al. [16] pro-
pose to acquire dialogue training data by crowdsourcing conversations between
pairs of crowdworkers towards defined goals. In [28] the authors propose sev-
eral methods using crowdsourcing to collect training sentences matching given
semantic forms. Sentence paraphrasing using crowdsourcing [14,21] is a way to
increase training dataset.
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6 Conclusion and Future Work

We introduced an end-to-end pipeline to generate training data for conver-
sational agents and training natural language understanding models. In this
pipeline we introduced new approaches, such as validation techniques in task user
interface, but also refer to concepts from the literature (e.g. going over combina-
tions of intents and parameters, and using paraphrasing for data enrichment).

We conducted an experiment collecting training data for 9 different intents
from 3 different domains and on average with the most strict validation policy
we collected request examples with 98.21% accuracy. Later we trained NLU
model with the data we have collected using our approach and reported how the
performance differ with training set size and intent. In addition we introduced
various cost models for incorrect and unknown classifications, and reported how
different confidence thresholds could be used to meet business goals.

In the current work we evaluated the performance of the NLU model split-
ting the dataset collected from the crowd into training and testing sets. Even
thought it provides some intuition on the performance of the model in real life
scenario, the first thing we plan to do in the future is to test the model with
requests collected from an online chatbot running with real users. In addition
we plan to improve the diversity of requests we generate with the approach, by
allowing crowd workers to submit only new unique phrasings for a given intent
(similar to image tagging in games with a purpose [4]). We plan to investigate
different techniques of phrasing enrichment (e.g. auto-generating parameter val-
ues, adding extra noisy attachments to requests) to improve the performance of
the NLU model.
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