
A Situational Approach for the Definition
and Tailoring of a Data-Driven Software

Evolution Method

Xavier Franch1(&), Jolita Ralyté2, Anna Perini3, Alberto Abelló1,
David Ameller1, Jesús Gorroñogoitia4, Sergi Nadal1, Marc Oriol1,

Norbert Seyff5, Alberto Siena6, and Angelo Susi4

1 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
{franch,aabello,dameller,snadal,moriol}@essi.upc.edu

2 University of Geneva, Geneva, Switzerland
jolita.ralyte@unige.ch

3 Fondazione Bruno Kessler (FBK), Trento, Italy
perini@fbk.eu

4 ATOS, Madrid, Spain
jesus.gorronogoitia@atos.net, susi@fbk.eu

5 University of Applied Sciences Northwestern Switzerland (FHNW),
Windisch, Switzerland

norbert.seyff@fhnw.ch
6 Delta Informatica SpA, Trento, Italy
alberto.siena@gmail.com

Abstract. Successful software evolution heavily depends on the selection of
the right features to be included in the next release. Such selection is difficult,
and companies often report bad experiences about user acceptance. To over-
come this challenge, there is an increasing number of approaches that propose
intensive use of data to drive evolution. This trend has motivated the SUPER-
SEDE method, which proposes the collection and analysis of user feedback and
monitoring data as the baseline to elicit and prioritize requirements, which are
then used to plan the next release. However, every company may be interested
in tailoring this method depending on factors like project size, scope, etc. In
order to provide a systematic approach, we propose the use of Situational
Method Engineering to describe SUPERSEDE and guide its tailoring to a
particular context.

Keywords: Software evolution � Situational method engineering
Software process

1 Introduction

Software evolution aims at keeping software systems of any kind aligned with users’
needs, which are influenced by individual, social, economic, and technological chan-
ges. That part of software engineering is receiving more and more attention since
software has become a pervasive and key element in modern society [1, 2].

© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 603–618, 2018.
https://doi.org/10.1007/978-3-319-91563-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_37&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_37&domain=pdf

Basic principles and processes of software evolution [3] have been revisited in the
light of the high availability of data, reflecting the variety of modern software, and of
efficient techniques to mine such data. Indeed, key knowledge to foster short and
frequent evolution cycles can be extracted from these data, which is both produced
explicitly by users (i.e. user feedback), and resulting from monitoring the context in
which the software is executed, as well as the software itself at runtime [1].

As in any other software engineering process, the formulation of methods for
data-driven software evolution is of paramount importance. These methods should
allow clearly identifying the roles involved, the activities undertaken, the resources
involved, and the tools utilized. One of such methods is SUPERSEDE, which has been
produced in the context of an H2020 EU project with the same name (www.supersede.
eu). The SUPERSEDE method drives the data-driven evolution process in a systematic
way. It aims at reconciling generality to accommodate different types of organizations
and customisability, as to allow the method to be effectively adopted by an organization
that may differ in characteristics as size, business domain and other factors.

The research goal addressed in this paper is to provide a systematic definition of the
SUPERSEDE method for data-driven software evolution. We aim at SUPERSEDE
acting as a reference method that can be tailored to different situations. Therefore, we
adopt Situational Method Engineering (SME) [4] as engineering approach to design the
method as a composition of reusable components called method chunks. The research
questions that we address in relation to this type of evolution are:

RQ1. What are the constituent parts of method chunks for data-driven evolution?
RQ2. What are the criteria whose combination allows expressing the context in
which these method chunks apply?
RQ3. What are the most fundamental method chunks for data-driven evolution?
RQ4. How can the different method chunks be combined in order to create
organization-specific customizations of the SUPERSEDE data-driven evolution
method?

2 Research Method

The formulation of the SUPERSEDE method has followed a 3-stage process:

• Stage 1: Requirements gathering. We elicited requirements through dedicated
workshops with key stakeholders in relation to the topic of software evolution from
three companies participating in the SUPERSEDE project (Siemens, SEnerCON
and Atos) and created a requirements document [5]. Requirements comprised as-is
and to-be goal models, plus the user stories emerging from this to-be model, all of
them coming from workshops held at the companies’ site (see protocol in [5]).

• Stage 2: Elaboration of SUPERSEDE engineering artefacts (models, techniques
and tools). In the second stage, we analysed the collected requirements as input to
determine the elements composing the SUPERSEDE method. The elaboration and
evaluation of these engineering artefacts helped to understand the intricacies of the
elements to be integrated in the method.

604 X. Franch et al.

http://www.supersede.eu
http://www.supersede.eu

• Stage 3: Formulation of the SUPERSEDE method for evolution. In this third stage,
we adopted SME as scientific approach in order to organize under a holistic view all
the artefacts gathered in the previous stage. Regular meetings allowed the incre-
mental synchronization of the method components. Advances were systematically
checked against the result of the first stage (requirements compiled in [5]).

