
Challenges and Strategies for Undertaking
Continuous Experimentation to Embedded

Systems: Industry and Research Perspectives

David Issa Mattos1(&) , Jan Bosch1 ,
and Helena Holmström Olsson2

1 Department of Computer Science and Engineering,
Chalmers University of Technology,

Hörselgången 11, 412 96 Göteborg, Sweden
{davidis,jan.bosch}@chalmers.se

2 Department of Computer Science and Media Technology,
Malmö University, Nordenskiöldsgatan, 211 19 Malmö, Sweden

helena.holmstrom.olsson@mah.se

Abstract. Context: Continuous experimentation is frequently used in
web-facing companies and it is starting to gain the attention of embedded systems
companies. However, embedded systems companies have different challenges
and requirements to run experiments in their systems. Objective: This paper
explores the challenges during the adoption of continuous experimentation in
embedded systems from both industry practice and academic research. It presents
strategies, guidelines, and solutions to overcome each of the identified chal-
lenges. Method: This research was conducted in two parts. The first part is a
literature review with the aim to analyze the challenges in adopting continuous
experimentation from the research perspective. The second part is a multiple case
study based on interviews and workshop sessions with five companies to
understand the challenges from the industry perspective and how they are
working to overcome them. Results: This study found a set of twelve challenges
divided into three areas; technical, business, and organizational challenges and
strategies grouped into three categories, architecture, data handling and devel-
opment processes. Conclusions: The set of identified challenges are presented
with a set of strategies, guidelines, and solutions. To the knowledge of the
authors, this paper is the first to provide an extensive list of challenges and
strategies for continuous experimentation in embedded systems. Moreover, this
research points out open challenges and the need for new tools and novel solu-
tions for the further development of experimentation in embedded systems.

Keywords: Continuous experimentation � Data-driven development
Controlled experiments � Embedded systems

1 Introduction

Traditional embedded systems companies continuously rely on software to be a dif-
ferentiator on their products. As the software size of the products increases, these
companies are moving from being mechanical producers to software companies.

© The Author(s) 2018
J. Garbajosa et al. (Eds.): XP 2018, LNBIP 314, pp. 277–292, 2018.
https://doi.org/10.1007/978-3-319-91602-6_20

http://orcid.org/0000-0002-2501-9926
http://orcid.org/0000-0003-2854-722X
http://orcid.org/0000-0002-7700-1816
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91602-6_20&domain=pdf

In their development process, these companies traditionally make use of up-front
requirements and rigid methodologies to ensure quality or safety attributes in their
products. Nevertheless, the requirements of several parts of their systems are not clear
or cannot be defined in advance [1]. In this context, developers either negotiate with
requirement teams or they make implicit assumptions about the requirements [2].

Even during the requirement specification, several requirements are written based on
assumptions and does not necessarily deliver value to the company or the customers.
Often, research and development effort is spent on features that are never or rarely used
[3] by the users of the product. To minimize the full development of features that do not
deliver value, companies make use of post-deployment data of current products to iterate
in future software releases or in even in new products. In the web domain, companies
provide empirical evidence of the use of continuous experimentation in their develop-
ment, decision-making and feature prioritization process [4–6].

As software becomes the key differentiator for many embedded systems companies,
these companies started to adopt continuous development practices, such as continuous
integration, deployment, and experimentation to develop faster, better and more
cost-effective products. A typical pattern that companies follow is shown in the
“Stairway to Heaven” model [7]. When these companies start to move to move to
continuous deployment scenarios, they see opportunities to run their first experiments
as well.

Although the research in continuous experimentation in web systems is continually
growing, there are few examples of works investigating the use of continuous exper-
imentation in embedded systems.

This paper identifies and analyzes the different challenges that embedded systems
companies face when adopting continuous experimentation in their development pro-
cesses. Moreover, it also presents strategies, guidelines, and potential solutions to
overcome each of the identified challenges.

The scope of this research is captured with the following research question.
RQ: How can embedded systems industry adopt continuous experimentation in

their development process?
This research question is further developed in terms of the following sub-questions:
RQ1: What are the recognized challenges towards continuous experimentation

faced by the embedded systems industry?
RQ2: What are the recommended strategies to facilitate the use of continuous

experimentation in the embedded systems domain?
The contribution of this paper is twofold. First, it identifies the key challenges faced

by embedded systems companies when adopting continuous experimentation. These
challenges are identified from both the industry perspective, through a multi-company
case study, and the academic perspective, through a literature review. Second, this
paper proposes different strategies and guidelines to overcome the identified chal-
lenges. This paper, to the knowledge of the authors, is the first to present an extensive
set of challenges and strategies that embedded systems companies face when adopting
continuous experimentation. Moreover, the analysis of the challenges points out the
need for new tools and novel solutions for the further development of experimentation
in embedded systems.

