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Abstract. When humans interact with each other, they often make use
of deictic gestures such as pointing to help pick out targets of interest
to their conversation. In the field of Human-Robot Interaction, research
has repeatedly demonstrated the utility of enabling robots to use such
gestures as well. Recent work in augmented, mixed, and virtual real-
ity stands to enable enormous advances in robot deixis, both by allow-
ing robots to gesture in ways that were not previously feasible, and
by enabling gesture on robotic platforms and environmental contexts
in which gesture was not previously feasible. In this paper, we summa-
rize our own recent work on using augmented, mixed, and virtual-reality
techniques to advance the state-of-the-art of robot-generated deixis.
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1 Introduction

When humans interact with each other, they often make use of deictic gestures [1]
such as pointing to help pick out targets of interest to their conversation [2]. In
the field of Human-Robot Interaction, many researchers have explored how we
might enable robots to generate the arm motions necessary to effect these same
types of deictic gestures [3–8]. However, a number of challenges remain to be
solved if effective robot-generated deictic gestures are to be possible regardless
of morphology and context. Consider, for example, the following scenario:

A mission commander in an alpine search and rescue scenario instructs an
unmanned aerial vehicle (UAV) “Search for survivors behind that fallen tree.”
The UAV can see three fallen trees and wishes to know which its user means.

This scenario presents at least two challenges. First, there is a problem of
morphology. The UAV’s lack of arms means that generating deictic gestures
may not be physically possible. Second, there is a problem of context. Even if
the UAV had an arm with which to gesture, doing so might not be effective;
picking out far-off fallen trees within a forest may be extremely difficult using
traditional gestures.
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Recent advances in augmented and mixed reality technologies present the
opportunity to address these challenges. Specifically, such technologies enable
new forms of deictic gesture for robots with previously problematic morphologies
and in previously problematic contexts. For example, in the previous example,
if the mission commander were wearing an augmented reality head-mounted
display, the UAV may have been able to pick out the fallen trees it wished to
disambiguate between by circling them in the mission commander’s display while
saying “Do you mean this tree, this tree, or this tree?”.

While there has been little previous work on using augmented, mixed, or vir-
tual reality techniques for human-robot interaction, this is beginning to change.
In March 2018, the first international workshop on Virtual, Augmented, and
Mixed-Reality for Human-Robot Interaction (VAM-HRI) was held at the 2018
international conference on Human-Robot Interaction (HRI) [9]. The papers and
discussion at that workshop make it evident that we should begin to see more
and more research emerging at this intersection of fields.

In this paper, we summarize our own recent work on using augmented, mixed
and virtual reality techniques to advance the state-of-the-art of robot-generated
deixis, some of which was presented at the 2018 VAM-HRI workshop. In Sect. 2,
we begin by providing a framework for categorizing robot-generated deixis in
augmented and mixed-reality environments. In Sect. 3, we then discuss a novel
method for enabling mixed reality deixis for armless robots. Finally, in Sect. 4
we present a novel method for robot teleoperation in Virtual Reality, and discuss
how it could be used to trigger mixed-reality deictic gestures.

2 A Framework for Mixed-Reality Deictic Gesture

Augmented and mixed-reality technologies offer new opportunities for robots
to communicate about the environments they share with human teammates. In
previous work, we have presented a variety of work seeking to enable fluid natu-
ral language generation for robots operating in realistic human-robot interaction
scenarios [10,11] (including work on referring expression generation [12,13], clar-
ification request generation [14], and indirect speech act generation [15–17]). By
augmenting their natural language references with visualizations that pick out
their objects, locations, and people of interest within teammates’ head-mounted
displays, robots operating in such scenarios may facilitate conversational ground-
ing [18,19] and shared mental modeling [20] with those human teammates in
ways that were not previously possible.