3 Background

3.1 Situational Method Engineering

To formalise the SUPERSEDE method, we apply Situational Method Engineering
(SME) [4] principles and techniques. In SME, a method is viewed as a collection of
autonomous and interoperable method components that can be selected and assembled
in a way to satisfy the particular situation of the project at hand. The definition of
method components and their assembly techniques vary from one SME approach to
another [4]), but the main objective stays the same: to make the method knowledge
modular and reusable for the construction and/or adaptation of situation-specific
methods. Most of the assembly techniques support method construction from scratch
based on the identified situational context and requirements, other deal with incre-
mental organization’s method adaptation or even method family construction.

In our work, we adopt and adapt the assembly-based and method chunk-based SME
approach [6, 7] that supports situation-specific method construction and extension in
three steps: method requirements specification, method chunks selection and assembly
of the selected chunks (details given in Sect. 6 as needed). Method chunks are reusable
method components. A method chunk includes a process (i.e., the guidelines provided
by the method chunk) and its related product knowledge (i.e., the formalisation of
concepts and artefacts used and produced by the method chunk), and is specified by the
situation in which it can be applied (i.e., the required input artefacts) and the intention
(i.e. the engineering goal) to be reached. Finally, the reuse context of the method chunk
is specified by a set of criteria that can be defined by using a taxonomy like the reuse
frame proposed in [8]. We apply an ad hoc method chunk definition approach [9] that
creates chunks from experts’ knowledge, based on a method chunk metamodel.

3.2 The SUPERSEDE Data-Driven Control Loop for Software Evolution

SUPERSEDE’s data-driven software evolution process takes inspiration from the
autonomic control loop proposed for adaptive systems [10]. In SUPERSEDE, the
control loop drives also software evolution, considering runtime and context data, and
also explicit user’s feedback, which the user might deliver upon having used the
software.

The SUPERSEDE process can be characterized by the following steps (see Fig. 1):

Collect. Multi-modal feedback gathering techniques allow users to express their
feedback as textual comments, emoticons, rating and pictures. Flexible and config-
urable monitoring components collect a huge volume of data from the context and

A Situational Approach for the Definition and Tailoring 605

system usage [11]. These data, of different types, are stored in a big data storage, which
maps data to a semantic model at support of analysis [12].

Analyse. Different types of analysis are tool-supported, for instance, sentiment analysis
and extraction of feature requests and bug issues from user textual comments [13],
tweet mining to understand perceived quality of experience [14], and combined
analysis of end-user feedback and contextual data.

Decide. Focusing on software evolution tasks, automated reasoning techniques support
collaborative-decision making concerning, for instance, the identification of new
requirements, and their prioritization with respect to multiple criteria [15].

Act. Operationalizations of the decisions made are performed at this step. Selected
features are included in a release plan that takes into account available resources,
deadlines and organization priorities [16]. In addition, this step can be refined during
the actual implementation of the next release using a continuous release planning
approach [17].

4 Method Chunks Metamodel for SUPERSEDE

In this section, we address RQ1 (What are the constituent parts of method chunks for
data-driven evolution). Following the advices in [9], we implement the concept of
method chunk using a process-oriented view. We base our work on existing software
process modelling approaches, e.g. from SPEM [18]. We build a metamodel articu-
lating the subset of method elements that are relevant for our purposes, namely
activities, artefacts, roles and tools, each one yielding a particular class in the meta-
model. Then, we link method chunks to these classes.

4.1 SUPERSEDE Method Elements

Activities, artefacts, roles and tools are declared as specializations of an abstract class
MethodElement (see Fig. 2), which links every method element to one or more phases
of the SUPERSEDE loop, allowing also referencing to external concepts (e.g., a role
not needed by the method but referenced for the sake of completeness). We declare a

Fig. 1. The SUPERSEDE control loop

606 X. Franch et al.

reflexive association class to express relationships among method elements that will be
specialized according to the different types of method elements whenever needed. All
method elements may present structural relationships (composition and specialization)
and each method element may present other particular types, as we detail below.

Activities involve artefacts, tools and roles. In a nutshell, activities are tasks in which
one or more Roles are involved, and are carried out with the support of Tools, which
receive one or more Artefacts as input and generate other Artefacts as output. Examples
of activities are Feedback Collection (linked to the Collect phase), Domain Ontology
Definition (Analyse), Requirements Prioritization (Decide) and Release Planning (Act).
Structural relationships will be widely used; for instance, Requirements Prioritization
will be specialized into several sub-activities, each adopting a particular prioritization
strategy (e.g. Requirements Prioritization with AHP). In addition, activities may present
several types of temporal relationships; we adopt the proposal in [19] (richer than SPEM
when it comes to temporal relationships) with relationships like start-start, end-start,
exclusion, etc. (e.g. Release Planning cannot start before Requirements Prioritization
has ended). In all the types of process elements, particular relationships are defined by
specializing the MEOtherRel class (see Fig. 2) and including integrity constraints to
enforce application to the right type.