278 D. I. Mattos et al.

The rest of the paper is organized as follows. Section 2 provides a background
review in continuous experimentation. Section 3 presents the research method. Sec-
tion 4 presents and discusses the results in the form of identified challenges and sug-
gested strategies. Section 5 discusses the validity threats of this research. Section 6
concludes and discusses research challenges and future works.

2 Background

Continuous experimentation refers to the research and application of controlled
experimentation to drive software development, for reliably evaluate and prioritize
development activities [4].

Studies show that the prioritization of features is traditionally driven by past
experiences, beliefs, and organizational role [6, 8]. The decision to invest development
resources in a full feature can result in inefficiency and opportunity cost if the feature
does not have a confirmed value [9]. Companies traditionally rely on customers
interviews and qualitative studies to derive requirements for the system in the early
stages of the development [10]. However, customers usually are not good in predicting
what they want or they are not aware of other potential solutions [1].

In the post-deployment stage, companies usually collect customer and product data.
Most software companies, from both the embedded and web systems domains collects
and logs usage and operational data [10]. In embedded systems, these log data are
mostly used for troubleshooting and improving subsequent products. However, over
the last decade, software companies are showing an increasing interest in using the
collected data to improve not only future products but also to improve the current
products.

Recent technological trends focus on not only identifying and solve technical
problems but also delivering value to their customers and users [11]. The Lean Startup
methodology proposes the cycle build-measure-learn [12]. In this methodology, the
collected post-deployment data is also used in the improvement of the current product.
The HYPEX model [9] presents an approach to shorten the feedback loop between
companies and customers. The model uses hypotheses, customer feedback and the
minimum viable product (MVP) to continuously decide upon the full development or
abandonment of a feature.

Web-facing companies continuously report the use of post-deployment data and
controlled experiments to develop and continuously improve their systems. The
uncertainty raised by the environment, interaction with humans and other agents impact
in the system behavior in unknown and unpredictable ways. Controlled experiments
help companies to establish the causal relationship between a variation in their system
and the observed behavior [6].

In software development, A/B test is the simplest version of a controlled experiment.
“A” stands for the control variation and “B” stands for the treatment variation. The
treatment (variation “B”) represents any point in the system that you want to modify and
compare to the control (variation “A”). Both variations are deployed to randomized
users, to avoid bias, and the analyzed behavior is the measured in both cases. Statistical

Challenges and Strategies for Undertaking Continuous Experimentation 279

analysis helps to determine if there is a causal difference between the observed behavior
and the variations. Other experimentation techniques are described in [6].

Kohavi et al. [6] provides a guide on how to run controlled experiments in web
systems. The paper discusses the important ingredients, limitations of experimentation,
architectures for experimentation systems, how to analyze and how to design controlled
experiments for the web. Kohavi et al. [13], presents some rules of thumb and common
pitfalls when running experimentation, such as iterating in the experiment design, the
impact of speed and performance, number of users and how experiments impact key
metrics.

Fagerholm et al. [11] provides a general infrastructure for running continuous
experimentation systematically. The RIGHT framework describes how to design and
manage experiments, and how different stakeholders (business analyst, product owner,
data scientists, developers, and DevOps engineers) interact with an experimentation
infrastructure.

Fabijan et al. [4] describes the Experimentation Evolution Model, based on
experimentation at Microsoft. This model analyzes how teams scale their experimen-
tation from a few experiments to a data-driven organization. The model divides this
evolution into four steps: crawl (teams are running and setting their first experiments),
walk (teams already run a few experiments and determining metrics and experimen-
tation platforms), run (the teams run several experiments and iterate quickly to identify
effects of experiments on the business) and fly (experiments are the norm for every
change to any product). Each of these phases is discussed in three different perspec-
tives, the technical, the organizational, and the business perspectives.

One of the challenges in controlled experiments is defining an Overall Evaluation
Metric (OEC) [4, 6, 14]. The OEC is a quantitative measure of the experiment’s
objective. It provides a balance between short and long-term effects considering the
business objectives. Olsson and Bosch [14], present a systematic approach to model the
value of experiments. This approach allows companies that are starting to run the first
experiments to understand and improve their own OEC metrics.