While there has been some previous work on using visualizations as “ges-
tures” within virtual or augmented environments [21] and video streams [22],
as well as previous work on generating visualizations to accompany generated
text [23–26], this metaphor of visualization-as-gesture has not yet been fully
explored. This is doubly true for human-robot interaction scenarios, in which
the use of augmented reality for human-robot communication is surprisingly
underexplored. In fact, in their recent survey of augmented reality, Billinghurst
et al. [27] cite intelligent systems, hybrid user interfaces, and collaborative sys-
tems as areas that have been under-attended-to in the AR community.
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Most relevant to the current paper, Sibertsiva et al. [28] use augmented reality
annotations to indicate different candidates referential hypotheses after receiving
ambiguous natural language commands, and Green et al. [29] present a system
that uses augmented reality to facilitate human-robot discussion of a plan prior
to execution. There have also been several recent approaches to using augmented
reality to non-verbally communicate robots’ intentions [30–36] These approaches,
however, have looked at visualization alone, outside the context of traditional
robot gesture. We believe that, just as augmented and mixed reality open up
new avenues for communication in human-robot interaction, human-robot inter-
action opens up new avenues for communication in augmented and mixed reality.
Only in mixed-reality human-robot interaction may physical and virtual gestures
be generated together or chosen between as part of a single process. In order
to understand the different types of gestures that can be used in mixed-reality
human-robot interaction, we have been developing a framework for analyzing
such gestures along dimensions such as embodiment, cost, privacy, and legibil-
ity [37]. In this paper, we extend that framework to encompass new gesture
categories and dimensions of analysis.

2.1 Conceptual Framework

In this section, we present a conceptual framework for describing mixed-reality
deictic gestures. A robot operating within a pure-reality environment has access
to but a single interface for generating gestures (its own body) and accordingly
but a single perspective within which to generate them (its own)1. A robot
operating within a mixed-reality environment, however, may leverage the hard-
ware that enables such an environment, and the additional perspectives that
come with those hardware elements. For robots operating within mixed-reality
environments, we identify three unique hardware elements that can be used for
deixis, each of which comes with its own perspective, and accordingly, their own
class of deictic gestures.

First, robots may use their own bodies to perform the typical deictic ges-
tures (such as pointing) available in pure reality. We categorize such gestures as
egocentric (as shown in Fig. 1a), because they are generated from their own per-
spective. Second, robots operating in mixed-reality environments may be able
to use of head-mounted displays worn by human teammates. We categorize such
gestures as allocentric (as shown in Fig. 1b) because they are generated using
only the perspective of the display’s wearer. A robot, may, for example, “gesture”
to an object by circling it within its teammate’s display. Third, robots operating
in mixed-reality environments may be able to use projectors to change how the
world is perceived for all observers. We categorize such gestures as perspective-
free (as shown in Fig. 1c) because they are not generated from the perspective
of any one agent.

1 Excepting, for the purposes of this paper, robots who are distributed across multiple
sub-bodies in the environment [38].
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(a) Egocentric (b) Allocentric (c) Perspective-Free

(d) Ego-Sensitive
Allocentric

(e) Ego-Sensitive
Perspective-Free

Fig. 1. Categories of mixed-reality deictic gestures

In addition, robots operating in mixed-reality environments may be able to
perform multi-perspective gestures that use the aforementioned mixed-reality
hardware in a way that connects back to the robot’s perspectives. A robot may,
for example, gesture to an object in its teammate’s display, or using a projector,
by drawing an arrow from itself to its target object, or by gesturing towards
its target using a virtual appendage that only exists in virtuality. We call the
former class ego-sensitive allocentric gestures and the latter class ego-sensitive
perspective-free gestures.

Table 1. Analysis of mixed-reality deictic gestures

Category HW CG Per Emb Cap Pri (L) Pri (G) Cost (G) Cost (M) Leg (D) Leg (S)

Ego Rob Yes Rob Yes Yes Low High High Low Low Low

Allo HMD No Hum No No High Low Low High High High

P-F Pro No Env No No Low Low Low Low High High

ES Allo HMD Yes Rob+Hum Yes No High Low Low High TED ED

ES P-F Pro Yes Rob+Env Yes No Low Low Low Low TED ED

Dimensions: HW=Hardware; CG=Connection to Generator; Per=Perspective;

Emb=Embodiment; Cap=Capability; Pri=Privacy (Local/Global); Cost; Leg=Legibility

(Dynamic/Static).