Artefacts represent informational resources that are produced, consumed or just used
as a working asset by an activity. Examples of artefacts are Feedback Document
(produced as output by the Feedback Collection activity), Prioritized List of Require-
ments (consumed as input by Release Planning) and AHP Matrix (used as working asset
by Requirements Prioritization with AHP). Artefacts are declared of a particular cate-
gory. Examples are: Model (e.g., Integration-Oriented Ontology), File (e.g., Monitoring
Data), DataSet (e.g., Project Schedule), Technology (e.g., Event Queue Endpoint) and
Expression (e.g., Complex Event Pattern). Categories may be decomposed into sub-
categories at any level, for instance the Integration-Oriented Ontology belongs to the
Ontology subcategory in Model. Artefacts may be related to each other by structural
relationships: aggregation (a List of Requirements as aggregation of Requirement) and
specialization (Prioritized List of Requirements as specialization of List of Require-
ments). Other relationships are possible, like constraint (e.g., a Release Plan constrains a
Project Schedule) or in-sync, meaning that changes in one artifact imply changes in
another (e.g., a Release Plan is in-sync with a Prioritized List of Requirements).

Fig. 2. Elements of the SUPERSEDE method

A Situational Approach for the Definition and Tailoring 607

Roles are involved in activities either individually (e.g., Project Owner) or as a set
of person (e.g. Set of Developers), which is expressed with an association class (SetOf).

Tools are also used in activities, and they produce and consume artefacts and
involve roles. All these associations among the four type of process elements are not
independent and some integrity constraints need to be declared (not included here for
the sake of brevity), e.g. context Activity inv: self.tool->includesAll(self.input.-
tool). Relationships among tools include connection (i.e., the result of one tool is used
by another). Again this association is related with others through integrity constraints,
e.g. if the RePlan tool (which produces a ReleasePlan) is connected to DMGame
(which produces a Prioritized List of Requirements), then the corresponding artefacts
need to be in-sync.

4.2 Definition of Method Chunks

Every activity in SUPERSEDE begets a method chunk for the catalogue. We consider
that the description of the activity is the process part of the chunk, while the output of
such activity (i.e., the list of produced artefacts) is the product part. The situation of the
method chunk is given by the list of consumed artefacts, while the intention needs to be
explicitly given in the form of a goal. We also include the definition of the chunk reuse
context, which has been defined in [8] as a taxonomy of criteria (details are given in
Sect. 5.2); not all the criteria apply to every chunk. Finally, we extend the definition of
method chunks with the Role and Tool attributes representing the corresponding
SUPERSEDE method elements and presented in the section above.

Figure 4 shows the metamodel corresponding to the definition of method chunk.
For convenience, several derived roles are explicitly declared which can be computed

Fig. 3. Detail of the SUPERSEDE method elements

Fig. 4. Metamodel for method chunks

608 X. Franch et al.

from roles appearing in Fig. 3. Also an associate association class is introduced as
derived from the corresponding activity-binding association class appearing in Fig. 3.

5 A Catalogue of Method Chunks for SUPERSEDE

In this section, we address RQ2 (What are the criteria whose combination allows
expressing the context in which these method chunks apply) and RQ3 (What are the
most fundamental method chunks for data-driven evolution). To address RQ3, we
present the method chunks of the SUPERSEDE method that we have developed fol-
lowing an ad-hoc approach and applying the method chunk metamodel shown in Fig. 4.

5.1 Context Criteria Applicable in the SUPERSEDE Method

As reported in Sects. 3.1 and 4.2, context definition using SME is implemented by the
definition of context criteria that capture the factors that may influence in the selection
of a method chunk for a particular instantiation of a method. In [8], a proposal is given
resulting in two relevant outcomes: (1) a 3-tier context structure in which a few
dimensions are decomposed into facets, and the facets into criteria; (2) a concrete
proposal of this context structure for the information systems field by 2006.

We have evolved the original proposal by incorporating additional criteria that may
be needed in a particular context in order to decide if one particular chunk has to be part
of a customization of the SUPERSEDE method. Table 1 presents an excerpt of the
result, focusing on the most relevant criteria for chunk selection (i.e., whose values
affect a greater number of chunks). Criteria with an (*) are new, mostly related to the
data-driven approach adopted in the SUPERSEDE method. Range of values adhere to
the original proposal as much as possible; when subjective, value assignment relies in
expert criteria. Definition of the relevant criteria follow:

• User involvement. Related to the participation of the user in the chunk’s activity.
Relevant for activities related to feedback gathering (end-user involvement) but also
for technical ones (e.g., involvement of project managers in release planning).