To the knowledge of the authors, the first research discussing the experiments in
embedded systems appeared in 2012 [15]. This paper discusses experimentation in the
context of Innovation Experiment Systems. It identifies some challenges with experi-
mentation in embedded systems, such as experimentation in safety systems, managing
multiple stakeholders and hardware limitations. It also presents an initial infrastructure
to run experiments in embedded systems.

Giaimo and Berger [16], discuss continuous experimentation in the context of
self-driving vehicles. The paper presents functional (such as instrumentation, logging,
data feedback to a remote server) and non-functional (separation of concerns, safety,
short cycle to deployment) requirements to achieve continuous software evolution.
Bosch and Olsson [17], extended the concept of experimentation towards automated
experimentation. Automated experimentation aims to leverage the number of experi-
ments by letting the system own and control the experiments, opposed to the R&D
organization. Mattos et al. [18, 19], identified a set of architectural qualities to support
automated experimentation that was implemented in a research mobile autonomous
vehicle.

280 D. I. Mattos et al.

3 Research Method

The research process used in this study combines a literature review with multiple case
study. This research method aims to strengthen the evidence of the challenges and
strategies found in a multiple case-study with others found in the research literature.
Research in continuous experimentation generally utilizes the case study as the research
method, combining results from both approaches reinforce the empirical evidence of
the findings.

The method is composed of two parts. The first part consists of a literature review
in the continuous experimentation domain. This literature review collects challenges
and strategies to overcome them from academic research. The second part consists of
semi-structured interviews with software companies in the embedded systems domain.
It aims to be exploratory, collect and confirm challenges and strategies from the
embedded systems industry. Below, the research method is described in details. The
results of both parts were aggregated and described in Sect. 4. Table 1 summarizes the
research process used in this paper.

3.1 Literature Review

The first part of the research method consists of a literature review in continuous
experimentation. Although most of the studies in continuous experimentation focus on
web-facing companies, the experiences from this domain, sometimes, can be extrap-
olated to the embedded systems domain. In this literature review, the authors identified
challenges recognized in academic collaboration with industry, regardless of the
industry domain. The identified challenges were discussed with the embedded systems
companies to see if the literature challenges were also relevant in this domain.

Relevant works in the literature covering continuous experimentation were iden-
tified by searching the Scopus digital indexing library, by keywords, title and abstract.
The used search phrase was “((continuous experimentation) OR (field experiments) OR
(innovation experiment systems)) AND (software engineering)’’. This search query
was restricted to the fields of engineering and computer science and limited from 2000
to 2017. This search phrase resulted in 534 articles. Positioning papers and papers with

Table 1. Summary of the research method. LR stands for the literature review part and CS for
the multiple case study part.

Step Description

1 Search definition and execution (LR)
2 Papers review (LR)
3 Identification of literature challenges and strategies (LR)
4 Data selection: Contact with companies (CS)
5 Semi-structured interview protocol definition (CS)
6 Data collection: Interviews and workshop (CS)
7 Data analysis: thematic coding and categorization (CS)
8 Case study report (CS)

Challenges and Strategies for Undertaking Continuous Experimentation 281

less than 5 pages were excluded. From this subset of articles, the results were filtered
based on the abstract. After the first screening process, the papers were read in their
integrity. Continuous experimentation is also largely studied from the
statistical/algorithmic side. Research papers that focused solely on improving or
evaluating algorithms without industry evaluation or application were excluded.

After this screening process, the authors identified 30 articles with relevance to this
study. An additional set of 12 articles were included using a snowballing [20] process,
where new references were added according to the references mentioned in the other
articles. Thematic coding was used to [21] identify the challenges from the literature.
These challenges were categorized according to the three different categories of the
Experimentation Evolution Model [4] discussed in Sect. 2, the technical, the organi-
zational and the business perspective. The identified set of challenges were also used as
input for the semi-structured interviews as discussed in Sect. 3.2. The strategies are
categorized in three groups: changes in the development process, changes in the sys-
tem’s architecture and changes in how the experiment and organizational data is
handled and analyzed.

The complete set of papers can be found at the following link: https://github.com/
davidissamattos/public_documents/blob/master/LR-XP18.png.

This part of the research process allowed the identification of challenges that served
as input for the multiple case study and confirmation of identified challenges inside the
company.