Perspectives: Ego=Egocentric; Allo=Allocentric; P-F=Perspective-Free; ES=Ego-Sensitive.

Features: Rob=Robot; HMD=Head-Mounted Display; Pro=Projector; Hum=Human;

Env=Environment; TED=Time and extent dependent; ED=Extent dependent.
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2.2 Analysis of Mixed-Reality Deictic Gestures

Each of these gestural categories comes with its own unique properties. Here, we
specifically examine six: perspective, embodiment, capability, privacy, cost, and
legibility. These dimensions are summarized in Table 1.

The most salient dimensions that differentiate these categories of mixed-
reality deictic gestures are the perspectives, embodiment, and capabilities they
require. The perspectives required are clearly defined: egocentric gestures require
access to the robot’s perspective, allocentric gestures require access to the human
interlocutor’s perspective, and perspective-free gestures require access only to
the greater environment’s perspective. The ego-sensitive gestures connect their
initial perspective with that of the robot. Those categories generated from or con-
nected to the perspective of the robot notably require the robot to be embodied
and co-present with their interlocutor; but only the egocentric category requires
the robot’s embodied form to be capable of movement.

The different hardware needs of these categories result in different levels
of privacy. Here, we distinguish between local privacy and global privacy. We
describe those categories that use a head-mounted display as affording high local
privacy, as gestures are only visible to the human teammate with whom the robot
is communicating. This dimension is particularly important for human-robot
interaction scenarios involving both sensitive user populations (e.g., elder care or
education) or in adversarial scenarios (e.g., competitive [39], police [40], campus
safety [41], or military domains (as in DARPA’s “Silent Talk” program) [42]).
On the other hand, we describe egocentric gestures as having high global privacy,
as, unlike with the other categories, information about gestural data need not
be sent over a network, and thus may not be as vulnerable to hackers.

These categories of mixed-reality deictic gestures also come with different
technical challenges, resulting in different computational costs. From the per-
spective of energy usage, egocentric gestures are expensive due to their physical
component (a high generation cost). On the other hand, gestures that make use
of a head-mounted display may be expensive to maintain due to registration
challenges (a high maintenance cost).

Finally, these gestures differ with respect to legibility. In previous work, Dra-
gan et al. [43] defined the notion of the legibility of an action, which describes
the ease with which a human observer is able to determine the goal or purpose
of an action as it is being carried out. In later work with Holladay et al. [5],
Dragan then applies this notion to deictic gestures as well, analyzing the ability
of the final gestural position to enable humans to pick out the target object.
We believe, however, that this is really a distinct sense of legibility from Dra-
gan’s original formulation, and as such, we first refine this notion of legibility
as applied to deictic gestures into two categories: we use dynamic legibility to
refer to the degree to which a deictic gesture enables a human teammate to pick
out the target object as the action is unfolding (in line with Dragan’s original
formulation), and static legibility to refer to the degree to which the final pose of
a deictic gesture enables a human teammate to pick out the target object after
the action is completed (in line with Holladay’s formulation).
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The gestural categories we describe differ with respect to both dynamic and
static legibility. Allocentric and perspective-free gestures have high dynamic legi-
bility (given that there is no dynamic dimension) and high static legibility (given
that the target is uniquely picked out). Egocentric gestures have low dynamic
legibility (relative to allocentric gestures) given that their target may not be
clear at all as the action unfolds, and low static legibility, as the target may not
be clear after the action is performed either, depending on distance to the target
and density of distractors. The legibility of multi-perspective gestures depends
on how exactly they are displayed. If they extend all the way to a target object,
they may have high static legibility, whereas if they only point toward the tar-
get they will have low static legibility. Dynamic legibility depends both on this
factor, as well as temporal extent. If a multi-perspective gesture unfolds over
time, this may decrease the legibility (although it may better capture the user’s
attention).