Table 1. Criteria for SUPERSEDE reuse context

Criterion Values

User involvement Low, medium, high
Resources required Few, fair, much
Size Small, medium, large
Delivery strategy Spare releases, frequent releases, continuous delivery
Type of end-user (*) Citizen, organization, technician
Accuracy (*) Low, medium, high
Motivation (*) Low, medium, high
Other assumptions (*) Minor, fair, major
Privacy Very sensible, sensible, not sensible

A Situational Approach for the Definition and Tailoring 609

• Resources required (evolution of Means shortage in [8]). To measure the com-
plexity of an activity with respect to personnel, infrastructure, etc. It affects espe-
cially activities that require code development (e.g., new monitoring components).

• Size (of the project). Size may impact activities whose feasibility depends on the
volume of work. A typical example would be prioritization techniques (e.g., AHP
comparison) that do not scale well with a large number of requirements.

• Delivery strategy. The type of delivery impacts the later stages of evolution.
Heavyweight prioritization techniques are cumbersome to use with frequent
releases, and classical release planning does not apply in continuous delivery
contexts.

• Type of end-user. Some users may be more educated than others from an IT
consumer perspective. It may be expected that a technician using the feedback
gathering mechanisms will be more accurate than a regular citizen.

• Accuracy. The level of accuracy sought impacts on the selection and customization
of some techniques. For example, as we will see in Sect. 5.3, different prioritization
techniques exhibit different accuracy levels.

• Motivation. In data-driven approaches, one strategy to get more data is to motivate
stakeholders to make them willing to participate actively. Not only end-users, but
also technical stakeholders may be involved using gamification techniques.

• Other assumptions. This criterion collects very specific conditions not belonging to
the previous types that need to be fulfilled in order to apply the chunk. They may
refer to the organization, adopted techniques, involved roles, etc.

5.2 A Catalogue of Method Chunks

We group the chunks into four categories. For all the categories, an initial chunk
(Chu-XXX-01) represents an initial deployment activity, which is sometimes decom-
posed into subactivities. We omit these ones for brevity and present below the rest of
chunks and their relationships (see Fig. 5). Being a data-driven approach, the chunks
have emerged naturally by following the flow of data across the four phases of the
control loop, with every significant data process converted into a process chunk.

Chunks for Collection. Data enters the SUPERSEDE process in two different ways.
First, end users may provide feedback using multi-modal mechanisms configured at
design time but also at runtime (although runtime issues, belonging to the
self-adaptation world, are not included in this paper) (Chu-Col-02: Feedback Collec-
tion). Second, SUPERSEDE may monitor data without users’ explicit intervention
(Chu-Col-03: Monitoring Data Collection). There are three different types of monitored
data: quality of service, e.g. response time or availability (Chu-Col-03a: QoS

Fig. 5. Relationships among SUPERSEDE evolution method chunks.

610 X. Franch et al.

Monitoring); monitoring of social networks as Twitter (Chu-Col-03b: Social Network
Monitoring); users’ usage monitoring (Chu-Col-03c: Usage Monitoring). The collected
data are sent for analysis following the SUPERSEDE loop.

Chunks for Analysis. The SUPERSEDE data-driven approach relies on the concep-
tualization of relevant ideas using a domain ontology defined by a data steward who
mediates with domain experts from the organization (Chu-Ana-02: Domain Ontology
Definition). This ontology is used as the basis to define the event recognition rules
(Chu-Ana-03: Definition of Event Recognition Rules) that will capture needs for
evolution as well as the logical definition of data coming from feedback and monitoring
(Chu-Ana-04: Source Ontology Extraction). Collected data are processed in a last
chunk (Chu-Ana-05: Event and Pattern Detection) that applies the recognition rules to
the monitored data coming from Chu-Col-02 and Chu-Col-03 and produces the real
needs in the form of events and patterns to be decided upon in the next phase.

Chunks for Decision. The alerts produced by Chu-Ana-05 are captured by a method
chunk that converts them into a list of requirements by means of collaborative editing
involving some selected requirements analysts (Chu-Dec-02: Requirements Collabo-
rative Editing). Since they have been produced independently, it may be the case that
requirements are overlapping or present other relationships, therefore a consolidation of
the list is made right away (Chu-Dec-03: Requirements Similarity Check). This con-
solidated list is then prioritized involving again the appropriate (or available) set of
stakeholders, to generate a prioritized list of requirements (Chu-Dec-04: Requirements
Prioritization) to be processed by the enactment method chunks. There are several
strategies for prioritizing requirements, and we present here three of them
(Chu-Dec-04a, Chu-Dec-04b and Chu-Dec-04c, using AHP, Gamified AHP and
Genetic Algorithms, respectively) which differ in some context criteria (see details in
next subsection).