3.2 Multiple Case Study

The second part of the research method consists of a multiple case study [21] with
semi-structured interviews conducted with software companies in the embedded sys-
tems domain. This study was conducted from December 2016 to October 2017 with
five companies in the embedded systems domain. The empirical data consists of
interviews and a workshops transcripts and notes. There were 8 individual
semi-structured interviews with an average of one hour each, three in Company A, two
in Company B, one in Company C, one in Company D and 2 in Company E. The
workshop session was conducted with 8 people from Company A lasting 3 h. The
analysis of the empirical data consisted of thematic coding of [21] interviews tran-
scriptions and notes to identify and categorize the challenges and solutions. Addi-
tionally, during the interviews challenges identified in the literature were clarified to the
interviews and asked if the current company relates to the challenge partially or not.

The empirical data were aggregated together with the identified challenges and
strategies from the literature review. The current published research already provides
guidelines and solutions for the challenges that were also identified in the literature
review phase. Other guidelines and solutions were suggested by practitioners during
the interviews. Challenges identified in the literature that was not confirmed neither
through a previous case study nor by the case study companies are not shown.

Due to confidentiality reasons, only a short description of each company and their
domain is provided:

282 D. I. Mattos et al.

https://github.com/davidissamattos/public_documents/blob/master/LR-XP18.png
https://github.com/davidissamattos/public_documents/blob/master/LR-XP18.png

Company A is a multinational conglomerate company that manufactures embedded
systems and electronics and provides software solutions for both consumers and pro-
fessionals. This study was conducted with two teams, one providing mobile commu-
nications solutions and the other providing business-to-business products. In recent
years, the company started to adopt experimentation in their software solutions and is
looking for data-driven strategies in their embedded systems products. The intervie-
wees were developers, managers and data analysts.

Company B is a multinational company that provides telecommunication and
networking systems. The company is adopting continuous development practices and is
looking for new strategies to deliver more value to their customers by optimizing their
products. The interviewees were managers.

Company C is a global automotive manufacturer and supplier of transport solutions.
As the company’s products are continuously growing in complexity and software size,
the company is looking for strategies to prioritize their R&D effort and deliver more
value to their customers. As some employees have experience in web and pure
software-systems development, experimentation is getting attention in some develop-
ment teams. Challenges in experimentation arise since the company is subjected to
several regulations and certification procedures. The interviewee was a senior engineer.

Company D is a global software company that develops and provides embedded
systems software solutions related to autonomous driving technology for the auto-
motive industry. Autonomous driving is an emerging and fast-moving technology and
the company is looking to deliver competitive solutions faster by adopting continuous
development practices. However, as it interfaces with the highly regulated automotive
domain its software is also subjected to regulation and certification. The interviewee
was a manager.

Company E is a global software company that develops both software and hardware
solutions for home consumers. The company already has experience running contin-
uous experimentation in their web systems and is starting to run experiments in their
hardware solutions. The interviewees were senior data analysts working in experi-
mentation in their embedded systems.

4 Challenges and Proposed Strategies

This section presents results obtained from the research process. The challenges are
grouped in the three different perspectives as discussed in the Experimentation Evo-
lution Model [4]: the technical challenges, the business challenges and the organiza-
tional challenges. The technical challenges refer to challenges related to the system
architecture, experimentation tooling and development processes. The business chal-
lenges refer to challenges faced in the business side, such as evaluation metrics,
business models and privacy concerns. The organizational challenges refer to chal-
lenges faced by the cultural aspect of the R&D organization.

All the strategies identified in this study are used, suggested by companies, or
supported by strategies identified in previous literature case studies. The strategies are
categorized in three groups: (1) changes in the development process. This refers to how
companies organize their development activities. (2) changes in the system’s

Challenges and Strategies for Undertaking Continuous Experimentation 283

architecture. Often restrictions in the running experiments comes from limitations in the
system’s architecture, that does not support data collection, or does not allow
parametrization of features for experiments. (3) changes in how the experiment and
organizational data is handled and analyzed. This refers to how the company stores
data, comply to data regulations or use data analysis tools. The challenges are not
presented in any specific order as they might reflect different challenges the companies
are facing.

Figure 1 represents a summary of the identified challenges and strategies. In Fig. 1,
it is possible to see the relation of how each strategy relates to the different challenges,
as some of them are part of the strategy of one or more challenge. This figure was
obtained using the thematic codes generated in the analysis of the interviews. It maps
the identified challenges within their groups with the obtained strategies groups. The
rest of this section discusses each challenge individually and presents strategies to
overcome them.