2.3 Combination of Mixed-Reality Deictic Gestures

Finally, given these classes of mixed-reality deictic gestures, we can also reason
about combinations of these gestures. Rather than explicitly discuss all 31 non-
empty combinations of these five categories, we will briefly describe how the
gestural categories combine. Simultaneous generation of gestures requiring dif-
ferent perspectives results in both perspectives being needed. The embodiment
and capability requirements of simultaneous gestures combine disjunctively. The
legibilities and costs of simultaneous gestures combine using a max operator, as
the legibility of one gesture will excuse the illegibility of another, but the low
cost of one gesture will not excuse the high cost of another. And the privacies
of simultaneous gestures combine using a min operator, as the high privacy of
one gesture does not excuse the low privacy of another.

3 Enabling Deictic Capabilities for Armless Robots Using
Mixed-Reality Robotic Arms

In the previous section, we presented a framework for analyzing mixed-reality
deictic gestures. Within this framework, the gestural categories that have
received the least amount of previous attention are the ego-sensitive categories
which connect the gesture-generating robot with the perspective of the human
viewer or with the perspective of their environment. In this section, we present
a novel approach to ego-sensitive allocentric gesture. Specifically, we propose to
superimpose mixed-reality visualizations of robot arms onto otherwise armless
robots, to allow them to gesture within their environment. This will allow an
armless robot like a wheelchair or drone to gesture just as if it had a physical
arm, even if mounting such an arm would not be mechanically possible or cost
effective. Unlike purely allocentric gestures (e.g., circling an object in ones’ field
of view), this approach emphasizes the generator’s embodiment, and as such, we
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would expect it to lead to increased perception of the robot’s agency, increased
likability of the robot, and promote positive team dynamics.

In this section we present the preliminary technical work necessary to enable
such an approach. Specifically, we present a kinematic approach to perform this
kind of mixed-reality deictic gesture. Compared to motion planning, a purely
kinematic approach is more computationally efficient, a potential advantage for
low-power embedded systems that we may wish to use for AR displays. The
trade-off is that the kinematic approach is incomplete, so it may fail to find
collision-free motions for some cluttered environments. However, collisions are
not an impediment for virtual arms, thus mitigating the potential downside of
purely kinematic motions.

Our approach applies dual-quaternion forward kinematics and Jacobian
damped-least-squares inverse kinematics.

Fig. 2. Kinematic diagrams for diectic gestures. (a) the local coordinate frames
(“frames”) of a serial manipulator. (b) a schematic of a serial manipulator with vectors
for pointing direction and the vector to a target object.

3.1 Kinematics

Forward Kinematics. We adopt the conventional model for serial robot
manipulators of kinematic chains and trees [44–49]. Each local coordinate frame
(“frame”) of the robot has an associated label, and the frames are connected by
Euclidean transformations (see Fig. 2a).

We represent Euclidean transformations with dual quaternions. Compared
to matrix representations, dual quaternions offer computational advantages in
efficiency, compactness, and numerical stability. A dual quaternion is a pair of
quaternions: an ordinary part for rotation and dual part for translation. Nota-
tionally, we use a leading superscript to denote the parent’s local coordinate
frame p and trailing subscript to denote the child frame c. Given rotation unit
quaternion h and translation vector v from p to c, the transformation dual
quaternion pSc is:
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h =
(
hxı̂ + hy ĵ + hzk̂ + hw

)

v =
(
vxı̂ + vy ĵ + vzk̂ + 0

)

pSc =
⎧
⎪⎪⎩h +

(
1
2
v ⊗ h

)
ε

⎫
⎪⎪⎭ (1)

where ı̂, ĵ, k̂ are the imaginary elements, with ı̂2 = ĵ2 = k̂
2

= ı̂ĵk̂ = −1, and ε
is the dual element, with ε2 = 0 and ε �= 0.

Chaining transformations corresponds to multiplication of the transformation
matrices or the dual quaternion. For a kinematic chain, we must match the
child frame of predecessor to parent frame of successor transformations. The
result is the transform from the parent of the initial to the child of the final
transformation.

aSb ⊗ bSc = aSc (2)

We illustrate the kinematics computation for the simple serial manipulator
in Fig. 2b. Note that the local frames and relative transforms of the robot in
Fig. 2b correspond to those drawn in Fig. 2a.