Chunks for Enactment. The prioritized list of requirements is processed by a release
planning activity (Chu-Ena-02: Release Planning) that considers also the list of
available resources as input, and then produces a release plan.

To ensure the correctness and adequacy of the aforementioned method chunks, we
checked them against the requirements posed by the three companies mentioned in the
introduction [5] ensuring that the catalogue of method chunks satisfied their needs.
Furthermore, we conducted regular meetings to check that the different method chunks
matched well with each other.

5.3 Example: Requirements Prioritization

For the sake of illustration, in this subsection we present a method chunk in detail,
namely the chunk for requirements prioritization, together with a summary of its three
current specializations.

Requirements prioritization elaborates on a set of requirements produced by a
previous activity (Chu-Dec-03, which needs to be finished before starting this one), and
applies a set of weighted criteria to the information elicited from several stakeholders,
as to provide a list of prioritized requirements that serves as input of the release

A Situational Approach for the Definition and Tailoring 611

planning activities. The SUPERSEDE method applies a gamification approach to
prioritization, and a software tool called DMGame has been developed with this pur-
pose. Three types of stakeholders collaborate around this tool: a Supervisor supervising
the process, a Negotiator mediating in conflicts and the Decision Providers that provide
the necessary information for prioritizing. It is worth remarking that this chunk has not
context criteria applicable, meaning that it will be instantiated in any possible situation.
We expect this to be the usual situation in abstract method chunks, leaving the criteria
to the specializations as shown below.

We have built three different specializations for this abstract chunk until now. Two
of them are based on the AHP method, a third one on genetic algorithms. As a
specialization, the information is inherited, thus only new information needs to be
added. In the case of these three specializations, only the context is concerned. The
context criteria that affect the selection of the specialization are shown in Table 3, with
the values that apply to every specialization (Table 2).

As a short summary, AHP-based methods require more user involvement and thus
more resources and also suffer from limitations on the number of requirements to handle
and from the assumptions needed to ensure the accuracy of the method (which is higher
than the case of genetic algorithms). Although not critical, there are some differences
also in the type of end-users and the delivery strategy. Concerning the two AHP
methods, the main difference among them is the higher motivation required for AHP.

Table 2. Method chunk for requirements prioritization (DM: Decision-Making)

Method chunk Content

Id Chu-Dec-04 [abstract]
Name Requirements prioritization
Description This activity applies some selected technique in order to prioritize a list of

requirements involving several selected stakeholders
Context –

Situation • Set of (possibly interrelated) requirements
• Set of weighted criteria for the prioritization

Intention Prioritize requirements in a collaborative way
Process part Description of the activity – not included for brevity reasons
Product part LP: List of prioritized requirements
Roles • DM Supervisor: Organizes the full setting of the prioritization and

supervises the execution of the activity
• DM Negotiator: Facilitates the resolution of conflicts among decision
providers

• Set of DM Decision Providers: Provides information useful for
prioritization

Tools DMGame: decision-making web-based tool
Related chunks Chu-Dec-03 e-s Chu-Dec-04

612 X. Franch et al.

6 Steps for Adopting SUPERSEDE: A Situational Approach

It is not sufficient to transform a method into a collection of method chunks to make it
situational. Hence, in this section we address RQ4 (How can the different method
chunks be combined in order to create a customization of the SUPERSEDE data-driven
evolution method tailored to a particular context). To address this RQ, we need to
provide guidance for creating situation-specific SUPERSEDE methods and allowing
companies to tailor SUPERSEDE to their needs. For that, we follow the generic
three-step assembly process mentioned in Sect. 3, that we specialise for SUPERSEDE
as follows (see Fig. 6). The formalization of the process is just outlined; it cannot be
developed in full due to space reasons.

Method Requirements Specification. The first step consists in defining functional and
contextual method requirements. Functional requirements capture a set of engineering
intentions that shall be fulfilled by the new method, while the contextual ones reflect
the situation of the project at hand in terms of assessed criteria from the reuse context.

We propose to use i* goal models [20] and domain knowledge to extract method
intentions and to assess context criteria. Indeed, a goal model interconnects the main
actors via goal dependencies and allows to derive method intentions from these goals.
We recommend, to construct first the as-is goal model reflecting the current situation of
the organization. Then, the envisioned situation is designed as a to-be goal model. For
the to-be situation, we propose to link intentional elements to relevant context infor-
mation that allow identifying context criteria and, therefore, to derive not only method
intentions but also contextual requirements. The result of this step can be stated then as
a set of method requirements, namely contextual goals, P = {cgk} where every method
requirement is a pair cgk = (gk, Ck) of a goal and a set of conditions of the form
Ck = {(ci, vi)}, being ci a contextual criterion and vi a valid value for such criterion.
Note that Ck is a correspondence, allowing thus different values for a criterion.