4.1 Technical Challenges

Lack of over the air (OTA) updates and data collection
Continuous experimentation requires over-the-air (OTA) post-deployment data col-
lection and updates. When testing a different hypothesis, the system needs to have the
ability to measure the specific behavior under investigation and to update the system
with the new variants as well. It is possible to run experiments without OTA, however,
several experiments pitfalls can be identified in the first hours and be corrected [6].
Moreover, experiments for optimization are looking in practical significance as low as
1–2% in their metrics [6, 13]. If OTA updates and data collection are not available the

Fig. 1. Summary of the challenges and the strategies faced by embedded systems companies
adopting continuous experimentation.

284 D. I. Mattos et al.

cost of the experiment and the practical significance level are high and the optimization
process might not be worth it.

Strategies: At the moment of this study, embedded system companies are not looking
into experimentation in low level systems, but in computing systems that already
support modern operating systems with connectivity and the necessary infrastructure
for OTA updates. OTA updates and post-deployment data collection should be part of
the functional requirements of the system when designing the hardware. Mobile
companies already provide such functionality in their operating systems. Car manu-
facturers are also introducing continuous delivery of new software to their vehicles in
the context of autonomous vehicles (Tesla Motor’s Model S, Volvo Drive Me and the
Volvo XC90).

Lack of experimentation tools that integrate with their existing tooling
Continuous experimentation started in web-facing companies. Today several experi-
mentation tools, both commercial and open source, are available on the website and
mobile applications domains. However, in the embedded systems domain, companies
lack tools that integrate with their development process. Setting up an infrastructure to
run experiments from scratch increases the cost of running the first experiments while
hindering the benefits.

Strategies: Several tools available for websites are open source or have open source
SDKs. Although not ideal, some of these tools can be modified to support experi-
mentation problems. Experimentation-as-a-Service (EaaS) is a business model that
provides a working platform for continuous experimentation. EaaS have the benefit of
avoiding the cost and pitfalls of development of an experimentation platform from
scratch. EaaS platforms also provide SDKs that can be incorporated in the product [22].
However, the system under experimentation should support data collection so it can be
integrated with EaaS tools.

Expensive testing environments
Software-intensive embedded systems are extensively tested before release. One of the
challenges faced by embedded systems companies is to include experimentation as part
of the verification and validation process. In some cases, such as in the development of
a new vehicle, the testing environment is expensive and not all experiment hypotheses
are allowed to go to a physical testing platform. This high cost also increases minimum
level necessary to reach practical significance and demotivates teams to formulate
hypothesis beyond the basic requirements of the system.

Strategies: The development of experiments in the embedded systems domain require
additional steps from the hypothesis to the final user. The development of a feature in
embedded systems follows a testing procedure, beginning with integration and going to
simulation, test beds, internal deployment until user deployment. The experimentation
procedure should follow similar testing procedure, to identify early pitfalls, and even
improve the system behavior during each testing phase.

The practical significance level to implement a new hypothesis increases with the
associated costs of such testing procedure. The EDAX model [17] describes how
experimentation and automated experimentation is incorporated in this process.

Challenges and Strategies for Undertaking Continuous Experimentation 285

Automated experimentation [18] also suggests that it can reduce the experimentation
costs and therefore the practical significance level.

Experimentation constraints in real-time and safety-critical systems
Embedded systems are employed in several real-time and safety-critical systems. These
products have subsystems that are constrained to regulations and certification. Exper-
imenting with these systems in the field might not be allowed by regulation or might
impact substantially the performance of the system.

Strategies: Embedded systems companies are starting to run their first experiments.
Safety-critical or real-time systems provide additional challenges, as it is subjected to
legislation and certification. The initial recommendation in all case study companies is
not to run experimentations in these subsystems. However, these safety-critical sub-
systems can run experiments in the earlier phases prior to the deployment, as discussed
in the EDAX model [17].

4.2 Business Challenges

Determining good experimentation metrics and metrics validation
One of the biggest challenge faced by companies is to determine good business metrics
to understand and compare different experiments, and validate that the current metrics
are aligned with the company strategy

Strategies: Web companies traditionally rely on conversion metrics such as
Click-Through-Rate in the beginning of their experimentation process. As their
experimentation teams and the number of experiments increase the metrics start to
become more tailored to the business and stable [4]. Embedded systems companies can
have very different and complex metrics, depending on the product. However, team
level optimization experiments can use customized metrics. Olsson and Bosch [14]
presents a systematic approach to determine metrics and value functions for experi-
ments. This is an iterative process that should be refined with usage and aligned with
the business strategies and goals. As the metrics become complex, companies allocate
of resources for the evolution and ensuring that the experiment metrics are aligned with
the company’s main KPIs.

