
OpenAPItoUML: A Tool to Generate
UML Models from OpenAPI Definitions

Hamza Ed-douibi1(B) , Javier Luis Cánovas Izquierdo1 ,
and Jordi Cabot1,2

1 UOC, Barcelona, Spain
{hed-douibi,jcanovasi}@uoc.edu

2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. REpresentational State Transfer (REST) has become the
prominent architectural style for designing Web APIs. This increasing
adoption has triggered the creation of languages to formally describe
REST APIs, thus facilitating and promoting their usage. In particular,
a consortium of companies has created the OpenAPI Initiative, which
aims at creating a vendor neutral, portable, standard and open speci-
fication for describing REST APIs. OpenAPI specification has become
the choice of reference for describing REST APIs, and its adopters can
benefit from a plethora of tools for documenting, developing and inte-
grating REST APIs. However, current documentation tools for OpenAPI
only describe REST APIs in HTML pages using text and code samples,
thus requiring a considerable effort to visualize and understand what the
APIs offer. In this paper, we propose a tool called OpenAPItoUML, which
generates UML models from OpenAPI definitions, thus offering a better
visualization of the data model and operations of REST APIs.

Keywords: OpenAPI · UML · REST API

1 Introduction

The REpresentational State Transfer (REST) is an architectural style which
allows relying on URIs and HTTP messages to build interoperable Web applica-
tions. Due to its lightweight nature, adaptability to the Web, and scaling capac-
ity, REST has become the preferred style for building Web APIs. For instance,
reports from ProgrammableWeb1, the biggest repository of public Web APIs with
more than 19,000 APIs, show that more than 80% of the registered APIs are
REST2.

This work has been supported by the Spanish government (TIN2016-75944-R
project).

1 http://www.programmableweb.com.
2 https://tinyurl.com/yd8gnuer.

c© Springer International Publishing AG, part of Springer Nature 2018
T. Mikkonen et al. (Eds.): ICWE 2018, LNCS 10845, pp. 487–491, 2018.
https://doi.org/10.1007/978-3-319-91662-0_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91662-0_41&domain=pdf
http://orcid.org/0000-0003-4342-4818
http://orcid.org/0000-0002-2326-1700
http://orcid.org/0000-0003-2418-2489
http://www.programmableweb.com
https://tinyurl.com/yd8gnuer

488 H. Ed-douibi et al.

The growing importance of REST APIs has been supported by the pro-
posal of several languages aimed at formally describing REST APIs and there-
fore facilitating their discovery and integration (e.g., Swagger, API Blueprint,
and RAML). Recently, and aiming at standardizing the way to describe REST
APIs, several vendors have announced the OpenAPI Initiative (OAI)3. OAI has
succeeded in attracting major companies (e.g., Google, Microsoft or IBM) and
has created the OpenAPI specification (initially based on Swagger), which has
become the choice of reference to describe REST APIs. For instance, APIs.guru4,
a repository of OpenAPI definitions, lists more than 800 APIs.

There is therefore a need for creating an ecosystem of supporting tools
to facilitate the integration, development, and documentation of REST APIs
described by OpenAPI (e.g., generating client SDKs, documentation pages or
server skeleton). In this paper we propose a tool, called OpenAPItoUML, which
contributes to this ecosystem by allowing the visualization of OpenAPI defi-
nitions as UML Class diagrams (including both the structure and behavior of
the API), thus offering a better visualization of the capabilities of REST APIs.
To the best of our knowledge, current documentation tools for OpenAPI (e.g.,
ReDoc5 and Swagger UI6) display the operations and data structures of the
definitions in HTML pages using only text and code samples, which complicate
the understanding and visualization of REST APIs. Only JSONDiscoverer [2]
allows visualizing the data schema of JSON-based REST APIs but focus on the
inputs/outputs of the operations and does not model the operations themselves
nor supports OpenAPI descriptions.

The rest of the paper is organized as follows. Section 2 describes our approach
and Sect. 3 presents the tool. Section 4 concludes the paper and presents the
future work.

