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Abstract. There has been considerable effort, particularly in the military, at
integrating automated agents into human teams. Currently, automated agents lack
the ability to intelligently adapt to a dynamic operational environment, which
results in them acting as tools rather than teammates. Rapidly advancing tech‐
nology is enabling the development of autonomous agents that are able to actively
make team-oriented decisions meaning truly intelligent autonomous agents are
on the horizon. This makes the understanding of what is important to team
performance a critical goal. In human teams, mission success depends on the
development of a shared mental models and situation awareness. Development
of these constructs requires good intra-team communication. However, estab‐
lishing effective intra-team communication in a mixed-initiative team represents
a current bottleneck in achieving successful teams. There has been significant
research aimed at identifying modes of communication that can be used both by
human and agent teammates, but often neglects a source of communication or
information for the agent teammate that has been adopted by the human robot
community to increase robot acceptance. Specifically, the use of psychophysio‐
logical features supplied to the agent that can then use algorithms to infer the
cognitive state of the human teammate. The utility of using psychophysiological
features for communication within teams has not been widely explored yet repre‐
senting a knowledge gap in developing mixed-initiative teams. We designed an
experimental paradigm that created an integrated human-automation team where
psychophysiological data was collected and analyzed in real-time to address this
knowledge gap. We briefly present a general background to human automation
teaming before presenting our research and preliminary analysis.

© Springer International Publishing AG, part of Springer Nature 2018
J. Y. C. Chen and G. Fragomeni (Eds.): VAMR 2018, LNCS 10909, pp. 299–313, 2018.
https://doi.org/10.1007/978-3-319-91581-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91581-4_22&domain=pdf


Keywords: Automation · Autonomy · Robot · Mixed-initiative teams
Human automation interaction · Bi-directional communication
Psychophysiology

1 Introduction

Automated agents, regardless of their instantiation, i.e., a computer or a robot, have
become increasingly adopted by both the military and society in general. In the case of
the military, automated agents are generally employed to carry out tasks that are too
difficult or too dangerous for a Soldier [1]. For example, the MARCbot is used by the
military to investigate suspicious objects, and can even look behind doors because of
the placement of its camera [1]. Alternatively, automated agents in society are usually
used for tasks that are repetitive or that require time-sensitive and complex computa‐
tions. In both domains, however, the agent, currently, is largely used as a tool [1] to
extend the human operator’s functional ‘reach’, or to improve performance of a task, or
both, as opposed to a teammate. Moreover, despite the near ubiquitous presence of
automated agents, joint system (i.e., the human operator and the agent) performance has
failed to reach desired expectations [2]. While many reasons for this failure have been
forwarded [3–5], one of the most important identified by the Department of Defense [9]
is that the human operator normally assumes a supervisory role. This role often places
the human operator ‘out of the loop’ [6–8] resulting in reduced operator situation aware‐
ness of agent function and degree of task completion [9]. This supervisory role, which
might include tasks such as monitoring a display has been necessary due to the inherent
limitations of automated agents; they have not been capable of autonomous behavior,
but rather they have often replaced a human activity in a brittle manner.

Recently, two key developments have occurred, largely in the field of robotics, that
are likely to change the way that humans and automated agents interact to achieve a
shared goal in fully collaborative situations. First, advances in artificial intelligence (AI)
are rapidly providing automated agents with the ability to flexibly adapt behavior based
on operator needs, or changing task demands. Although these abilities such as learning
about a human partner or an environment are yet still relatively primitive, this technical
achievement in AI enables truly autonomous agents, capable of making team-oriented
decisions [10]. Secondly, there is emphasis being placed on fully integrating autono‐
mous agents and humans, particularly in the military domain [9]. This full integration
of agent and human results in mixed-initiative teams that will require genuine human-
agent collaboration. These developments will essentially move automated agents from
tools to teammates [10–12]. The purpose of this paper is twofold. First we broadly
discuss the advances in theory and technology enabling the formation of successful
mixed-initiative teams, focusing on intra-team communication. We then highlight a
critical gap that is, as yet to be fully-addressed. That is, we focus both our literature
review and research on how to improve intra-team communication through the use of
implicit human state information derived from psychophysiological signals. Second, we
describe our research that is aimed at filling that gap, and finally, we present very
preliminary results from several individuals. In the next section, we enter our discussion
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by carefully delineating a line of thought that arrives at the concept of better human-
agent teaming through shared mental model development as augmented by the appli‐
cation of physiology-based monitoring and prediction of human decisions during a joint
human-automation driving task.

