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Abstract. A goal for future robotic technologies is to advance autonomy
capabilities for independent and collaborative decision-making with human
team members during complex operations. However, if human behavior does
not match the robots’ models or expectations, there can be a degradation in trust
that can impede team performance and may only be mitigated through explicit
communication. Therefore, the effectiveness of the team is contingent on the
accuracy of the models of human behavior that can be informed by transparent
bidirectional communication which are needed to develop common ground and
a shared understanding. For this work, we are specifically characterizing human
decision-making, especially in terms of the variability of decision-making, with
the eventual goal of incorporating this model within a bidirectional communi-
cation system. Thirty participants completed an online game where they con-
trolled a human avatar through a 14 � 14 grid room in order to move boxes to
their target locations. Each level of the game increased in environmental com-
plexity through the number of boxes. Two trials were completed to compare
path planning for the condition of known versus unknown information. Path
analysis techniques were used to quantify human decision-making as well as
provide implications for bidirectional communication.

Keywords: Human-robot teaming � Bidirectional communication
Decision-making

1 Introduction

Human-agent teaming is a critical area of research because technological advancements
are reaching the point where machines are able to make both independent and inter-
dependent decisions. Due to these advancements, human team member roles are
transitioning to more communication-based interactions supporting larger goals and
intentions rather than direct control or teleoperation of the system [1]. One key limi-
tation in the development of effective teaming has been the process of building a shared
understanding of the mission space, whereby robotic team members can quickly and

© This is a U.S. government work and its text is not subject to copyright protection in the United States;
however, its text may be subject to foreign copyright protection 2018
J. Y. C. Chen and G. Fragomeni (Eds.): VAMR 2018, LNCS 10909, pp. 361–379, 2018.
https://doi.org/10.1007/978-3-319-91581-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91581-4_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91581-4_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91581-4_27&amp;domain=pdf


accurately understand the human’s intent and behaviors [2]. This is important because
successful collaborative partnerships require communication, cooperation, and coor-
dination between the acting members as they work towards a common goal [3], and
distinct from prior work in supervisory control, which has often focused on ensuring
the human has an accurate model of the robot’s behavior. In a truly collaborative
context, it is crucial that the robot also have situation awareness of the human partner.

1.1 Bidirectional Communication

Bidirectional communication is an area of current research that aims to improve
development of common ground and shared understanding. It is especially critical
forthe transformation of a robot from tool to team member [4] because it allows forjoint
decision-making and development of shared mental model representations[5], and
knowledge transfer through communication supports shared situationawareness [6, 7].
Increased autonomy, especially the capability for independentand interdependent
decision-making in complex environments, supports this needfor the development of
bidirectional communication. In order to effectivelycommunicate, it is important for
both human and robotic team members to understand the decisions and decision-
making processes within their team. The interpretation of an interaction or actions of a
robotic team member can be directly influenced by the person’s expectations for the
interaction. Similarly, if the human teammate’s actions and behaviors deviate from the
robot’s expectations, there will be a degradation in trust. Thus, if a robot team member
can interpret and correctly predict the actions and behaviors of the human, then the
robot can react accordingly. Bidirectional communication can also help both the team
members understand when a decision may intuitively counter their own ideas or
models by providing reasoning information that defines the appropriateness of its
decisions, thus updating the team member’s mental model and expectations for the
task. In addition, the mode of communication and feedback capabilities have an effect
on trust development in human-agent teams [8].

1.2 Human Decision-Making

While there are many types of decisions, this paper focuses on spatial decision-making.
Human spatial decision-making is characterized by the ability to rapidly produce robust
solutions to complex problems. For example, the Traveling Salesman Problem
(TSP) requires participants to connect nodes, representing cities, to create the shortest
tour among the nodes. While its instructions are simple, the TSP is NP-hard, and brute
force solutions require calculating (n − 1)!/2 tours where n is the number of nodes.
Despite the computational complexity, humans produce near-optimal solutions to this
problem in linear time [9–12] using a combination of global and local spatial heuristics
[13–15]. Due to the quality of the solutions and the speed at which they are produced,
the decision-making mechanisms humans use to solve these problems are an area of
study for the AI community, but the underlying mechanisms still remain unknown.