OpenAPI
definition

Open API
model

OpenAPI
metamodel

UML
metamodel

UML model

OpenAPI to UML
Discovery

API Blueprint

Markdown

#

RAML

YAML

-
-
-

API

REST API

Transformation

API Transformer

UML Designer

Extractor

UML model

XMI
</>

Papyrus

......

......M2M

2
Serializer

31

Fig. 1. Our approach.

3 https://openapis.org.
4 https://apis.guru/openapi-directory/.
5 http://rebilly.github.io/ReDoc/.
6 https://swagger.io/swagger-ui/.

https://openapis.org
https://apis.guru/openapi-directory/
http://rebilly.github.io/ReDoc/
https://swagger.io/swagger-ui/

OpenAPItoUML: A Tool to Generate UML Models 489

2 The OpenAPItoUML Approach

We propose a model-based approach to visualize OpenAPI definitions as UML
Class diagrams. From an input OpenAPI definition, our approach extracts first
an OpenAPI model which is then transformed into a UML model (i.e., Class
diagram) showing the data structure and operation signatures of the API. While
the intermediate OpenAPI model is useful to perform other kinds of advanced
analysis on the OpenAPI definition, it is more convenient to generate a UML
model for visualization and comprehension purposes. Being a standard UML
model, our result can be automatically rendered and modified using any of the
plethora of UML modeling tools (e.g., Papyrus or UML designer).

The OpenAPItoUML process is depicted in Fig. 1. As can be seen, the process
takes as input an OpenAPI definition, which can be (1) provided by the API
provider; (2) generated by tools such as APIDiscoverer [3], which allows discov-
ering OpenAPI definitions from API call examples; or (3) derived from other
API definition formats (e.g., API Blueprint, RAML) using tools such as API
Transformer7, which allows converting API definitions.

{"swagger" :"2.0",
"host" : "petstore.swagger.io",,
"paths" : {
"/pet/findByStatus" : {
"get" : {
"operationId" : "findPetsByStatus",
"parameters" : [
{ "name" : "status", "type" : "array",
"items": {
"type" : "string",
"enum" : ["available", "pending", "sold"],
....},}],

"responses":{
"200": { "schema" :

{ "type" : "array",
"items": {"$ref" : "#/definitions/Pet"}}}

}}},
"definitions":{
"Pet":{
"type" : "object",
"required" : ["name", "photoUrls"],
"properties" : {
"id" : { "type" : "integer", "format": "int64"}
"tags": {
"type": "array",
"items": { "$ref": "#/definitions/Tag"}}, ...

}, ...}}}}

Pet

id: Integer [0..1]
name: String [1]
...

findPetsByStatus (status: PetSatus [0..*]): Pet [*]
...

Tag

id: Integer [0..1]
name: String [0..1]

<<Enumeration>>
PetStatus

available
pending
sold

tags *

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:version="20131001" ...>
<packagedElement xmi:type="uml:Class"
name="Pet">
<ownedAttribute xmi:type="uml:Property"
name="id">
....

</ownedAttribute>
<ownedOperation xmi:type="uml:Operation"
name="findPetsByStatus" ...>
<ownedParameter xmi:type="uml:Parameter"
name="status"/>
...
</ownedParameter>

</ownedOperation>
<packagedElement xmi:type="uml:Class"
name="Tag">
...

</packagedElement>
<packagedElement xmi:type="uml:Enumeration"
name="PetStatus">
...

</packagedElement>
...

</uml:Model>

OpenAPI definition1 UML model2 Serialized UML model3

Fig. 2. The Petstore example.

The OpenAPItoUML process generates UML models in three steps (see the
steps 1, 2, and 3 in Fig. 1), which we will illustrate with the Petstore API exam-
ple, a REST API for a pet store management system, released by the OpenAPI
community as a reference. Figure 2 shows an excerpt of the Petstore OpenAPI
definition including the operation findPetsByStatus and the schema definition
Pet.