2 Moving Agents from Tool to Teammate Within Mixed-Initiative
Teams

Within the human agent teaming (HAT) literature, the terms robot, autonomy, and auto‐
mation are seldom defined and are occasionally conflated. For example, the Defense
Science Institute in 2016 [9] held a workshop on bi-directional communication for
human robot teaming, but within the report, autonomy is used both as an adjective to
describe robot capabilities, and as a synonym for robots [9]. To avoid confusion in the
following discussion we consider the space of (HAT) as being represented by the Venn
diagram in Fig. 1. Further, we define the term automation to be any machine or software
that performs an automated function that generally lacks the capability of independent
action. We define an autonomy as an intelligent agent that may be capable of independent
action, i.e., performing actions not previously hard coded. Therefore, a robot might be
either an automation or an autonomy. However, as technology improves and increas‐
ingly sophisticated autonomies appear on the horizon, there will inevitably be some grey
area between automation and autonomy. We use the term ‘agent’ to designate a robot,
an autonomy, or an automation. Finally, we define a team as ‘a group of two or more
people who interact dynamically, interdependently, and adaptively towards a common
value or goal’ [13]. We use the term mixed-initiative teams as used in the literature [14],
to designate a team comprising at least one human and one agent.

Fig. 1. The conceptual space of human agent teaming as discussed herein

Literature involving human only teams posits that successful mission completion
heavily relies on the development of two main constructs. Teams need to have a shared
mental model of the problem space, and shared situation awareness of evolving envi‐
ronments [10, 13, 15]. Mental models held by team members reflect an understanding
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of teammate intent during problem solving such that each team member can infer the
causes of a teammate’s behavior [16], and act symbiotically to achieve a goal. Shared
situation awareness includes a common representation of the dynamically changing
environment or problem. In human-human teams, these constructs are continuously
being updated [12], and therefore it stands to reason that the ability for an agent teammate
to update its mental model and situation awareness will be critical to successful mixed-
initiative teams. Research efforts entailing mixed-initiative teams must focus on engen‐
dering these constructs effectively within the team. Therefore, team dynamics as a whole
need to be directly addressed as opposed to the traditional model, where focus is usually
directed toward improving human or agent performance [17], essentially treating team‐
mates as independent actors rather than interdependent entities.

Effective communication between teammates, whether explicit or implicit, is the
cornerstone of establishing accurate mental models and shared situation awareness
within a team [10, 15, 17, 18]. Within this team construct, it is implied that the commu‐
nication be bi-directional between the team members in order to be effective. For mixed-
initiative teams, the requirement for bi-directional communication is even more impor‐
tant if an agent is to move from being a tool to a teammate [19]. However, this ability
to have bi-directional communication, a key for team success, represents a bottleneck
in furthering mixed-initiative team performance [15]. There are, therefore, considerable
research efforts aimed at identifying effective methods of bi-directional communication
for use in mixed initiative teams [11, 19–22]. This research must explore modes of
communication that consider the nature and characteristics of each teammate, as well
as any constraints imposed by the current operational environments.