Naturalistic spatial decision-making tasks allow these mechanisms to be supported
by guidance from top-down cognitive processing systems [16–19]. Humans are capable
of adapting paths easily to mission requirements during naturalistic, real-world tasks,
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such as mission planning for unmanned aerial vehicles [20]. Yet, recent research
demonstrated that aggregate human solutions tend to converge on not just one but
several solution groups, each characterized by a distinct spatial mental model [21]. The
adaptive nature of these top-down processes permits mission-dependent flexibility in
the spatial decision-making process, and this characteristic has implications for bidi-
rectional communication in human-agent teams.

Shared Mental Models. Understanding decision-making helps to classify the mental
model for a task, which then guides expectations for interaction. Spatial mental models
are mental representations of the environment [22–24], and weightings of the impor-
tance of features in those representations relative to goals [22]. Spatial mental models
directly impact a solution to a given spatial decision-making problem, as well as their
evaluations of solutions generated by other humans and algorithms. This has direct
implications for all manner of human-agent teaming problems. For example, in col-
laborative spatial decision-making, an algorithm may propose a route to a human who
can either accept or choose to replan it. This replanning or retasking degrades per-
formance and situation awareness, and increases workload [25]. In addition, divergence
between the human team members’ spatial mental models and the actions taken by an
intelligent agent can reduce predictability and degrade trust [26–28]. Conversely,
spatial mental models that are similar to an agent’s suggestion can improve agent trust,
and increase the rate of acceptance for that solution [21]. This is especially true for
cases where agents are unable to articulate their reasoning for producing solutions that
may contradict human teammates’ spatial mental models. Therefore, this area repre-
sents a potential target for future research in bidirectional communication for the
purpose of achieving consensus between human spatial mental models and intelligent
agent problem solving mechanisms.

Implications for Agent Development and Teaming. Knowing how humans make
decisions could help a robot to derive a model of the team member’s planning model,
which allows the robot to infer future human behavior, and provides the needed context
to communicate its state and goals in the same representation as the human. Such an
extrapolation could greatly reduce the need for explicit communication (e.g., it might
suffice for a robot to observe nodding or a hand que to infer how human will act next).
Moreover, matching both representation and goals could result in an efficient search
over the action space (e.g., a robot could narrow its search space based on expected
human behavior). For intractable problems, knowing the optimal solution may not be
possible. In that case, knowing how humans solve a problem could be a benchmark
when developing robot algorithms. Further, understanding the limitations of a human
can help teaming in such a way that the robot can take the initiative of being the main
actor (e.g., computing a plan) in cases where the human is limited.

1.3 Current Work

The main objective of this research is to understand similarities and differences among
human spatial decision-making processes as they apply to future human-agent teaming.
When developing new spatial planning algorithms for robotic systems that will be
collaborating with people to complete a task (e.g., moving objects around a room), it is
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important to characterize and compare the behavior of each of the agents under dif-
ferent conditions. Further, since each agent applies its own spatial mental model or
algorithm to solve a given problem, in order to achieve robust collaboration and
teamwork it is critical to recognize how the decision-making processes of each agent
will handle increasing environmental complexity and uncertainty. Where disparities
exist between the resultant robot and human behaviors, bidirectional communication
can be used as a means to achieve an optimal solution collaboratively. A first step
toward achieving this goal is to characterize human spatial decision-making behaviors
in the proposed tasks. For this study, an online game was developed to assess human
spatial decision-making processes involved with controlling a virtual avatar through a
virtual room with the purpose of pushing virtual boxes from a set of start locations to a
set of end locations. The design of the study was such that each level represented an
increase in environmental complexity, and the two conditions represented an increase
in task difficulty based on the availability of planning information.

2 Methodology

2.1 Participants

Thirty participants between the ages of 18 and 60 were recruited. This age restriction
was selected to reduce variance in participants’ spatial abilities. In prior studies
involving tasks requiring spatial working memory, age-related cognitive decline
reduces navigation speed [29] and overall task performance [30–32].

2.2 Game Development and Task

A Java Applet was built around similar game dynamics as the puzzle game Sokoban
[33]. Sokoban, developed by Thinking Rabbit game studio in 1982, is a logic puzzle
designed for the user to push objects (stones, boxes, etc.) around a playing field to a
goal area in the fewest moves possible. For our study, the main game space for all
levels was a 14 � 14 square grid surrounded by a brick wall on all sides. The grid
space was developed to match the laboratory facilities at MIT to allow for future
comparison of human and robot decision-making. The difference in design between
this application and the original Sokoban game was that typically levels only had
minimal number of solutions, while the open area of this playing field made for
exponentially more paths to reach a solution.