The first step (see step 1 in Fig. 1) extracts a model conforming to our Ope-
nAPI metamodel from the input OpenAPI definition. More details about this
metamodel can be found in our previous work [3]. Since the OpenAPI metamodel
conforms to the OpenAPI specification, the generation of OpenAPI models from

7 https://apimatic.io/transformer.

https://apimatic.io/transformer

490 H. Ed-douibi et al.

OpenAPI definitions is almost straightforward and only special attention had to
be paid to deal with JSON references. We omitted to show this model for the
Petstore example as it mirrors the OpenAPI definition shown in Fig. 2.

The second step (see step 2 in Fig. 1) performs a model-to-model transforma-
tion to generate a model conforming to the UML metamodel from the previously
extracted OpenAPI model. This transformation iterates over the operations and
definitions of the OpenAPI model in order to generate classes, properties, opera-
tions, data types, enumeration, and parameters, accordingly. This process relies
on a set of heuristics to identify the most adequate UML class to attach each
OpenAPI operation to. Heuristics are based on the analysis of the tags, param-
eters and responses of the operation8. The full list of heuristics can be found in
the tool website [1]. Figure 2 shows an excerpt of generated UML model for the
Petstore API. As can be seen, the OpenAPI schema Pet is transformed to the
UML class Pet, while the OpenAPI operation findPetsByStatus is transformed
into the UML operation findPetsByStatus in the Pet class.

The last step of the process (see step 3 in Fig. 1) serializes the generated UML
model as an XMI file (standard XML format for UML tool interoperability).
Users can rely on tools such as Papyrus and UML designer to open and visualize
such file.

3 Tool

OpenAPItoUML has been implemented in Java as a plugin for the Eclipse plat-
form [1]. The plugin extends the platform to provide a contextual menu to obtain
a UML model from an OpenAPI definition (using its JSON representation for-
mat). Figure 3 shows a screenshot of our plugin including the created contextual
menu (on the left side) and the generated Class diagram for the Petstore API dis-
played using Papyrus (on the right side), the “de facto” UML tool for Eclipse.
The OpenAPI metamodel has been implemented using the Eclipse Modeling
Framework (EMF), while UML models rely on UML29, an EMF-based imple-
mentation of the UML 2.5 OMG metamodel.

Fig. 3. A screenshot of the OpenAPItoUML plugin.
8 When no class is a good fit for the operation, an artificial class is created to host

the operation.
9 https://wiki.eclipse.org/MDT/UML2.

https://wiki.eclipse.org/MDT/UML2

OpenAPItoUML: A Tool to Generate UML Models 491

4 Conclusion

We have presented OpenAPItoUML, a tool to generate UML models from Ope-
nAPI definitions. We believe our approach contributes to the ecosystem of tools
for OpenAPI by offering developers the opportunity to understand and easily
visualize the capacities of REST APIs. OpenAPItoUML is available as an Open
Source Eclipse plugin [1]. The plugin repository includes a Get started guide
which explains the steps to install the plugin and generate and visualize UML
models.

As further work, we would like to extend our approach in order to support
the newly released version of OpenAPI (i.e., OpenAPI v3.0) once it starts to
get more attraction and adoption. This v3.0 version includes some interesting
new features (e.g., explicit links between operations) that could be exploited
to generate other types of UML diagrams (e.g. sequence diagram showing the
suggested execution order). We would like also to release our tool as a Web
application to visualize the generated UML models on-the-fly using Javascript.

References

1. OpenAPItoUML. https://github.com/SOM-Research/openapi-to-uml
2. Cánovas Izquierdo, J.L., Cabot, J.: JSONDiscoverer: visualizing the schema lurking

behind JSON documents. Knowl.-Based Syst. 103, 52–55 (2016)
3. Ed-douibi, H., Cánovas Izquierdo, J.L., Cabot, J.: Example-driven web API speci-

fication discovery. In: Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol.
10376, pp. 267–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61482-3 16

https://github.com/SOM-Research/openapi-to-uml
https://doi.org/10.1007/978-3-319-61482-3_16
https://doi.org/10.1007/978-3-319-61482-3_16

	OpenAPItoUML: A Tool to Generate UML Models from OpenAPI Definitions
	1 Introduction
	2 The OpenAPItoUML Approach
	3 Tool
	4 Conclusion
	References

