
A Bottom-Up Algorithm for Answering
Context-Free Path Queries in Graph

Databases

Fred C. Santos, Umberto S. Costa, and Martin A. Musicante(B)

Computer Science Department (DIMAp),
Federal University of Rio Grande do Norte, Natal, Brazil
freddcs@ppgsc.ufrn.br, {umberto,mam}@dimap.ufrn.br

Abstract. Many computing applications require processing of data that
are directly collected from the Internet. In this context, the use of the
Resource Description Framework (RDF) has became a common feature.
The query and analysis of RDF data is paramount to explore the full
potential of the data available on the Web. Query languages for RDF
graph databases rely on the use of regular expressions to identify paths
over the data. Some interesting queries, such as same-generation queries,
cannot be expressed by regular expressions. We are interested in extend-
ing the expressiveness of queries over graph databases by using paths
defined by context-free grammars. We introduce a new query algorithm
to process context-free path queries over graph databases. Our approach
is inspired by the LR(1) parsing techniques. A prototype was imple-
mented and experiments were conducted to validate and compare the
results of our algorithm with those obtained by similar approaches.

Keywords: Graph databases · Query answering
Context-free path queries

1 Introduction

Many computing applications require processing of data that are directly col-
lected from the Internet. In this context, the use of the Resource Description
Framework (RDF [3]) has became common. RDF documents define a set of
triples (subject, predicate, object). The components of these triples are text or
URIs used to identify resources over the Internet. These sets of triples may be
seen as a graph database, where the predicate of each triple corresponds to an
edge linking the subject and object. This format is well suited to represent data
related to applications such as social networks or IoT [12].

The current standard to query graph databases is SPARQL [1]. The expres-
siveness of SPARQL is limited by the use of regular expressions to define query
paths (called Property Paths in SPARQL). There are interesting queries that can-
not be expressed by property paths. Examples of these are the same-generation
queries [4], where the predicates linking nodes in the query to nodes in the
c© Springer International Publishing AG, part of Springer Nature 2018
T. Mikkonen et al. (Eds.): ICWE 2018, LNCS 10845, pp. 225–233, 2018.
https://doi.org/10.1007/978-3-319-91662-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91662-0_17&domain=pdf

226 F. C. Santos et al.

answer is a string belonging to a context-free language. Some ongoing research
initiatives define context-free path queries [7–9,13].

In this work, we contribute to the area by investigating how LR(1) parsing
techniques [5] can be adapted to perform this class of queries. The main contri-
butions of this paper are: (i) the design of an algorithm based on LR(1) parsing
to recognize context-free paths in graphs; and (ii) the performance evaluation
of our algorithm by means of experiments over ontologies and synthetic graphs.

This paper is organized as follows: Sect. 2 presents the concepts and defi-
nitions used in this work, a well as introduces our query evaluation algorithm;
Sect. 3 is devoted to our experiments; and Sect. 4 gives some final remarks.

2 LR Queries over Graph Databases

A database is a collection of organized, related data which is used as a source
to answer user queries or to facilitate other data processing activities. The basic
database management problem is how to store and organize data efficiently to
meet the data processing needs of the applications which use the data [4].

Graph databases are usually represented by using RDF (Resource Descrip-
tion Framework) [2], a W3C standard. Querying a graph database consists on
looking for nodes of the graph under some search criteria. The standard query
language for RDF databases is SPARQL [1], an SQL-inspired declarative query
language. SPARQL allows the user to define paths inside the graph by using
property paths. Evaluating a given property path R consists in finding all the
pairs of nodes linked by paths belonging to the regular language generated by R.