The kinematic position of a robot is fully determined by its configuration φ,
i.e, the vector of joint angles,

φ = [φ0, φ1, . . . , φn]T (3)

The relative frame at each joint i is a function of the corresponding config-
uration: i−1Si(φi). The frame for the end-effector is the product of all frames in
the chain

0Se(φ) =
(
0S1(φ0)

) ⊗ (
1S2(φ1)

) ⊗ . . . ⊗ (
n−1Sn(φn−1)

) ⊗ (nSe(φn)) (4)

Cartesian Control. We compute the least-squares solution for Cartesian
motion using a singularity-robust Jacobian pseudoinverse:

ẋ = Jφ̇ � φ̇ = J+ẋ (5)

J+ =
min(m,n)∑

i=0

si

max(si
2, smin

2)
viui

T (6)

where ẋ = [ω, v̇] is the vector of rotational velocity ω and translational velocity
v̇, J = USVT is the singular value decomposition2 of Jacobian J , and smin is a
selected constant for the minimum acceptable singular value.

We determine Cartesian velocity ẋ with a proportional gain on position error,
computed as the velocity to reach the desired target in unit time, decoupling
rotational ω and translational v̇ parts to achieve straight-line translations:

h1 = exp
(

ωΔt

2

)
⊗ h0 � −ωΔt = 2 ln (h0 ⊗ h∗

1 ) (7)

2 The SVD, while more expensive to compute, provides better accuracy and numerical
stability for Cartesian control than the LU decomposition.
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v1 = ẋΔt + v0 � −ẋΔt = v0 − v1 (8)

In combination, we compute the reference joint velocity as:

φ̇ = J+

⎛
⎝−k

⎡
⎣2 ln

(
0he ⊗ (

0hr

)∗)

0ve − 0vr

⎤
⎦

⎞
⎠ (9)

where e is the actual end-effector frame and r is the desired or reference frame.

3.2 Design Patterns

While the method above provides a general approach to enabling mixed-reality
deictic gestures, there are a variety of different possible forms of deictic gestures
that might be generated using that approach. In this section, we propose three
candidate gesture designs enabled by the proposed approach: Fixed Translation,
Reaching, and Floating.

Fixed Translation. The first proposed design, Fixed Translation, is the most
straightforward manifestation of the proposed approach. In this design, the visu-
alized arm rotates in place to point to the desired target. To enable this design,
we must find a target orientation 0hr for the end-effector. We find the rela-
tive rotation ehr between the current end-effector frame and pointing direction
towards the target based on the end-effector’s pointing direction vector and the
vector from the end-effector to the target (see Fig. 2b).

First, we find the end-effector’s global pointing vector ûe by rotating the local
pointing direction âe.

ûe = 0he ⊗ âe ⊗ (
0he

)∗
(10)

Then, we find the vector from the end-effector to the target by subtracting
the end-effector translation 0ve from the target translation 0vb and normalizing
to a unit vector.

0ve = 2 0de ⊗ (
0he

)∗

ûb =
0vb − 0ve

‖0vb − 0ve‖ (11)

Next, we compute the relative rotation between the two vectors ûe and ûb

using the dot product to find the angle θ and cross product to find the axis â,

θ = cos−1 (ûe • ûb) (12)

â =
ûe × ûb

sin θ
(13)

The axis â and angle θ then give us the rotation unit quaternion ehb:

ehr =
(

â sin
θ

2
+ cos

θ

2

)
(14)
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Note that a direct conversion of the vectors to the rotation unit quaternion
avoids the need for explicit evaluation of transcendental functions.

Now, we compute the global reference frame for the end-effector using

eSr =
⎧
⎩ehb + 0ε

⎫
⎭

0Sr = 0Se ⊗ eSb (15)

Combining, (15) and (9), we compute the joint velocities φ̇ for the robot arm.

Reaching. Our second proposed design, Reaching, stretches the arm out
towards the target, increasing gesture legibility in a way that would not be
feasible with a physical arm. To enable this design, we compute the instanta-
nous desired orientation as in the fixed translation case, but now set the desired
translation to the target object’s translation 0vb.

0hr = 0he ⊗ ehb

0Sr =
⎧
⎪⎪⎩0hr +

(
1
2
0hr ⊗ 0vb

)
ε

⎫
⎪⎪⎭ (16)

Then we combine, (16) and (9) to compute the joint velocities φ̇ for the robot
arm.