Multimodal communication (MMC) has been identified as one method to facilitate
successful bi-directional communication [18, 20]. MMC is communication using more
than one modality (voice, gestures, etc.) [20]. The reported flexibility of MMC means
that communication can be accomplished intuitively and efficiently to best suit the indi‐
vidual situation [20]. For example, gesturing allows for silent communication, and haptic
communication [20] allows team members to communicate even when they are out of
the line of sight of each other. MMC, however, while flexible, and intuitive to human
teammates, explicitly centers on the five human senses [20]. This five-sense-centric
model of bi-directional team communication ignores signals that could be readily inter‐
preted by most agents, namely, psychophysiological signals, which can be acquired and
processed online using contemporary signal processing tools [23].

Psychophysiological signals have been successfully used to infer affective state
during human robot interactions. For example, it is known that rapid movements by
robots tend to induce a degree of anxiety in humans [24, 25]. However, if a robot team‐
mate identifies that the human is in a state of anxiety, and adjusts its movements appro‐
priately, anxiety is reduced [24]. Similarly, inferences based on psychophysiological
signals can allow the robot to dynamically alter its behavior. For instance, it can change
its level of autonomy, reallocate tasks, and infer when, and how, to query the human
teammate [21, 26]. A predominant of work in this domain, with notable exceptions [12,
15, 21], appears to be largely focused on two goals; either a robot replacing a human
activity or towards making the robot more acceptable to the user, which engenders trust,
long considered necessary for successful human agent teaming [27, 28]. However, little
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research has been directed at explicitly exploring the utility of incorporating implicit
psychophysiological signals as a form of communication into mixed-initiative teams.
Our research aims to address this gap.

For our experiment, we developed a research paradigm that has some of what we
believe to be critical elements of a mixed-initiative team, even if not at the full scale of
emerging mixed initiative teams that are of ultimate interest. The elements included in
our research paradigm consisted of a participant, a simulated vehicle, an optional driving
automation and a controller. All these elements were fully integrated into a control
theoretic framework that approximated a team. We provided psychophysiological
communication to the controller in real time with the intent that the controller use this
implicit communication as data to predict driver behavior. If participant driver behavior
was predicted to be sub-optimal the control system could suggest, through a visual
display, what behavior might be more beneficial for successful task completion. We had
three expectations that would approximate metrics of the utility of including psycho‐
physiological communication to the agent. First, that in conditions with integrated
psychophysiological communication, joint system task performance would be better
than without this implicit form of communication. Second, that participant trust would
be highest in conditions including psychophysiological communication to the controller.
Finally, subjective participant workload measures would be reduced in conditions with
the psychophysiological communication as compared to conditions without that
communication.

3 Materials and Methods

3.1 Overview

We based this research on a leader-follower simulated driving paradigm, well explored
by our lab [29], involving a semi-automated driving automation capable of lane and
speed maintenance, but not collision avoidance. We contend that this is a natural context
for observation of human behaviors in the presence of an automated agent, particularly
as driving is a common task familiar to most adults. In addition to providing the partic‐
ipant with a static automation, i.e., non-adaptable automation vis a vis capabilities, we
added a control system designed to help the participant make appropriate decisions about
what agent (human or automation) should be in control of the simulated vehicle at a
point in time given relative agent capabilities. Individual participant capabilities were
sampled by the control system at the outset of the experiment, essentially establishing
a type of ‘ground truth’ for participant ability, while the control system had a priori
knowledge of the automation’s performance. In our paradigm, the control system func‐
tioned as an advanced automation, capable of assessing participant ability and identi‐
fying relevant environmental features such as a tight turn. The control system could then
integrate that information with psychophysiological signals to produce team-oriented
probabilistic decisions about what agent should be in control of the simulated vehicle.
Further, the control system, was designed such that it could ‘act’ on the outcome of the
calculation. It accomplished this by adjusting a visual display (described later), from
herein termed the actuator, where the term actuator is defined as the mechanism by which

The Role of Psychophysiological Measures as Implicit Communication 303



the controller acted on its environment. The actuator indicated to the participant what
agent the system believed was likely to perform better given the previously calculated
‘ground truth’, and the current environment. The controller utilized one of three different
algorithms, depending on experimental condition, to control the behavior of the actuator.
One of these conditions integrated psychophysiological features.