Formally, a Graph Database is a set of triples in V ×E ×V , where V is a set
of nodes and E is a set of edge labels. Given an initial node, the query processor
looks for paths in the graph database. A path linking the nodes n and m of a
graph database is defined as strings of edges linking n to m. In our context, these
strings belong to the language generated by a context-free grammar [5]. Given a
graph database D and a grammar G, a query QG is defined as a set of nodes of
D. The nodes in QG will be used as starting points of G-generated paths in the
graph database D. For any node n in QG, the evaluation of the query will look
for those nodes m in the graph that are (i) linked to n by a path in D and (ii)
the sequence of edges of the path forms a string generated by the grammar G.
The answer to QG will be all the nodes of the graph D reachable by such paths.

LR parsing [5] is a well-known technique capable of parsing most current
programming languages. Given a context-free grammar, LR parsers perform a
reverse derivation for the input string. Intuitively, the parser shifts states (ter-
minal symbols) onto a stack until forming the right-hand side of a production
rule. Once a right-hand side is found, it is replaced (on the stack) by a state
corresponding to the non-terminal symbol of the left-hand side of the rule. This
operation is called reduce.

Tomita-Style Generalised LR Parsers. In [10,11], a bottom-up parsing algorithm
is presented for general context-free grammars. The LR parsing process uses a

A Bottom-Up Algorithm for Answering Context-Free Path Queries 227

data structure called Graph Structured Stack (GSS) to represent several stacks. A
GSS is a compact data structure that keeps track of multiple derivations without
processing any part of the input twice. A GSS is formed by state nodes (states of
the LR automaton) and symbol nodes (containing terminals and nonterminals
of the grammar). State nodes are grouped into levels and the parser processes
one level at each iteration. An initial level U0 contains just the initial state of
the automaton. Each subsequent level will be constructed by processing shift
actions. Given a state node si at level Uk, the action “shift sj” for a given input
symbol a will create a new state node sj at the GSS level Uk+1 (Fig. 1).

si a sj

Fig. 1. Representation of a shift action in a GSS.

For any state node sj at level Uk, a reduction by the rule A → α at state sj

adds a new state node sh at the same Uk level. This new node is connected to
the ancestor si of sj , such that, the distance between si and sj in the GSS is
|α| (the size of the right-hand side of the production rule). In this way, the state
node sj is located at level Uk−|α| (Fig. 2).

si a1 . . . an sj

A sh

Fig. 2. Representation of a reduce action in a GSS.

The Proposed Method: GSSLR. Our method receives a data graph DG, a
Context-Free Grammar G, a query Q of nodes of DG and calculates the set
AnswersG(Q). AnswersG(Q) contains those nodes of DG that can be reached
from nodes in Q through a path which is a word of the language generated by
G. Our method is described by Algorithm 1 and uses a variant of GSS to encom-
pass several derivations at a time: Our GSS contains sd-nodes, which associate
states of LR automata with nodes of data graphs. First, the algorithm creates
a parsing table for G (line 2) and initializes the GSS (line 3). The state s0 is
the start state of the LR automaton for G. The level U0 of the GSS includes all
the sd-nodes in {(a, s0) | a ∈ Q}. The algorithm iterates over three main sets,
namely VisitedPairs, ReductionEdges and Answers (defined at lines 4, 5 and 6
respectively):

– VisitedPairs contains the nodes of the GSS during the parsing.
– ReductionEdges is a set of triples (a,A, b), where a and b are vertices of the

graph and A is a non-terminal symbol. These triples represent the existence
of an A-generated path from vertex a to vertex b in the data graph. This set
is produced by the algorithm during the parsing.

– Answers is the result of the query evaluation.

228 F. C. Santos et al.

The main loop of Algorithm 1 (lines 8 to 43) iterates over (new) levels of the
GSS. The loop exits when no new data is included in any of the sets VisitedPairs
or ReductionEdges. Notice that the body of this main loop has three main parts,
corresponding to the possible actions of the LR parser.