Method Chunks Selection. In the second step, the method requirements are used to
select method chunks by matching them with method chunk components. The selection
query is the model P above which is compared against the catalogue (C, R) of method
chunks, C = {mck}, and their relationships, R = {(mc1i, mc2i, tri)}, being mc1i and
mc2i two method chunks and tri a type of relationship valid for them. For the selection
process, we consider only as relevant information of method chunks the intention and
the context, mck = (intk, contk), where contk has a similar structure than Ck above.

Fig. 6. The three-step assembly process for the SUPERSEDE method tailoring.

A Situational Approach for the Definition and Tailoring 613

The matching among P and (C, R) can then be defined as a set of selected method
chunks SMC = {smck} where each smck = (intk, contk) fulfils several conditions:
(1) the intention of the chunk satisfies some functional requirement gk of the query,
intk) gk; (2) the context criteria of such functional requirements are satisfied by the
chunk, contk) Ck; (3) the intention of the chunk does not violate any other functional
requirement of the query, ¬(intk) ¬gi). Please note that we do not consider rela-
tionships in the step, but in the next one.

Ideally, the selected method chunks should cover all functional method require-
ments and satisfy the context conditions. In case some functional requirement is not
satisfied, other method sources will be explored and formalised as method chunks to fill
the gap (see next step). On the contrary, if there are several method chunks satisfying
the same requirement (i.e. producing the same outputs in different ways) two possi-
bilities are to be considered: (1) selecting only one of these chunks, so the decision is
taken by the method engineer, or (2) postpone the decision to method enactment time
(see next step).

Method Chunks Assembly. The last step consists in assembling the selected method
chunks into a coherent method. In the case of SUPERSEDE, that will mainly consist in
defining the order of chunks execution based on their input and output artefacts and
complete missing elements by ad hoc (eventually non-reusable) chunks.

Let M be the method corresponding to the SUPERSEDE instantiation under con-
struction, M = mek}, being mek an instance of the MethodElement abstract class
introduced in Fig. 2. The rules to be applied are:

1. Connect the selected method chunks according to the relationships in R: 8(m1,
m2) 2 SMC: (m1, m2, t) 2 R) (m1, m2, t) 2 M. The inclusion in M takes care
of including and connecting artefacts, roles and tools as specified in the metamodel.

2. For those contextual goals {cgk} in P not covered by any method chunk in SMC,
explore other method sources and formalise them as method chunks to fill the gap,
applying the steps above as required.

3. For those contextual goals {cgk} in P covered by more than one method chunk in
SMC, providing arguments for the inclusion in M of either only one of them (if they
are exclusive) or a subset (if they are complementary).

7 Example

We present an illustrative example of the application of the SUPERSEDE method to
the SIEMENS project use case, which concerns the development and evolution of a
smart-city platform (Eco Sys. Platform).

Method Requirements Specification. A SIEMENS department has adopted the
SUPERSEDE method as shown in Fig. 7, which depicts an excerpt of the i* to-be
goal-oriented model for this use case (see [5] for the full version). The Project
Manager relies on the SUPERSEDE method for achieving key goals that will allow
improving the way the department evolves and maintains the Eco Sys. Platform, in
relation to feedback analysis, collaborative decision-making and release planning.

614 X. Franch et al.

The Development Team relies on SUPERSEDE method to improve collaborative
decision-making. Eco Sys. Platform requires SUPERSEDE to ensure privacy
compliance. The goal diagram of SUPERSEDE actor models the goals that the
method has been delegated to achieve, which are refined using decomposition (just
hinted in the figure).

The SIEMENS department can perform different, and possibly simultaneous pro-
jects. Each project is characterised by specific values of context properties (depicted as a
simple list of item in the rectangular shapes in Fig. 7) which need to be mapped to
contextual criteria (Table 1). For instance, in Project1, which concerns the implemen-
tation of a small set of new requirements to improve the platform reliability, privacy
compliance is not critical, while in Project2, which deal with a larger set of requirements
related to the management of usage logs, privacy compliance is highly relevant. The
analysis of the resulting contextual goal model will lead to the identification of a set of
method requirements, such as cg1.1 = (G1.1, C1.1), where C1.1 = {(user involve-
ment, high) (size, small) (accuracy, high) (motivation, high)}, and cg1.2 = (G3,
C1.2) where C1.2 = {(privacy, sensible)} for the SUPERSEDE method configuration
in Project1. Similarly, for Project2, method requirements include cg2.1 = (G1.1, C2.1),
where C2.1 = {(user involvement, medium) (size, medium) (accuracy, fair) (mo-
tivation, medium)}, and cg2.2 = (G3, C2.2) where C2.2 = {(privacy, very sensible)}.