There were nine levels (Level 0 through Level 8) that increased in the number of
boxes from two to 10 boxes (Fig. 1). The number and location of the boxes and target
locations were devised in such a way to represent increasing environmental complexity.
In order to investigate the variability in human decision-making, different patterns,
clusters, and spatially distant blocks were used while choosing the initial and target
locations of the blocks. The game levels were designed in such a way that the optimal
(or very close to optimal) solution was not obvious. This helps to identify variability in
human decision-making behaviors.
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The start location of the avatar (represented by a person) was always in the same
start corner. The avatar could only move up, down, left, or right (no diagonals) and
could only push (not pull) the boxes. Therefore, the initial placement of the boxes were
located a certain distance from the boundaries to ensure the existence of a solution. In
order to avoid infeasibility (e.g., deadlock), the exterior 2 cells were intentionally left

Condition 1
(Known Information)

Condition 2
(Unknown Information)

(a) Level 0 environmental complexity (2 boxes)

(b) Level 1 environmental complexity (3 boxes)

(c) Level 2 environmental complexity (4 boxes)

Fig. 1. Each game level (a)–(h) represents increasing environmental complexity. For Condi-
tion 2 (Unknown Planning Information), the entire game board was transposed over the y-axis
making each condition directly comparable but unique.
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(d) Level 3 environmental complexity (5 boxes)

(e) Level 4 environmental complexity (6 boxes)

(e) Level 5 environmental complexity (7 boxes)

(f) Level 6 environmental complexity (8 boxes)

Fig. 1. (continued)
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blank and boxes were not placed in corridor like shapes. An undo option to backup
through previous moves, as well as a reset level option were available so that it was
always possible to reach a solution.

The overall goal was to move all boxes from their initial locations to their target
locations. To this end, there were two main criteria to determine the overall trajectory,
the sequence the boxes should be moved and calculating the shortest path from a box’s
initial location to its target location. Participants completed two conditions representing
increasing task difficulty. For Condition 1 (Known Planning Information), all boxes
and target locations were known, such that participants had to control the human avatar
through the virtual environment and push Box 1 to Target Location 1. Participants were
instructed that the numbering on the boxes and target locations were only there to
inform which box was connected with which target location. They could complete the
task in any order. For Condition 2 (Unknown Planning Information), the boxes were
unlabeled however all the target locations were labeled. The box numbers only became
visible once the human avatar pushed the box to a new grid square location.

2.3 Design

The experimental design was a 2 condition (known versus unknown planning infor-
mation) � 9 environmental complexity (game levels ranging from 2–10 boxes)

(g) Level 7 environmental complexity (9 boxes)

(h) Level 8 environmental complexity (10 boxes)

Fig. 1. (continued)
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within-subjects design. Participants completed Condition 1, Levels 0 through 8, fol-
lowed by Condition 2, Levels 0 through 8. There were two main hypotheses.

Hypothesis 1: Overall path length, number of movements, and time to completion
will be longer when the environment is more complex (i.e., more boxes) and when the
task is more difficult (i.e., changes in the amount of previously known information
about the task).

Hypothesis 2: Based on our prior research, there will be more than one “human”
way of making decisions to plan a path and move the boxes. The Algorithm for finding
the Least Cost Areal Mapping between Paths (ALCAMP) [34] will be used to quantify
the divergence among participants’ solutions in Condition 1 and Condition 2 for each
level. Higher levels of environmental complexity associated with the levels will pro-
duce greater divergence (i.e., variability) in solutions, and we expect that the avail-
ability of planning information (manipulated in each Condition) will also impact the
divergence among solutions in each level.

2.4 Analysis

Performance. Specific decision-making time and movements were recorded for all
levels across both trials. Decision-making times included planning time (i.e., time to
first movement), total completion time (i.e., time till last box was placed on the correct
target), and action time (i.e., total completion time minus planning time). The actual
decisions were analyzed by looking at the total number of moves to complete each
level, and nearest-neighbor analysis. The nearest-neighbor analysis calculated the
number of participants who first moved to the closest box to the start location compared
to another box. This analysis provides insight into whether or not they used a local
versus global strategy.