Lines 10 to 25 process all the possible reduce actions over the sd-nodes at
the current GSS level. For each sd-node (a, si), and triple (a, t, b) in DG, the
algorithm looks for reductions by t at state si. For each possible reduction, a
new sd-node is created at the current level of the GSS. The new sd-node is linked
to ancestor sd-nodes of the GSS, depending on the length of the right-hand side
of the production rule used in the reduction. Each reduction may add a new
triple to ReductionEdges. Intuitively, changes on ReductionEdges mean that the
parser may discover new paths originated from derivations depending on the
new reduction. This indicates that a new iteration needs to be performed.

Lines 26 to 32 produce new answers. Processing a query for a given origin
vertex a, is to find all the paths aπb generated by the grammar G. Any vertex
of DG reachable at an accepting state of the parser is an answer to the query.

Lines 33 to 41 create the next level of the GSS. For each sd-node (a, si)
at the current GSS level, the algorithm looks for shift actions at state si and
outgoing edges of a in DG, creating new nodes at the next level of the GSS.

3 Experimental Results

In order to validate our proposal, we produced a prototype in Python. Our
prototype was executed on an AMD Phenom II X4 B97 processor, with 7.3 GB
of RAM, running Ubuntu 16.04 (x64) and Python 2.7. We also benefit of the
speed gains provided by the PyPy Python compiler [6], which uses Just-in-Time
(JIT) compiling techniques. The times reported are the average of five runs.
Two experiments were performed. The first one evaluates the feasibility and
efficacy of our method by comparing our results to those obtained in the related
work [7,9,13]. The second experiment evaluates the scalability of our approach
and used synthetic data to compare our results with those of [9].

S subClassOf subClassOf−1

S subClassOf S subClassOf−1

S type type−1

S type S type−1

(a)

S B subClassOf−1

B subClassOf B subClassOf−1

B λ

(b)

Fig. 3. Grammars for Queries Q1 (a) and Q2 (b).

Experiment 1: In the first experiment, two queries over a number of popular
RDF ontologies are considered. Query Q1 looks for all pairs of nodes at the same
sub-class level of each ontology. Query Q2 returns all pairs of nodes on adjacent
sub-class levels. The grammar rules for queries Q1 and Q2 are given in Fig. 3.

A Bottom-Up Algorithm for Answering Context-Free Path Queries 229

Algorithm 1. GSSLR Query Processing Algorithm.
input : - a data graph DG ⊆ V × E × V ;

- a Context-Free Grammar G = (N, T, S, P);
- a Context-Free Path Query Q ⊆ V .

output: - AnswersG(Q).
1 Function GrLR(DG, G, Q) : AnswersG(Q)
2 (ParsingTable, s0) ←CreateParsingTable(G)
3 GSS ←CreateGSS(Q, s0)

4 V isitedPairs ← ∅
5 ReductionEdges ← ∅
6 Answers ← ∅
7 level ← 0

8 while TRUE do

9 changed ←FALSE
// processing reduces

10 PairsToProcess ←GSS Pairs(GSS, level)

11 while PairsToProcess �= ∅ do

12 choose (a, si) ∈ PairsToProcess

13 PairsToProcess ← PairsToProcess\{(a, si)}
14 NextTerminals ← {terminal|(a, terminal, b) ∈ DG} ∪ {$}
15 for each terminal ∈ NextTerminals do

16 for each ParsingTable[si][terminal] do

17 if ParsingTable[si][terminal] = REDUCE A → α then
18 Ancestors ← GSS Up(GSS, (a, si), |α|)
19 for each ((c, sj) ∈ Ancestors) do

20 GSSPair ← (a, ParsingTable[sj][N])
21 GSS Insert Pair(GSS, level, GSSPair)

22 PairsToProcess ← PairsToProcess ∪ {GSSPair}
23 if (c, N, a) /∈ ReductionEdges then
24 ReductionEdges ← ReductionEdges ∪ {(c, A, a)}
25 changed ← TRUE

// processing accept states

26 for each (a, si) ∈ GSS Pairs(GSS, level) do

27 if ParsingTable[si][$] = ACCEPT then
28 Ancestors ← GSS Up(GSS, (a, si), 1)