Method Chunks Selection. These method requirements drive the selection of method
chunks. For instance, requirements cg1.1 matches to the method chunk Chu-Dec-04 (for
the goal part,G1.1), while for the selection of the method variant we need to match C1.1

with context criteria (see Table 3), resulting in the selection of the AHP variant
(Chu-Dec-04a). Analogously, requirement cg1.2will lead to the identification of method
chunks Chu-Col-2 (because privacy is not very sensible), Chu-Col-03a, and
Chu-Col-03c. On its turn, for Project2 the genetic algorithm-based prioritization tech-
nique Chu-Dec-04c will be selected, due to the increasing number of requirements).
Concerning data collection, the analysis of context condition C1.2 leads to exclude the

Fig. 7. To-be contextual goal model with information of two projects (simplified example)

A Situational Approach for the Definition and Tailoring 615

use of both Chu-Col-02 and one specialization of Chu-Col-03, Chu-Col-03b, because
neither feedback gathering nor usage monitoring are considered appropriate when pri-
vacy is a highly relevant issue (which is explicitly stated in the corresponding chunks).
In both projects, Chu-Ena-02 (Release Planning) is selected due to the Release
Planned goal.

Method Chunks Assembly. On the one hand, the selected method chunks are now
assembled taking into account execution order (see Fig. 6) and input/output artefacts.
This will create the assembly (Chu-Dec-04a, Chu-Ena-02) in Project1 and
(Chu-Dec-04c, Chu-Ena-02) in Project2. However, collection chunks cannot be
assembled because the analysis chunks have not been selected. The reason is that the
goal model does not include information enough as to realize that these chunks are
needed. Therefore, they need to be selected in this phase and assembled correspond-
ingly, e.g. (Chu-Col-02, Chu-Ana-05) in Project1. Figure 8 presents the resulting
SUPERSEDE Method for Project1, with the main method chunks, the input-output
artefacts and the roles involved (for the sake of brevity, method chunks required at
design time are not depicted, namely, Chu-Ana-02, Chu-Ana-03 and Chu-Ana-04).

8 Conclusions and Future Work

In this paper, we have provided a systematic definition of the SUPERSEDE method for
data-driven software evolution oriented towards its customization in particular con-
texts. We have defined a metamodel for method chunks built upon activities, artefacts,

Table 3. Context criteria for the three specializations of requirements prioritization.

Criterion AHP Gamified AHP Genetic

User involvement High High Medium
Resources required High High Medium
Project size Small Small Medium
Delivery strategy Frequent Frequent Continuous
Type of end-user Technician Technician Mixed
Accuracy High High Fair
Motivation High Medium Medium
Assumptions High High Low

end-user

Chu-Col-02
Feedback
collec on

Chu-Ana-05
Event and

Pa ern
detec on

Feedback
document

Chu-Dec-02
Requirements
collabora ve

edi ng

Chu-Dec-03
Requirements

similarity
check

Alert Requirement

Chu-Dec-04a
AHP

Requirements
Priori za on

Development team

List of
requirements

Priori zed list of
requirements

Chu-Ena-02
Release

Planning

Project manager

Release Plan

Fig. 8. Excerpt of the SUPERSEDE Method for Project

616 X. Franch et al.

roles and tools (RQ1), then we have defined a set of context criteria to describe the
context in which every chunk can be selected (RQ2), we have presented a catalogue of
method chunks for SUPERSEDE-based software evolution compliant to such meta-
model (RQ3) and we have presented an SME-based process to guide the definition of a
tailoring of the SUPERSEDE method in a particular context (RQ4).

It is worth mentioning that the answer to RQ4 is a methodological contribution
beyond the application to the SUPERSEDE method. It represents an evolution to recent
SME works that we have undertaken [21, 22] given the inclusion of context criteria as
part of the method requirements. The full development of the, e.g. the applicability of
previously proposed context goal modelling approaches that support contextual
annotations [23], is future work. Other aspects could be thought to be integrated in this
extension of SME, as for instance adding existing guidelines for building methods
based on metamodels from the literature about Domain Specific Modeling [24].

A point of discussion is the possible complexity of the method. As in any
SME-based approach, we assume that a method engineer would lead the customization
of the method with the help of key stakeholders, e.g. a requirements engineer for the
construction of the goal model. We plan also to develop tool support as to assist the
method engineer, e.g. by suggesting the missing chunks in the third step of the
assembly

Future work spreads along several directions. First, we plan to conduct an
exhaustive validation of the SUPERSEDE evolution method, which is partly required
also due to the novelty of the topic and limitations that are inherent to data-driven
decision support. Second, we aim at formalizing the method described in Sect. 6. Last,
we aim at extending the catalogue of chunks for software evolution with adaptation and
configuration artefacts obtaining then a holistic view of data-driven software
engineering.

Acknowledgments. This work is a result of the SUPERSEDE project, funded by the EU’s
H2020 Programme under the agreement number 644018.