Variability. A novel approach was used to characterize the variability among par-
ticipants’ solutions for each of the spatial problems in each level. The variability among
solutions is important to understand differences between individuals’ spatial solutions
and to determine predictability in decision-making behaviors. Thus, increasing solution
variability corresponds to decreasing predictability for both human- and algorithm-
produced solutions. To measure the variability, participants’ solutions were pooled
within each level representing environmental complexity and condition of task diffi-
culty. ALCAMP [34] was used to compare all solutions within each pool in a pairwise-
exhaustive fashion. The resultant values of this analysis reflect the divergence between
the pair of paths as measured by Euclidian divergence among the grid squares, such
that large values indicate that the two solutions are different and small values indicate
that they are similar. Finally, these values were used to populate a symmetric dis-
similarity matrix through a distance matrix. The mean of the upper or lower triangle
indicates the average dissimilarity among all of the solutions for a given level and
condition – the higher the value, the greater the variability among participants’ solu-
tions to that problem. This technique has been used in previous research to infer
consensus in spatial decision-making processes [11, 21].
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3 Results

3.1 Performance Analysis

Total Completion Time. A 2 condition (known vs unknown boxes) � 9 levels of
environmental complexity (levels 0–8) repeated measures within-subjects ANOVA was
conducted to assess total completion time. There was a main effect of condition,
F(1,24) = 15.98, p = .001, d = 1.03, where Condition 1 (known planning information)
was longer, M = 49.894 s, SE = 2.553, than Condition 2 (unknown planning informa-
tion), M = 44.049 s, SE = 1.898. There was a main effect of level, F(8, 17) = 78.89,
p < .001, d = 1.35, whereby increased environmental complexity led to increased
completion time, and an interaction, F(8, 17) = 8.821, p < .001, d = 0.41, see Fig. 2.
These results show that increasing the amount of information available to an agent can
increase processing times despite providing important cues to objects in the environment.

Paired samples t-tests were conducted for each level of environmental complexity
to compare total completion time in the known and unknown planning information
conditions. There was a significant difference in scores for Levels 0 (p = .020), 2
(p = .008), 3 (p = .009), 4 (p < .001), 5 (p = .004), and 7 (p < .001), whereby com-
pletion time was significantly longer for Condition 1 (known planning information)
than Condition 2 (unknown planning information). Results are reported in Table 1.
These results show that the effect between the two conditions collapsed completely on
Level 6, and partially on Level 8, likely owing to characteristics of those specific
environments.
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Fig. 2. Total completion time (seconds) on each game level representing environmental
complexity (game level) for the known and unknown planning information conditions
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Planning and Action Time. In order to determine whether the source of the total
completion time effects described above were due to differences in planning or action,
we split the total completion time into a planning phase (duration between trial pre-
sentation and the first move) and action time (the remainder of the total completion
time – planning time). A 2 condition � 9 levels of environmental complexity repeated
measures within-subjects ANOVA was conducted to assess planning time. There was a
main effect of condition, F(1,15) = 24.33, p < .001, d = 2.006, where Condition 1
(known planning information) was longer, M = 3.123 s, SE = 0.501, than Condition 2
(unknown planning information), M = 1.375 s, SE = 0.129. There was a marginal
main effect of level, F(8, 120) = 1.967, p = .056, d = 0.028, whereby increased
environmental complexity led to increased planning time, and an interaction, F(8,
120) = 2.776, p = .007, d = .038. Paired samples t-tests were conducted for each level
of environmental complexity to compare planning time in the known and unknown
planning information conditions. There was a significant difference in scores for Levels
1 (p = .005), and Levels 2 through 8 (p < .001), whereby planning time was signifi-
cantly longer for Condition 1 (known planning information) than Condition 2 (un-
known planning information). Results are reported in Table 2.