29 for each (c, sj) ∈ Ancestors do
30 if (c, a) /∈ Answers then
31 Answers ← Answers ∪ {(c, S, a)}
32 changed ← TRUE

// processing shifts

33 for each (a, si) ∈ GSS Pairs(GSS, level) do
34 for each (a, terminal, b) ∈ DG do
35 for each ParsingTable[si][terminal] do

36 if ParsingTable[si][terminal] = SHIFT sj then
37 GSSPair ← (b, sj)

38 GSS Insert Pair(GSS, level + 1, GSSPair)

39 if (b, sj) /∈ VisitedPairs then

40 V isitedPairs ← V isitedPairs ∪ {(b, sj)}
41 changed ← TRUE

// has V isitedPairs or ReductionEdges changed at this level?

42 if not (changed) then break;

43 level ← level + 1

44 return Answers

230 F. C. Santos et al.

As it is usual in RDF, the superscript “−1” indicates the inversed transversal
of an edge of the graph. The RDF ontologies used in the experiments are Skos,
Generations, Travel, Univ-bench, Foaf, People-pets, Funding, Atom-primitive,
Biomedical, Pizza and Wine. These databases are used by [7,9,13] to perform
the same experiment as ours. These ontologies can be found on the Web.

In Fig. 4 we compare our results to those in [7,9,13] for query Q1. All the
data correspond to average running times in milliseconds, as presented on those
papers. GSSLR refers to our implementation.

Fig. 4. Performance evaluation for Query Q1 on RDF databases.

Due to to the differences in running environments, the comparison between
these four implementations is not a fair one. However, it is useful as a general
performance indication. The experiments of [13] were executed under Windows
7 on a Intel Core i5-760 2.80 GHz with 6 GB of RAM. Their implementation
was written in Java 7. The results of [9] were obtained in a similar architecture
as ours, but without the use of the JIT Python compiler. The running environ-
ment of [7] was an Intel Core i7-4790, 3.60 GHz CPU machine with 32 GB RAM
running Windows 10 Pro. Their implementation was written in F#.

Figure 5 presents the results for query Q2, under the same considerations as
before. The comparison with the results obtained in [13] shows the expressive
gain of our implementation when compared to theirs. The comparison of our
implementation with that of [9] shows that our algorithm outperforms their
implementation for the given ontologies and queries.

The results presented in [7] are close to ours. It is worth to notice that for
both queries, our implementation is faster than [7] in all but three ontologies,
even with a noticeable disadvantage in processing power (due to the hardware
used in both experiments). This is an indication of the feasibility of our approach.

Experiment 2: This experiment consists on querying a number of synthetic
graphs. The queries Q3 and Q4 are defined over the grammars presented in [7],

A Bottom-Up Algorithm for Answering Context-Free Path Queries 231

Fig. 5. Performance evaluation for Query Q2 on RDF databases.

S λ
S a S b
S S S

(a)

S a S b S
S λ

(b)

Fig. 6. Grammars for queries Q3 and Q4.

which are reproduced in Fig. 6. Both grammars generate the same language,
being grammar (a) ambiguous, while grammar (b) is unambiguous and LR(1).

This experiment uses graphs with the topology of complete binary trees.
There are two terminals, a and b, linking data nodes. Query Q3 consists on
finding all the nodes linked to other nodes of the graph by paths generated by
derivations of the symbol S of the grammar in Fig. 6(a). Query Q4 is the same as
Q3, but considering the grammar in Fig. 6(b). As expected, both queries produce
the same results.

In order to evaluate the scalability of our algorithm, both queries are evalu-
ated on datasets of increasing size (in terms of the height of the binary trees).
In Fig. 7 we compare our results with those of [9]. Notice that for the ambiguous
grammar our results are close to those of [9]. For the unambiguous grammar, our
algorithm presents a significant gain in performance. We can explain this gain
by the fact that the number of derivations to be represented in the GSS directly
impacts on the performance of our algorithm.