References

1. Wang, X., Guarino, N., Guizzardi, G., Mylopoulos, J.: Software as a social artifact: a
management and evolution perspective. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.)
ER 2014. LNCS, vol. 8824, pp. 321–334. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12206-9_27

2. Mens, T., Serebrenik, A., Cleve, A. (eds.): Evolving Software Systems. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-45398-4

3. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE 68(9),
1060–1076 (1980)

4. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P., Rossi, M.: Situational Method Engineering.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41467-1

5. Stade, M., et al.: D3.1: Requirements for Methods and Tools. SUPERSEDE project
deliverable (2015). www.supersede.eu

A Situational Approach for the Definition and Tailoring 617

http://dx.doi.org/10.1007/978-3-319-12206-9_27
http://dx.doi.org/10.1007/978-3-319-12206-9_27
http://dx.doi.org/10.1007/978-3-642-45398-4
http://dx.doi.org/10.1007/978-3-642-41467-1
http://www.supersede.eu

6. Ralyté, J., Rolland, C.: An approach for method reengineering. In: S.Kunii, H., Jajodia, S.,
Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 471–484. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45581-7_35

7. Ralyté, J., Deneckère, R., Rolland, C.: Towards a generic model for situational method
engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45017-3_9

8. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requir. Eng. J. 11, 58–78 (2006)

9. Ralyté, J.: Towards situational methods for information systems development: engineering
reusable method chunks. In: ISD 2004 (2004)

10. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.
C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02161-9_3

11. Stade, M., Fotrousi, F., Seyff, N., Albrecht, O.: Feedback gathering from an industrial point
of view. In: RE 2017 (2017)

12. Nadal, S., et al.: A software reference architecture for semantic-aware big data systems. Inf.
Softw. Technol. 90, 75–92 (2017)

13. Morales-Ramirez, I., Kifetew, F.M., Perini, A.: Analysis of online discussions in support of
requirements discovery. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253,
pp. 159–174. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_11

14. Guzmán, E., Alkadhi, R., Seyff, N.: An exploratory study of twitter messages about software
applications. Requir. Eng. J. 22(3), 387–412 (2017)

15. Busetta, P., et al: Tool-supported collaborative requirements prioritisation. In: COMPSAC
2017 (2017)

16. Ameller, D., et al.: Replan: a release planning tool. In: SANER 2017 (2017)
17. Ameller, D. et al.: Towards continuous software release planning. In: SANER 2017 (2017)
18. Object Management Group (OMG): Software & Systems Process Engineering Meta-Model

Specification (SPEM), Version 2.0. Technical report, April 2008
19. Ribó, J.M., Franch, X.: A precedence-based approach for proactive control in software

process modelling. In: SEKE 2002 (2002)
20. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. https://arxiv.org/abs/1605.

07767
21. López, L., Costal, D., Ralyté, J., Franch, X., Méndez, L., Annosi, M.C.: OSSAP – a

situational method for defining open source software adoption processes. In: Nurcan, S.,
Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 524–539. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_32

22. López, L., Behutiye, W., Karhapää, P., Ralyté, J., Franch, X., Oivo, M.: Agile quality
requirements management best practices portfolio: a situational method engineering
approach. In: Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F.,
Winkler, D. (eds.) PROFES 2017. LNCS, vol. 10611, pp. 548–555. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69926-4_45

23. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual requirement
modeling and analysis. Requir. Eng. J. 15(4), 439–458 (2010)

24. Frank, U.: Domain-specific modeling languages: requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J. (eds.)
Domain Engineering. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36654-3_6

618 X. Franch et al.

http://dx.doi.org/10.1007/3-540-45581-7_35
http://dx.doi.org/10.1007/3-540-45017-3_9
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://dx.doi.org/10.1007/978-3-319-59536-8_11
https://arxiv.org/abs/1605.07767
https://arxiv.org/abs/1605.07767
http://dx.doi.org/10.1007/978-3-319-39696-5_32
http://dx.doi.org/10.1007/978-3-319-69926-4_45
http://dx.doi.org/10.1007/978-3-642-36654-3_6
http://dx.doi.org/10.1007/978-3-642-36654-3_6

	A Situational Approach for the Definition and Tailoring of a Data-Driven Software Evolution Method
	Abstract
	1 Introduction
	2 Research Method
	3 Background
	3.1 Situational Method Engineering
	3.2 The SUPERSEDE Data-Driven Control Loop for Software Evolution

	4 Method Chunks Metamodel for SUPERSEDE
	4.1 SUPERSEDE Method Elements
	4.2 Definition of Method Chunks

	5 A Catalogue of Method Chunks for SUPERSEDE
	5.1 Context Criteria Applicable in the SUPERSEDE Method
	5.2 A Catalogue of Method Chunks
	5.3 Example: Requirements Prioritization

	6 Steps for Adopting SUPERSEDE: A Situational Approach
	7 Example
	8 Conclusions and Future Work
	Acknowledgments
	References