Floating Translation. Diectic information is conveyed primarily by the orien-
tation of the end-effector rather than its translation. Thus, in our final design,
Floating Translation, we consider a case where the translation can freely float,
allowing the arm to point with more natural-looking configurations. First, we
remove the translational component from the control law. Second, we center all
joints within the Jacobian null space, so centering does not impact end-effector
velocity. We update the workspace control law with a weighting matrix and null
space projection term:

φ̇ = J+Wẋ +
(
I − J+J

)
φ̇N (17)

The weighting matrix W removes the translational component from the Jaco-
bian J, so only rotational error contributes to the joint velocity φ̇. Structurally,
J+ consists of rotational block j+ω and translational block j+v̇ . We construct W
to remove j+v̇ .

J+ =
[
j+ω | j+v̇

]

W =
[
I3×n

03×n

]

J+W =
[
j+ω | 0]

(18)

where n is the length of φ, or equivalently the number of rows in J+.
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We use the null space projection to move all joints towards their center
configuration, without impacting on end-effector pose:

φ̇ = φc − φa (19)

where φc is the center configuration and φa is the actual configuration.
The combined workspace control law is

φ̇ =
(
J+

) [
I3×n

03×n

]
ẋ +

(
I − J+J

)
(φc − φa) (20)

In this paper, we have proposed a new form of mixed-reality deictic gesture,
and proposed a space of candidate designs for manifesting such gestures. In
current and future work, we will implement all three designs using the Microsoft
Hololens, and evaluate their performance with respect to both each other, and
to the other categories of gesture we have described. In the next section, we turn
to methods by which such gestures might be generated by human teleoperators
during human-subject experiments.

4 An Interface for Virtual Reality Teleoperation

In the previous sections, we presented a framework for mixed-reality deixis, and
a novel form of mixed-reality deictic gesture. But a question remains as to how
robots might decide to generate such gestures. While in future work our interests
lie in computational approaches for allowing robots to decide for themselves when
and how to generate such gestures, in this work we first examine how humans
might trigger such gestures, and how novel virtual reality technologies might
facilitate this process.

Specifically, we examine the use of virtual reality and gesture recognition
technologies may be used to control gesture-capable robots used by Human-
Robot Interaction (HRI) researchers during human-subject experiments [50].
Manual control of language- and gesture-capable robots is crucial for HRI
researchers seeking to evaluate human perceptions of potential autonomous
capabilities which either do not yet exist, or are not yet robust enough to
work consistently and predictably, as in the Wizard of Oz (WoZ) experimental
paradigm [51]. For the purposes of such experiments, manual control of dialogue
and gestural capabilities is particularly challenging [52]. Not only is it repetitive
and time consuming to design WoZ interfaces for such capabilities, but such
interfaces are not always effective, as the time necessary for an experimenter to
decide to issue a command, click the appropriate button, and have that command
take effect on the robot is typically too long to facilitate natural interaction.

What is more, such interfaces typically require experimenters to switch back
and forth between monitoring a camera stream depicting the robot’s environ-
ment and consulting their control interface: a pattern that can decrease robots’
situational awareness and harm experiment effectiveness [53]. This is partic-
ularly true when the camera stream depicts the robot’s environment from a
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(a) The teleoperation
interface, and its

integration with the
Softbank Pepper robot.

(b) Simulated stereoscopic
display displayed to the
user through the VR

headset.

(c) View of gesture
tracking data in the Leap
Motion SDK Diagnostic

Visualizer.

Fig. 3. Multiple views of integrated system

third-person perspective, which can lead to serious performance challenges [54].
While some recent approaches have introduced the use of augmented reality for
safely teleoperating co-present robots [55,62], robots are not typically co-present
with teleoperators during tightly controlled WoZ experiments. For such appli-
cations, Virtual Reality (VR) teleoperation provides one possible solution. VR
is also beneficial as immersion in the robot’s perspective improves depth per-
ception and enhances visual feedback, resulting in an overall more immersive
experience [56]. On the other hand, immersive first-person teleoperation comes
with its own concerns. Recent researchers have noted safety concerns, as a suf-
ficiently constrained robot perspective may limit the teleoperator’s situational
awareness [57]. What is more, VR teleoperation in particular raises challenges
as the teleoperator may no longer be able see their teleoperation interface.