Table 2. Paired samples t-tests for planning time

Game level Mean time 1 SD 1 Mean time 2 SD 2 t p d

0 3.230 1.281 2.765 1.341 t(24) = 1.591 .125 0.32
1 3.608 3.213 1.891 0.948 t(25) = 3.077 .005 0.60
2 2.686 1.326 1.369 0.732 t(24) = 5.548 <.001 1.11
3 4.326 3.542 1.268 0.574 t(25) = 4.627 <.001 0.91
4 6.629 6.468 1.436 0.694 t(28) = 4.452 <.001 0.83
5 5.099 4.601 1.496 0.694 t(27) = 4.405 <.001 0.83
6 3.155 2.036 1.453 0.790 t(25) = 4.563 <.001 0.89
7 5.124 3.815 1.211 0.509 t(24) = 5.227 <.001 1.05
8 6.134 5.246 1.713 0.907 t(26) = 4.542 <.001 0.87

Note. Time is in seconds

Table 1. Paired samples t-tests for total completion time

Game level Mean time 1 SD 1 Mean time 2 SD 2 t p d

0 19.851 6.827 16.513 5.294 t(26) = 2.479 .020 0.48
1 19.342 6.401 18.211 4.015 t(27) = 1.272 .214 0.24
2 29.614 10.303 25.077 5.351 t(27) = 2.851 .008 0.54
3 44.052 11.258 38.273 7.160 t(27) = 2.830 .009 0.53
4 60.510 16.714 48.775 1.4152 t(27) = 4.373 <.001 0.83
5 62.897 22.463 53.272 13.360 t(26) = 3.117 .004 0.60
6 45.275 11.520 45.611 12.612 t(26) = –.139 .891 –0.03
7 90.077 26.434 76.256 20.313 t(27) = 5.855 <.001 1.11
8 93.486 29.564 86.447 27.756 t(28) = 1.893 .069 0.35

Note. Time is in seconds
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These results show that, while planning time generally increased with environ-
mental complexity when boxes were known (thought the layout of the environment
clearly played a role as well, as shown by the dip in planning time for Level 6),
planning time essentially dropped to floor when boxes were unknown. One interpre-
tation of this result is that participants adopted a very simple local decision-making
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strategy when the box numbers were unknown, as opposed to the global search per-
formed when all planning information was presented. In addition, the paired samples t-
tests showed that the effect of uncertainty on planning requires a minimum amount of
environmental complexity (i.e., number of boxes) to manifest.

To assess action time, a 2 condition � 9 levels of environmental complexity
repeated measures within-subjects ANOVA was conducted to assess action time. There
was a main effect of condition, F(1,29) = 5.683, p = .024, d = .359, where Condi-
tion 1 (known planning information) was longer, M = 51.040 s, SE = 4.202, than
Condition 2 (unknown planning information), M = 48.464 s, SE = 4.172. There was a
main effect of level, F(8, 232) = 99.828, p < .001, d = .365, whereby increased
environmental complexity led to increased completion time. There was not a significant
interaction, p = .088. Figure 3 depicts the mean planning times and mean action times
for both conditions across all levels of environmental complexity.

Paired samples t-tests were conducted for each level of environmental complexity
to compare action time in the known and unknown planning information conditions.
There was a significant difference in scores for Level 4, t(29) = 2.217, p = .035,
d = 0.40; Level 5, t(29) = 2.045, p = .050, d = 0.37, Level 6, t(29) = −2.116,
p = .043, d = −0.39, and Level 7, t(29) = 2.291, p = .029, d = 0.04. These results
show that the interaction effect between information availability and environmental
complexity nearly disappears when removing the variance attributable to the planning
phase of problem solving. Thus, these results taken together show that the differences
reflect differences in planning for spatial problem solving rather than the action of
actually moving the avatar to solve the problem.

Number of Moves. A 2 condition � 9 levels of environmental complexity repeated
measures within subjects ANOVA was conducted to assess number of moves needed to
complete the task. There was a marginal main effect of condition, F(1,21) = 3.85,
p = .063, d = .337, where Condition 2 (unknown planning information) required more
moves, M = 117.64, SE = 1.595, than Condition 1 (known planning information),
M = 115, SE = 1.590. There was a main effect of level, F(1, 21) = 2707.23, p < .001,
d = 2.48, whereby increased environmental complexity led to increased completion
time. There was significant interaction, F(1, 21) = 4.33, p = .050, d = .042. Paired
samples t-tests were conducted for each level of environmental complexity to compare
total number of moves in the known and unknown planning information conditions.
There was a significant difference in scores for Level 1, t(26) = −3.389, p = .002,
d = −.65; and a marginal significant difference in scores for Level 8, t(28) = −2.028,
p = .052, d = −.38. The result of this analysis indicate that the conditions did not have
a meaningful impact on the number of moves required to complete each problem.
Rather, the number of moves was mostly impacted by the environmental complexity.