Privacy concerns regarding user data
Continuous experimentation relies on the collection and analysis of post-deployed
software. However, some issues arise when collecting data, such as the legal and
contractual issues or user consent and data sharing.

Strategies: Data sensitivity and the use of data vary largely between different orga-
nizations and countries. Data collection should be aligned with the legal requirements
for utilization and consent of the users. Data regulations such as the European GDPR
(https://www.eugdpr.org/) create restrictions that might imply in technology and pro-
cess modifications for compliance. Additionally, some ethical questions regarding the
experiment must be evaluated, such as: How are participants guaranteed that their data,
which was collected for use in the study, will not be used for some other purpose?

286 D. I. Mattos et al.

https://www.eugdpr.org/

What data may be published more broadly, and does that introduce any additional risk
to the participants? Web companies, besides compliance with regulations also create
ethical checklists to ensure that the experiments follow the companies’ policies [23].

Lack of sharing user data in business-to-business (B2B) solutions
Several embedded systems companies operate in a business-to-business domain. In this
scenario, there is a difference between user and customer data. Experiments with users
might not be possible, they might require deeper involvement between the companies,
or there might be a mismatch between the customer and the user value [1].

Strategies: Ecosystems refers to companies co-opting third parties to build and
leverage their products and services in such a way that they have more utility value to
their customers [24]. In this sense, companies might agree on implementing and
sharing data collected inside the ecosystem. Some mobile operating systems (e.g. iOS
and Android) collect data and usage statistics to share with app developers. Although
most of its use is connected to crash reports, similar strategies can be used to share user
data in business-to-business products.

Lack of insights obtained from the collected data
Companies are continuously collecting data from their deployed software. The col-
lected data is mainly used for troubleshooting purposes. However, little insight is
provided by the collected data [14]. In the Experimentation Evolution Model [4], web
companies evolve from centralized data science teams to small data science teams
presented in each product teams. The interviewed embedded systems companies don’t
have data science teams incorporated in the product development.

Strategies: If the experimentation benefits are not clear, the extra cost of involving
data scientists in the product development might be a large step. Different companies
started to provided experimentation and data analysis services. Experimentation tools
usually incorporate basic statistical analysis, such as statistical significance testing,
power analysis, A/A tests and more. Using experimentation and data analysis services
to generate basic insights can be used as a short-term solution. Once the benefits of
experimentation are clear to the company, investments such as integrating data sci-
entists in the product development or acquiring a complex tool are easier to justify.

Long release cycles
Traditionally, embedded systems have a long software release cycle based on upfront
defined requirements. Sometimes the software is deployed only once and last for
several years [1, 15]. This happens due to several reasons, from both the organizational
(structure and decision-making) and business (engineering effort in every cycle,
requirements definition and products updates) to the technical perspective (architecture,
functionalities available and support for over-the-air updates).

Strategies: From the organizational and business perspective, continuous experi-
mentation aligns with the organizational transition to agile methodologies and the Lean
Startup methodology [12]. Continuous experimentation makes use of extreme pro-
gramming practices such as continuous integration, delivery and deployment to deliver
experiments and new software aligned with customer behavior. The Stairway to

Challenges and Strategies for Undertaking Continuous Experimentation 287

Heaven [7] conceptual model helps companies to evolve their practices towards con-
tinuous deployment of software.

4.3 Organizational Challenges

Managing multiple stakeholders in the experiment design
One of the challenges embedded systems companies face is the involvement of mul-
tiple stakeholders in an experimental design. Experimentation in embedded systems
requires that the involved stakeholders understand the implications of continuous
practices in their systems.

Strategies: Embedded systems require the interaction with multiple stakeholders, such
as software developers, systems architects, electrical and mechanical engineers, sup-
pliers and subcontractors. Continuous experimentation requires that these stakeholders
are aware of the implications in the system design. To overcome some of these chal-
lenges, it is prosed a decoupling of the application and the underlying software and also
a decoupling in time (software is not integrated at the manufacturing time) [15].
Additionally, if the interaction of the stakeholders happens in a business ecosystems
perspective the experiment can be designed to benefit multiple parts [24].

Highest Paid Person Opinion - HiPPO
Some companies are organized in vertical structures, where lower rank developers have
fewer possibilities to influence and address customer’s needs. Several requirements and
architecture specifications are based and determined by higher paid ranks inside the
company.

Strategies: This challenge is persistent in several domains and it is not restricted to the
embedded systems industries. This challenge is discussed extensively in [6] among
other publications. The traditional adopted strategy is to run the first experiments.
Usually, experiments continuously disprove beliefs and opinions adopted by the higher
paid ranks [6]. However, this requires changes in the organizational and cultural aspect
of the company.