3.2 Facilities and Equipment

The equipment and methods are nearly identical to that of previous research and a
detailed description of the paradigm is given by Metcalfe et al. (2017). The current
research, described below, was conducted in a sound proofed experimental chamber at
the Cognitive Assessment Simulation and Engineering Laboratory, Aberdeen Proving
Ground (APG). The simulation was realized by three large monitors on a desktop that
displayed the simulated environment provided by SimCreator (Realtime Technologies,
Inc; Royal Oak, MI). Participants sat in a chair that resembled an actual driving seat.
During the experimental tasks participants were outfitted with a suite of sensors for
recording psychophysiological activity. Specifically, participants donned a Biosemi
ActiveTwo (BioSemi BV; Amsterdam, Holland) system to enable recording electroen‐
cephalographic brain activity (EEG), electrocardiographic activity (ECG), electroocu‐
largraph activity reflecting eye motion (EOG), and skin electrical conductance (elec‐
trodermal activity; EDA).

Data collected, processed and analyzed in real-time included psychophysiological
(EEG, EDA, and vertical and horizontal eye movements (vEOG, hEOG)), behavioral
(e.g. automation use, brake and throttle inputs), and variables related to the participant’s
vehicle (e.g. heading error, speed etc.). In addition to the psychophysiological data
collected, participants completed a set of surveys including the Big Five Inventory for
assessing personality traits [31], a demographic questionnaire, and after each condition
surveys appropriate to the condition. After all conditions participants completed a
NASA-TLX [32] to assess the level of subjective workload, and a simulator sickness
questionnaire to assess motion sickness. Further, in conditions where the automation
was available participants completed a system trustworthiness and display trustworthi‐
ness surveys. Behavioral and participant vehicle data were collected at 60 Hz and
recorded by SimCreator.

3.3 Experimental Task and Design

In this leader follower task participants drove one and one-half laps around a two-lane
simulated course with ambient traffic (Fig. 2 bottom). Task objectives included main‐
taining lane position, a “safe” distance from the lead vehicle, and avoiding collisions
with ambient traffic and frequently appearing pedestrians. The automation could control
speed and lane position, but had no collision avoidance capabilities. Pedestrians
appeared approximately every 7 s, distributed randomly on either side of the road, and
15% stepped into the vehicle path. Participants were asked to respond to pedestrians
using buttons on a game controller, which removed the pedestrian from the road, thereby
avoiding potential collisions. For conditions in which the driving automation was
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available, participants had the option to enable or disable it at any moment. It could be
disabled through application of the brake, throttle inputs, or an accelerator-pedal- adja‐
cent toggle foot switch, and enabled by depressing the same toggle foot switch. Lateral
and longitudinal perturbations were introduced to add additional challenge to the driving
task. The lateral perturbations simulated gusts of wind that tended to push the participant
vehicle out of the lane increasing the risk of collisions with ambient traffic and pedes‐
trians. Longitudinal perturbations were implemented by increasing or decreasing the
speed of the lead vehicle. Participants were provided with a visual display screen
(Fig. 2 top) denoting current score (described later), consequence zones (described later),
control agent (human or automation) indicated with a green chevron (Fig. 2 top image),
and in three of the five conditions, a functioning actuator display Fig. 2, top image, black
bar at the top of screen; described in detail later).

Fig. 2. At the top is a depiction of the visual display provided for the participants. At the top of
the display is an indicator of what agent is in control. Here, the chevron points to ‘M’ (manual)
so the participant is in control. At the bottom of the display is a sliding bar depicting point losses.
The bottom Fig. illustrates the course the participants were to navigate.