Nearest Neighbor Analysis. In order to test the hypothesis that participants relied
more heavily on local decision-making heuristics when boxes were unknown, we
calculated the number of participants who first moved the box closest to the starting
position (nearest neighbor preference), at each level of environmental complexity for
each trial condition. A high percentage of participants exhibiting nearest neighbor
preference would indicate a very simple local decision-making strategy. A lower
percentage would indicate that participants employed a more global strategy. Figure 4
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shows the percentage of participants who interacted with the closest box first for each
level, in both experimental condition.

Participants’ nearest neighbor preference was near-ceiling when the boxes were
unknown. When the boxes were known in advance, the percentage of participants
showing a nearest-neighbor preference decreased with increasing environmental
complexity. These results, taken together, substantiate the hypothesis that participants
typically employed global decision-making strategies when the box identities were
known, but resorted to local decision-making strategies in the absence of that
information.

3.2 Variability Analysis

Using the aforementioned procedure for calculating the average divergence in each
condition and level, we see that variability in participants’ solutions increases roughly
linearly with increasing environmental complexity, once complexity reaches a certain
threshold (in this case, it appears to be 5 boxes). A 2 condition (Known vs. Unknown
planning information) � 9 environmental complexity (Levels 0–8) ANOVA revealed
significant main effects of both Conditions, F(1, 7812) = 227.33, p < .001, and Level,
F(8, 7812) = 2305.92, p < .001, as well as an interaction effect between these two
variables, F(8, 7812) = 28.27, p < .001 (see Fig. 5). Post hoc analysis using Tukey’s
HSD tests showed significant effects between Conditions for levels 0 (p = .022), 2
(p < .001), 4 (p < .001), 5 (p < .001), 7 (p < .001) and 8 (p < .001). In all of these
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cases, participants’ solutions exhibited greater average divergence when the boxes were
known (i.e., Condition 1) versus unknown (Condition 2). Note that the dip in diver-
gence in both conditions on Level 5 (7 boxes) likely reflects characteristics of that
particular environment.

4 Discussion

Communication is described by the research community as a reciprocal process where
teammates send and receive information that form and reform the team’s attitudes,
behaviors, and cognition [35] whereby a shared body of knowledge can be used to
develop shared expectations, allowing for improved team performance without explicit
coordination [36, 37]. In the past, a variety of methods to facilitate bidirectional
communication have been explored. For example, transparent user displays can convey
agent intent [2], as well as its goals, reasoning, and projected outcomes [38–40]. While
a multimodal approach to communication can reduce workload and degraded situation
awareness [41] by using both implicit (nonverbal – behaviors, actions) and explicit
(voice, natural language or auditory) communication modalities [42]. Considerable
efforts have gone into determining the type, amount, modality, and rate by which
information should be communicated between team members (e.g., Situation Aware-
ness agent-based Transparency Model [40]). But perhaps key to the development of
effective bidirectional communication within human-agent teams is the need for team
members to be aware of goals, reasoning, actions, and projected outcomes of their
teammates [43–46]. Therefore, a major step to developing appropriate bidirectional
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communication is being able to quantify human behavior across tasks. If human
behavior does not match the robots’ models or expectations, there can be a degradation
in trust that can impede team performance and may only be mitigated through explicit
communication.

4.1 General Discussion

This was the first study in a set of studies using this paradigm. It was designed to
advance the technical capabilities of a robot to more accurately perceive and interpret
human team member behavior, and to develop appropriate bidirectional communica-
tion required for future collaborative tasking. By first looking at quantifying human
behavior, we can provide a foundation for understanding how human expectations for
planning and spatial task solutions are formed. This is essential for future teaming
because when human expectations do not match robot behaviors then degradations in
trust can occur. Therefore, quantifying the decision space can provide insights into
identifying when and how bidirectional communication could mitigate divergences in
human and robot team behaviors.