Tuning experiments is repetitive and requires highly qualified engineers
One of the interviewed companies runs experiments for parameter optimization. The
experiments rely on the system response instead of the customer response. However,
running these experiments for tuning and optimization is a repetitive task that con-
sumes R&D time and requires highly qualified engineers to perform them.

Strategies: Existing algorithms in search-based optimization, reinforcement learning
and others artificial intelligence algorithms support this kind of optimization strategies.
However, both the complexity of these algorithms as well as the introduced technical
debt in the existing systems [25] prevent embedded systems companies to use such
strategies. Experimentation-as-a-Service solutions allow companies to test Machine
Learning algorithms in their system for optimization purposes. Although still in early
phases, automated experimentation [18] solutions can help companies to optimize their
systems through field experiments.

288 D. I. Mattos et al.

5 Validity Threats

The first threat to the validity of this study refers to the scope of the literature review.
The search query was applied to the Scopus indexing library. Both the choice of the
search string and the indexing library could miss other research work that can con-
tribute to the literature review. To mitigate this threat the authors performed a backward
and forward snowballing [20] process. The snowballing process allowed the authors to
identify other cited work in the same area that was not identified by the search query.

An external validity to this is study is the generalization of the challenges to the
entire population of embedded systems companies. To mitigate this threat, the authors
sample companies producing different products in embedded systems. The authors
sampled contacted multiple companies explaining the research goal, and selected only
companies that are adopting/running controlled experiments in their development
process were included. During the data analysis part, we reviewed all challenges only
challenges that had correspondence in more than one company or that could be tri-
angulated with the literature review were included. Challenges that could not be tri-
angulated with other source, and that could be specific to current situation of the
company, were not included in this study.

The companies that participated in this study are adopting their first steps towards
continuous experimentation and are running their first experiments or trying to scale
experimentation practices from a few development teams to the organization. There-
fore, most of the presented challenges are faced in these first steps and cannot be
generalized to companies or teams that are running experimentation at scale. As the
companies evolve their experimentation practices, new challenges will arise from all
three perspectives.

6 Conclusion

This paper addresses the question of how embedded systems companies can adopt
continuous experimentation in their software development process. This question can
be divided in two parts: first, the identification of problems and challenges that limit the
adoption of continuous experimentation, and second selected strategies adopted by
companies to overcome these challenges.

This paper identified twelve key challenges faced by embedded systems and them
grouped in three perspectives, the business, the technical and the organizational. The
challenges are also presented with suggested strategies to overcome them. The set of
strategies can be grouped in three categories, changes that need to take place in how the
company handles and analyze the post-deployment collected data, changes in the
company development process and changes in the product architecture. The relation
between the different strategies and the challenges is seen in Fig. 1. The paper used a
combination of literature review and a multiple company case study to provide a
stronger empirical evidence.

Further research is needed to understanding how the system can be architected to
support continuous experimentation as a first-class citizen in the development process
while still guaranteeing safety and real-time requirements as well as intermittent

Challenges and Strategies for Undertaking Continuous Experimentation 289

connectivity. Additionally, continuous experimentation changes how the development
process takes place, as it emphasizes in an outcome-driven development and this
scenario might lead to impactful organizational changes. For future works, the authors
are investigating where is the perceived highest return on investment that companies
see and plan to invest to overcome the identified challenges and further support of
continuous experimentation in their products.

Acknowledgments. This work was partially supported by the Wallenberg Autonomous Sys-
tems and Software Program (WASP) and the Software Center.

References

1. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experimentation in
product development. Inf. Softw. Technol. 77, 80–91 (2016)

2. Eliasson, U., Heldal, R., Knauss, E., Pelliccione, P.: The need of complementing plan-driven
requirements engineering with emerging communication: experiences from Volvo Car
Group. In: Proceedings of 2015 IEEE 23rd International Requirements Engineering
Conference RE 2015, pp. 372–381 (2015)

3. Olsson, H.H., Bosch, J.: From opinions to data-driven software R&D: a multi-case study on
how to close the ‘open loop’ problem. In: Proceedings of 40th Euromicro Conference Series
on Software Engineering and Advanced Applications SEAA 2014, pp. 9–16 (2014)

4. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development. In: Proceedings of the 39th International
Conference on Software Engineering ICSE 2017 (2017)

5. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastructure. In:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining-KDD 2010, p. 17 (2010)

6. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practical guide. Data Min. Knowl. Discov. 18(1), 140–181 (2009)