The average drive time around the course (Fig. 2 bottom image) for each condition
lasted approximately 18 min and consisted of 19 zones defined by environmental feature.
For example, a section of course with an s-curve would be one zone, whereas another
section of the course with a straight-away would constitute another zone. All zones were
approximately equal in length. The purpose of the zones is to create circumstances
wherein one agent would be preferred over the other in terms of performance. For
instance, humans are generally superior at handling s-curves, whereas the driving auto‐
mation was superior at handling straight-aways. In different conditions, zones would be
assigned changing consequence designations for either lane or range violations and the
task with an increased consequence was indicated by the visual display. For example, a
zone might be designated high consequence for lane deviation meaning that, in that zone,
penalties for lane deviations increased. There were four different sets of zone conse‐
quences; one for the first and last conditions, and three counterbalanced sequences for
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the other three conditions. For each experimental condition participants started with 500
points and lost points for each performance decrement. The point loss was proportional
to real-life consequences, meaning that the most points were deducted for collision with
a pedestrian, and the fewest points were deducted for lane and range violations. For
zones denoted by increased consequence, point loss increased for that zone for the indi‐
cated performance decrement. Points remaining at the end of each condition were trans‐
lated into monetary compensation with a simple algorithm. Point losses and current score
were indicated by a sliding color bar (Fig. 2) at the bottom of the display screen.

Fig. 3. Informational icons provided in the display to the participant. At the top (A) are icons
that represent possible performance decrements. These are greyed out (B) when there is no error,
and are lit when the error occurs. In Fig. 3 B, illuminated icons indicate that there has been a
collision with a pedestrian and that the wrong button has been pressed to clear the pedestrian from
the road. At the far right are the consequence indicators. Here, in the bottom row (B) the lane
deviation icon is illuminated signifying that for the current zone there is an increase in point losses
for this error. Only one row of icons is displayed during the experiment; Fig. 3 A where all icons
are illuminated is for illustrative purposes only.

Each experimental session consisted of five unique conditions; three conditions
determined by the algorithm the controller used to control the behavior of the actuator,
one manual condition, and one condition with no actuator present, but with the auto‐
mation available. The first condition was always a ‘manual’ condition where the driving
automation was not available, and the actuator did not function, although the actuator
display indicated with a green chevron that the participant was in control of the vehicle.
This condition served two important purposes. First, it is important for a participant to
be able to gauge their ability to perform the task without aid from an automation. This
is because experience indicates that whether a person uses an automation is highly
dependent on their perceived ability to succeed at a task themselves versus their percep‐
tion of an automation’s ability to perform the same task [33, 34]. Second, the control
system, to be able to generate relative probabilities of success for each agent for each
zone, needed to have an accurate assessment of the participant’s innate ability to perform
the task relative to the known ability of the automation.

The other four conditions were as follows; no actuator (NA), unscaled actuator (UA),
scaled actuator (CA), and psychophysiologically scaled actuator (PA). These actuator
displays are shown in Fig. 4, and the method of counterbalancing conditions and conse‐
quence sequences is described below. The NA condition was a condition where the
automation was available, but no indication was provided to the participant regarding
probable success of either agent. The UA actuator algorithm determined the objective
probability of each agent to succeed at the task in a zone. The CA actuator algorithm
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considered not only each agent’s abilities, but the consequence designation of the zone.
For example, if a zone with a tight s-curve was the current zone and it was designated
as an increased consequence for range deviation the control system needed to consider
that fact. The automation is generally better at range maintenance, and the human driver
is generally superior at maneuvering tight curves. Therefore, if an increase consequence
for range deviation in a tight curve was indicated the system might still suggest that the
automation be in control instead of the participant. When active, the actuator indicated
the preferred agent by presenting a colored ball that moved smoothly from ‘A’ to ‘M’
(Fig. 4) as the outputs of the algorithm were derived. The ball changed colors depending
on the recommended agent. If the automation was recommended the ball turned blue as
it moved towards the ‘A’. Conversely, as the ball moved toward the ‘M’, suggesting
that manual control was preferred, it turned red. It should be noted, however, that the
actuator display in the UA, CA, and PA conditions appeared identical to the participant.