Human Performance. The results of the present study showed that completion times
generally increased with increasing environmental complexity. Furthermore, partici-
pants generally took longer to complete the levels when the box contents were known.
Separating participants’ solution times into planning times and action times showed
that the majority of this discrepancy between the two information availability condi-
tions was due to differences in time spent in planning rather than action. When the box
numbers were visible to participants, participants took longer to begin moving than
when the box numbers were not known, and we believe this time was spent analyzing
the environment and planning their moves. Curiously, this increase in planning time
did not translate to increased efficiency, as participants’ solutions did not vary between
the two information availability conditions in terms of the number of moves. Generally,
this result indicates that perfect world knowledge did not improve performance, and
actually reduced the speed with which participants completed each level. Under-
standing variance in planning and completion times can provide insights into situations
that may require more explicit communication between team members to clarify the
underlying reasoning process for the decision being made, as well as help to determine
timing associated with providing feedback to a team member.

Global versus Local Decision-Making and Implications for Bidirectionality. In
order to quantify decision-making behaviors, as well as further investigate the planning
time difference described above, we performed a simple analysis to determine whether
participants were using a local decision-making heuristic - nearest neighbor. The
nearest neighbor analysis showed that nearly all participants employed a nearest
neighbor heuristic when the box numbers were unknown, visiting the closest box first.
When box numbers were known, participants appeared to increasingly leverage global
decision-making strategies. This result, taken in the context of the performance results,
shows that perfect world knowledge, which facilitates global decision-making pro-
cesses, does not produce any marked advantage in efficiency or speed over simple local
decision-making heuristics for these problems. This is important for bidirectional
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communication, as it shows that more complex decision-making algorithms may
produce only marginal performance gains over simpler algorithms, at a cost of being far
more difficult to explain to human teammates and the computational complexity of the
algorithm itself.

Predictability of Decisions. An important part of human-agent teams is the extent to
which agents can predict one another’s actions. This can be viewed as a function of the
number of different solutions that a group of agents will produce, or that a stochastic
algorithm will produce on successive runs. Greater differences among solutions indi-
cates that those solutions will be harder for teammates to predict, whereas if all
teammates’ solutions converge to only a few possibilities it will be easier to predict
their actions. In order to examine the predictability of human solutions, we calculated
the mean pairwise divergence among all solutions to each of the problems, in each
condition. The main effect of environmental complexity was characterized by a general
increase in divergence with increasing environmental complexity, once the complexity
of the environment increased beyond a threshold; in the present study, the threshold
was five boxes. This means that most humans will make similar solutions when
environmental complexity is low suggesting that additional explicit communication
may not be needed since the likelihood that expectations will match behaviors is high.
However, when the environmental complexity reaches a set level, the number of
possible solutions and variance between those solutions greatly increases leading to
more unpredictable human behavior. These results also showed that with the exception
of Level 6, after this threshold participants solutions diverged more when the box
numbers were not shown. One interpretation of this finding, in light of the previous
results, is that participants’ reliance on local decision-making heuristics when the box
numbers were shown reduced the variance across their solutions.

Summary Discussion. The results described above, taken together, show that local
decision-making heuristics are sufficient for this task, as global processing takes longer,
does not improve performance or efficiency, and increases the divergence among
participants’ solutions. These solutions would thus be harder for teammates to predict.
Beyond a certain level of environmental complexity, bidirectional communication
becomes increasingly important because the range of possible solutions to a given
problem increases substantially. In these cases, bidirectional communication will be
necessary to promote shared situation awareness and trust, and to facilitate fluid,
flexible interaction between humans and non-human intelligent agents.

4.2 Implications on Algorithm Development

Bidirectional communication has various impacts on the development of algorithms for
the robot decision-making in collaborative missions. Specifically, shared understanding
of the mission goals and mental models could minimize uncertainty in team decision
making, and result in more predictable consequences. From the algorithmic perspec-
tive, predictable results after taking actions would greatly reduce online computations
such as replanning because less deviations from the original plan would be observed.
Also, understanding human decision-making and limitations could help developing
robots that can autonomously decide when and how to help humans. For example,
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robot might explicitly offer help when human spends a lot of time for planning the
move, or robot could infer a specific part of the problem (e.g., furthest area from the
human) and start working on that to shrink the decision problem of human. Overall,
both implicit (e.g., posture, gesture) or explicit (e.g., natural language, feedback
through displays) communication play an important role when developing
decision-making strategies for robots that are expected to operate with humans in
complex missions.
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