7. Olsson, H.H., Bosch, J.: Climbing the “Stairway to Heaven”: evolving from agile
development to continuous deployment of software. In: Bosch, J. (ed.) Continuous Software
Engineering, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11283-
1_2

8. Bosch, J.: Building products as innovation experiment systems. In: Cusumano, M.A., Iyer,
B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30746-1_3

9. Olsson, H.H., Bosch, J.: The HYPEX model: from opinions to data-driven software
development. In: Bosch, J. (ed.) Continuous Software Engineering, pp. 1–226. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11283-1_13

10. Fabijan, A., Olsson, H.H., Bosch, J.: The lack of sharing of customer data in large software
organizations: challenges and implications. In: Sharp, H., Hall, T. (eds.) XP 2016. LNBIP,
vol. 251, pp. 39–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33515-5_4

11. Fagerholm, F., Sanchez Guinea, A., Mäenpää, H., Münch, J.: The RIGHT model for
continuous experimentation. J. Syst. Softw. 123, 292–305 (2017)

12. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses, 1st edn. Crown Publishing Group, New York
(2011)

290 D. I. Mattos et al.

http://dx.doi.org/10.1007/978-3-319-11283-1_2
http://dx.doi.org/10.1007/978-3-319-11283-1_2
http://dx.doi.org/10.1007/978-3-642-30746-1_3
http://dx.doi.org/10.1007/978-3-319-11283-1_13
http://dx.doi.org/10.1007/978-3-319-33515-5_4

13. Kohavi, R., Deng, A., Longbotham, R., Xu, Y.: Seven rules of thumb for web site
experimenters. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining-KDD 2014, pp. 1857–1866 (2014)

14. Olsson, H.H., Bosch, J.: So much data ; so little value : a multi-case study on improving the
impact of data-driven development practices. In: Proceedings of the Ibero American
Conference on Software Engineering (ClbSE), 22nd–23rd May, Buenos Aires, Argentina
(2017)

15. Bosch, J., Eklund, U.: Eternal embedded software: towards innovation experiment systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp. 19–31. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-0_3

16. Giaimo, F., Berger, C.: Design criteria to architect continuous experimentation for
self-driving vehicles. In: 2017 IEEE International Conference on Software Architecture
(ICSA), pp. 203–210 (2017)

17. Bosch, J., Olsson, H.H.: Data-driven continuous evolution of smart systems. In: Proceedings
of the 11th International Workshop on Software Engineering for Adaptive and
Self-Managing Systems-SEAMS 2016, pp. 28–34 (2016)

18. Mattos, D.I., Bosch, J., Olsson, H.H.: Your system gets better every day you use it: towards
automated continuous experimentation. In: Proceedings of the 43th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA) (2017)

19. Mattos, D.I., Bosch, J., Holmström Olsson, H.: More for less: automated experimentation in
software-intensive systems. In: Felderer, M., Méndez Fernández, D., Turhan, B.,
Kalinowski, M., Sarro, F., Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611,
pp. 146–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69926-4_12

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in Software Engineering, vol. 1. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29044-2

21. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

22. Optimizely, “Optimizely.” https://www.optimizely.com/. Accessed 28 June 2017
23. Zhang, B.: Privacy Concerns in Online Recommender Systems: Influences of Control and

User Data Input, pp. 159–173 (2014)
24. Holmström Olsson, H., Bosch, J.: From ad hoc to strategic ecosystem management: the

Three-Layer Ecosystem Strategy Model? (TeLESM). J. Softw. Evol. Process 29, e1876
(2017)

25. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V.,
Young, M., Dennison, D.: Hidden Technical debt in machine learning systems. In: NIPS,
pp. 2494–2502 (2015)

Challenges and Strategies for Undertaking Continuous Experimentation 291

http://dx.doi.org/10.1007/978-3-642-34026-0_3
http://dx.doi.org/10.1007/978-3-319-69926-4_12
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
https://www.optimizely.com/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

292 D. I. Mattos et al.

http://creativecommons.org/licenses/by/4.0/

	Challenges and Strategies for Undertaking Continuous Experimentation to Embedded Systems: Industry and Research Perspectives
	Abstract
	1 Introduction
	2 Background
	3 Research Method
	3.1 Literature Review
	3.2 Multiple Case Study

	4 Challenges and Proposed Strategies
	4.1 Technical Challenges
	4.2 Business Challenges
	4.3 Organizational Challenges

	5 Validity Threats
	6 Conclusion
	Acknowledgments
	References