Fig. 4. Examples of the actuator display for CA, UA and PA conditions which were visually
identical, differing only in the algorithm used to control their behavior. In the top left the
automation is in control and the output of the control algorithm is leaning towards automatic
control. In the top, right the automation is also in control, but the controller is leaning towards
manual control. In the bottom left the automation is in control, and the controller is suggesting
that this state be continued. In the bottom, right, the participant is in control and the controller is
suggesting that they remain in control. (Color figure online)

The PA condition was introduced as an explicit test of the utility of providing implicit
communication to an agent in the form of psychophysiological signals from the partic‐
ipant. The control algorithm that drove the actuator behavior in the PA condition consid‐
ered the objective probability of the success for both agents, as in the UA condition.
However, in the PA condition, the control algorithm also factored in inferences made
from psychophysiological features about the likelihood of the participant activating or
deactivating the automation at any given time. This ability was made feasible by
previous work by our lab which demonstrated that a machine classifier, taking specific
environmental and psychophysiological features as inputs, could predict when a partic‐
ipant was about to make a change in control authority with almost 70% accuracy. This
classifier was implemented in real time in the control system, and the output was included
in the algorithm driving the behavior of the actuator. In the PA condition the probability
of one agent being in control versus the other was added to the objective probability of
success for each agent in a principled way based on probability theory.

The purpose of the experiment was twofold, and one of the aims partially dictated
experimental design. The primary purpose was to assess the utility of adding implicit
communication through psychophysiological signals to the controller as measured by
overall performance of the task. The second purpose was to act as a continuation of a
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previous experiment and essentially increase overall subject numbers. The earlier
experiment which included the manual, CA, UA and NA conditions was conducted at
the U.S. Army’s Tank and Automotive Research Development and Engineering Center
(TARDEC) in Michigan. Therefore, the CA, UA, and NA conditions that occurred in
both experiments were always counterbalanced along with their three possible conse‐
quence sequences using a Latin Square, creating a 3 × 3 factorial design. For execution
of the experiment described in this paper, the manual condition was always first for
reasons described earlier. To allow for inferences regarding the effects of integrating
psychophysiological signals into the control system, half of the participants (n=4) expe‐
rienced the PA condition immediately after the manual condition and half (n=5) expe‐
rienced it as the last of the five conditions.

4 Preliminary Results

Preliminary results are based on data available from an initial sample of 5 participants,
although we have plans to collect data from a total of 18 participants. We originally
considered that performance and trust (trust of the actuator display) would be highest in
the PA condition. The inclusion of performance based metrics in our analysis has
obvious motivation. If the metrics reflected high levels of performance, it might be
inferred that the team in that condition was successful as compared to other conditions.
We used points lost per second as a metric of performance (Fig. 5A) as a way of
accounting for varying lengths of time on the course. Trust was considered as a relevant
variable because of its presumed importance as to how an operator decides to use an
automation. It is widely considered that if there is an appropriate level of trust (not too
high and not too low) the automation will also be used appropriately. Figure 5B shows
the mean trustworthiness of the display scores in the three conditions where an actuator
display was available. We also expected that workload (Fig. 5C) would be reduced in
the PA condition as compared to all five conditions. There was no statistical difference
in performance, trust, or workload across the conditions, but there are tendencies seen
on visual inspection of Fig. 5 that if they remain when a larger data set is analyzed,
would make interesting results. For example, it appears that performance was improved
overall by having the automation available (Fig. 5A) as compared with the manual
condition. Further, trust (Fig. 5B) appears to be highest in the PA condition with a very
narrow distribution, indicating that most participants felt they could trust the actuator
display. Interestingly, workload also appears to be lowest in conditions where an actuator
was available (UA, CA, PA), which might suggest that participants found the task easier
when they were given cues as to which agent should be in control.
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Fig. 5. (A) Score loss per second, (B) actuator display trustworthiness, (C) workload (unscaled
NASA-TLX). MM (manual condition), UA (unscaled actuator), CA (scaled actuator), NA (no
actuator), PA (psychophysiological actuator). The black line in the bars represents the mean value.