4.1 Previous Work

There have been a large number of approaches to robot teleoperation through
virtual reality, even within only the past year. First, there has been some work
on robot teleoperation using touchscreens displaying first- or third-person views
of the robot’s environment [63,64]. There have been a number of approaches
enabling first-person robot teleoperation using virtual reality displays, using a
variety of different control modalities, including joysticks [65], VR hand con-
trollers [66–71], gloves [72,73], and full-torso exo-suits [59]. There has been less
work enabling hands-free teleoperation, with the closest previous work we are
aware of being Miner and Stansfield’s approach, which allowed gesture-based
control in simulated, third-person virtual reality. The only approaches we are
aware of enabling first-person hands-free control are our own approach (dis-
cussed in the next section), and the Kinect-based approach of Sanket et al.,
which was presented at the same workshop as our own work [70].

4.2 Integrated Approach

In our recent work [50], we have proposed a novel teleoperation interface which
provides hands-free WoZ control of a robot while providing the teleoperator with
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Fig. 4. Architecture diagram: The user interacts directly with a VR headset (e.g.,
Google Cardboard) and a Leap Motion gesture sensor. These devices send data to and
receive data from a humanoid robot (e.g., the Softbank Pepper) using an instance of
the ROS architecture whose Master node is run on a standard Linux laptop.

an immersive VR experience from the robot’s point of view. This interface inte-
grates a VR headset, interfaced directly with the robot’s camera to allowing the
experimenter to see exactly what the robot sees (Fig. 3b), with a Leap Motion
Controller. Translating traditional joystick or gamepad control to robotic arm
motions can be challenging, but the Leap Motion Controller can simplify this
process by allowing the user to replicate the gesture he/she desires of the robot,
making it a powerful hands-free teleoperation device [58]. There has been work
on using the Leap Motion for teleoperation outside the context of virtual real-
ity [74–76] but to the best of our knowledge our approach is the first to pair
it with an immersive virtual-reality display. In our approach, we use the Leap
Motion sensor to capture the experimenter’s gestures, and then generate analo-
gous gestures on the robot in real time. Specifically, we first extract hand position
and orientation data from raw Leap Motion data. Figure 3c shows the visualiza-
tion of the tracking data produced by the Leap Motion. Each arrow represents
a finger, and each trail represents the corresponding movement of that finger.
Changes in this position and orientation data is used to trigger changes in the
robot’s gestures according to the following equations:

robotGestureP itch =
{

low τp1 < humanGestureP itch < τp2

high τp2 < humanGestureP itch < τp3

robotGestureRoll =
{

low τr1 < humanGestureRoll < τr2

high τr2 < humanGestureRoll < τr3

Here, parameters τp1 < τp2 < τp3 and τr1 < τr2 < τr3 are manually defined
pitch and raw thresholds. While in this work our initial prototype makes use of
these simple inequalities, in future work we aim to examine more sophisticated
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geometric and approximate methods for precisely mapping human gestures to
robot gestures, with the aim of enabling a level of control currently seen in
suit-based teleoperation systems [59].

All components of the proposed interface are integrated using the Robot
Operating System (ROS) [60]. As shown in Fig. 4, the Leap Motion publishes raw
sensor data, which is converted into motion commands. These motion commands
are then sent to the robot3. Similarly, camera data is published by the robot,
to a topic subscribed to by the Android VR app which displays it in the VR
headset4.

5 Conclusion

Virtual, augmented, and mixed reality stand to enable – and are already enabling
– promising new paradigms for human-robot interaction. In this work, we sum-
marized our own recent work in all three of these areas. We see a long, bright
avenue for future work in this area for years to come. In our own future work,
we plan to focus on exploring the space of different designs for mixed-reality
deictic gesture, and integrating these approaches with our existing body of work
on natural language generation, thus enabling exciting new ways for robots to
express themselves.
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