The overall results of the experiments suggest that it is viable to use our
proposed algorithm to perform context-free queries on graphs on most of the
real world scenarios. Due to the differences in the hardware used to execute the
experiments, we cannot directly compare our results with the other proposals.

232 F. C. Santos et al.

0 1 2 3 4 5 6 7

·104

0

1

2

·105

Number of vertices

T
im

e
(m

s)

Q3 GSSLR
Q4 GSSLR

Q3 [9]
Q4 [9]

Fig. 7. Visualization of the binary tree experiment results.

4 Conclusion

We presented a new algorithm for the implementation of context-free path
queries for graph databases. The proposed algorithm is inspired by the LR pars-
ing technique [5] and uses a variant of the GSS introduced in [11] to encompass
several derivations at a time. A Python prototype was implemented and exper-
iments were conducted to validate and compare the results of our algorithm
with those obtained by similar approaches. Two experiments and four queries
were considered to evaluate our algorithm. In the first experiment, the ontolo-
gies used in [7,9,13] were used as databases. The main goal of this experiment
was to investigate the feasibility of our method and compare our results with
those reported in these works. In the second experiment, synthetic data of dif-
ferent sizes were used to investigate the scalability of our approach and compare
it to [9]. Both experiments indicate that our algorithm performs as well as or
better than similar approaches.

References

1. SPARQL 1.1 overview (2013). https://www.w3.org/TR/sparql11-query/. Accessed
13 Mar 2018

2. PRIMER rdf 1.1 primer (2014). https://www.w3.org/TR/2014/NOTE-rdf11-
primer-20140225/. Accessed 8 Feb 2017

3. RDF - semantics web standards (2014). https://www.w3.org/RDF/. Accessed 8
Feb 2017

4. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

5. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Addison Wesley Publishing Company Incorporated, Boston (2007)

6. Ancona, D., Bolz, C.F., Cuni, A., Rigo, A.: Automatic generation of JIT compilers
for dynamic languages in .NET. Technical report, DISI, University of Genova and
Heinrich-Heine-Universität Düsseldorf (2008)

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
https://www.w3.org/RDF/

A Bottom-Up Algorithm for Answering Context-Free Path Queries 233

7. Grigorev, S., Ragozina, A.: Context-free path querying with structural representa-
tion of result. In: Proceedings of the 13th Central & Eastern European Software
Engineering Conference in Russia, CEE-SECR 2017, pp. 10:1–10:7. ACM, New
York (2017)

8. Hellings, J.: Conjunctive context-free path queries. In: Proceedings of the 17th
International Conference on Database Theory (ICDT), Athens, Greece, pp. 119–
130, March 2014

9. Medeiros, C.M., Musicante, M.A., Costa, U.S.: Efficient evaluation of context-free
path queries for graph databases. In: ACM SAC 2018: Symposium on Applied
Computing. ACM, New York (2018). 8 pages

10. Scott, E., Johnstone, A., Hussain, S.S.: Tomita-style generalised LR parsers. Tech-
nical report, December 2000

11. Tomita, M.: An efficient augmented-context-free parsing algorithm. Comput. Lin-
guist. 13(1–2), 31–46 (1987)

12. Xia, F., Yang, L.T., Wang, L., Vinel, A.: Internet of things. Int. J. Commun. Syst.
25(9), 1101 (2012)

13. Zhang, X., Feng, Z., Wang, X., Rao, G., Wu, W.: Context-free path queries on
RDF graphs. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue,
F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 632–648. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46523-4 38

https://doi.org/10.1007/978-3-319-46523-4_38

	A Bottom-Up Algorithm for Answering Context-Free Path Queries in Graph Databases
	1 Introduction
	2 LR Queries over Graph Databases
	3 Experimental Results
	4 Conclusion
	References