5 Discussion

We designed this experiment to determine if integrating implicit communication in the
form of psychophysiological data would increase overall team performance, presumably
by facilitating development of shared mental models and situation awareness. As noted,
this is an important question that could significantly affect the design and future success
of mixed-initiative teams. We formulated three general expectations that if confirmed,
would support the utility of this form of intra-team communication. The first was that
in conditions with integrated psychophysiological communication, joint system task
performance would be better than without this implicit form of communication. The
second expectation was that participant trust would be highest in conditions including
psychophysiological communication to the controller. Finally, the third was that subjec‐
tive participant workload measures would be reduced in conditions with the psycho‐
physiological communication as compared to conditions without that communication.

Although there were no statistically significant results to report, we nevertheless can
speculate about interesting observations regarding the behavior of performance, trust
and workload across different conditions. The results seem to indicate that the use of
physiological information within the controller has the potential to produce performance
that is at least on par with other actuated conditions; according to our preliminary obser‐
vations, display trustworthiness may tend to be improved and workload reduced when
physiology-based state prediction was incorporated. If these results hold up with the
addition of more data, it could be argued that there is a compelling reason to include
psychophysiological signals. A reduction in subjective workload can affect how a human
operator processes environmental stimuli that directly relate to the task [35]. If a human
operator is experiencing a high level of workload, the operator is likely to not only have
fewer cognitive resources to process important task-relevant information, but also she
is likely to have a reduced situation awareness [36].

As noted, the small sample size makes achieving significant statistical results diffi‐
cult, but other potential design related causes for negative results should be considered.
For example, the controller, while able to operate in real time to provide suggestions to
the participant as to which agent (automation or human) would be likely to better perform
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the task at a given time, was dependent on relatively brittle algorithms that used indi‐
vidual level data regarding expected driving behavior, but could not adapt to variability
of individual participants. This inability to adapt the controller meant that the weight
given to each of the components (behavioral data and the psychophysiological data) was
fixed in the sensor fusion algorithm. In future experiments, we hope to develop
approaches to dynamically assess the appropriate weight for each component in order
to maximize overall performance.

Another potential challenge, and area of improvement, is that the algorithms used to
predict whether an individual is likely to change control (switch from manual drive to
autonomy drive or from autonomy drive to manual drive) were developed using group
level data from a previous experiment [29] using a similar experimental setup. In that
previous study, control toggles between manual drive and autonomy drives were rela‐
tively rare. Thus in this study, we were unable to collect enough individual specific
training data to train our algorithms. We leveraged data from 15 participants in that
previous study to build a group level model based on the recorded physiological, behav‐
ioral and environmental data. While this model has been shown effective at predicting
control toggles in a manuscript currently under review elsewhere, it does not capture
the individual differences that naturally occur between participants.

Additionally, it should be noted that we chose a visual actuator as opposed to one
that uses a different modality. It is accepted that humans tend to ignore visual information
over time as compared to when information or communication is presented using a
different modality. This point reflects the importance of the choice of methods of
communication within mixed-initiative teams in future studies. In this case, a visual
actuator was chosen because of time and engineering constraints. Future studies may
explore different option for multimodal interfaces to communicate with the human are
likely to demonstrate improvements in performance.

In summary, given the limited data available, the inclusion of physiological infor‐
mation as a form of implicit communication seems to improve joint human-autonomy
performance. Although there were no explicit measures of shared mental models or
situation awareness, the literature suggests that communication between team members
is critical to the development of these constructs within teams. We therefore suspect that
improved team performance is reflective of successful development of shared mental
models and situation awareness. Further analysis of this ongoing data collection will
enable a more detailed interpretation of these data. Additionally, future work in this area
will seek to expand these findings into other task and environment domains, as well as
potentially exploring the mechanisms involved in improved team performance.
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