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Abstract. A data lake is a loosely-structured collection of data at large
scale that is usually fed with almost no requirement of data quality.
This approach aims at eliminating any human effort before the actual
exploitation of data, but the problem is only delayed since preparing and
querying a data lake is usually a hard task. We address this problem by
introducing Kayak, a framework that helps data scientists in the defi-
nition and optimization of pipelines of data preparation. Since in many
cases approximations of the results, which can be computed rapidly, are
enough informative, Kayak allows the users to specify their needs in
terms of accuracy over performance and produces previews of the out-
puts satisfying such requirement. In this way, the pipeline is executed
much faster and the process of data preparation is shortened. We discuss
the design choices of Kayak including execution strategies, optimization
techniques, scheduling of operations, and metadata management. With
a set of preliminary experiments, we show that the approach is effective
and scales well with the number of datasets in the data lake.
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1 Introduction

In traditional business intelligence, activities such as modeling, extracting, clean-
ing, and transforming data are necessary but they also make the data analysis an
endless process. In response to that, big data-driven organizations are adopting
an agile strategy that dismisses any pre-processing before the actual exploitation
of data. This is done by maintaining a repository, called “data lake”, for storing
any kind of raw data in its native format. A dataset in the lake is a file, either
collected from internal applications (e.g., logs or user-generated data) or from
external sources (e.g., open data), that is directly stored on a (distributed) file
system without going through an ETL process.
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Unfortunately, reducing the engineering effort upfront just delays the tra-
ditional issues of data management since this approach does not eliminate the
need of, e.g., data quality and schema understanding. Therefore, a long process of
data-preparation (a.k.a. data wrangling) is required before any meaningful analy-
sis can be performed [6,13,23]. This process typically consists of pipelines of oper-
ations such as: source and feature selection, exploratory analysis, data profiling,
data summarization, and data curation. A number of state-of-the-art applica-
tions can support these activities, including: (i) data and metadata catalogs, for
selecting the appropriate datasets [1,5,10,12]; (ii) tools for full-text indexing, for
providing keyword search and other advanced search capabilities [9,10]; (iii) data
profilers, for collecting meta-information from datasets [6,9,16]; (iv) process-
ing engines like Spark [24] in conjunction with data science notebooks such as
Jupyter1 or Zeppelin2, for executing the analysis and visualize the results. In
such scenario, data preparation is an involved, fragmented and time-consuming
process, thus preventing analysis on-the-fly over the lake.

In this framework, we propose a system, called Kayak, supporting data sci-
entists in the definition, execution and, most importantly, optimization of data
preparation pipelines in a data lake3. With Kayak data scientists can: (i) define
pipelines composed by primitives implementing common data preparation activ-
ities and (ii) specify, for each primitive, their time tolerance in waiting for the
result. This represents a mechanism to trade-off between performance and accu-
racy of primitives’ results. Indeed, these primitives involve hard-to-scale algo-
rithms that prevent analysis on-the-fly over new datasets [14,16–18], but often
an approximate result is informative enough to move forward to the next action
in the pipeline, with no need to wait for an exact result. Kayak takes into
account the tolerances by producing quick previews of primitive’s results, when
necessary. In this way, the pipelines are executed much faster and the time for
data preparation is shortened.

On the practical side, each primitive in a pipeline is made of a series of tasks
implementing built-in, atomic operations of data preparation. Each task can be
computed incrementally via a number of steps, each of which can return previews
to the user. Kayak orchestrates the overall execution process by scheduling
and computing the various steps of a pipeline according to several optimization
strategies that balance the accuracy of results with the given time constraints.
Another important feature of Kayak is its ability to collect automatically, in
a metadata catalog, different relationships among datasets, which can be used
later to implement advanced analytics. The catalog also keeps the profile of each
dataset and provides a high-level view of the content of the data lake.

We have verified the effectiveness of our approach with the first implementa-
tion of Kayak and tested its scalability when the number and size of datasets
in the lake increase.

1 http://jupyter.org/.
2 https://zeppelin.apache.org/.
3 A demo of Kayak has been shown in [15].

http://jupyter.org/
https://zeppelin.apache.org/
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Currently, the system is used in operation within the PANTHEON project
whose aim is supporting precision farming: it is charge of collecting and man-
aging heterogeneous data coming from terrestrial and aerial robots moving in
plantations, as well as from ground sensors and weather stations located nearby.

The rest of the paper is organized as follows. In Sect. 2 we provide an overview
of our approach. In Sect. 3 we illustrate how Kayak models data and, in Sect. 4,
we describe our strategy for executing primitives. In Sect. 5 we discuss our exper-
imental results and, in Sect. 6, some related works. Finally, in Sect. 7, we draw
some conclusions and sketch future works.

2 Overview of the Approach

This section provides an overview, from a high-level perspective, of the main
features of the system.

Pipelines, Primitives and Tasks. Kayak is a framework that lies between
users/applications and the file system where data is stored. It exposes a series
of primitives for data preparation, some of which are reported in Table 1. For
example, a data scientist can use primitive P5 to find interesting ways to access
a dataset. Each primitive is composed of a sequence of tasks that are reused
across primitives (e.g., P6 is split into Tb, Tc, Tw, while primitive P7 uses Tc

only). A task is atomic and consists of operations that can be executed either
directly within Kayak or involving external tools [16,24], as shown in Table 2.

Table 1. Example of primitives in
Kayak.

Id Name Tasks

P1 Insert dataset Ta, Tp

P2 Delete dataset Ts

P3 Search dataset To

P4 Complete profiling Ta, Tb, Tc, Td, Tm

P5 Get recommendation Tb, Tc, Td, Tq

P6 Find related dataset Tb, Tc, Tw

P7 Compute joinability Tc

P8 Compute k-means Tg, Tn

P9 Outlier detection Th, Tp, Tr, Tu

. . . . . . . . .

Table 2. Example of tasks in Kayak.

Id Description

Ta Basic profiling of a dataset

Tb Statistical profiling of a dataset

Tc Compute Joinability of a dataset

Td Compute Affinity between two datasets

Te Find inclusion dependencies

Tf Compute joinability between two datasets

. . . . . .

A pipeline is a composition of primitives that is representable as a DAG
(direct acyclic graph). As an example, Fig. 1 shows a pipeline composed by six
primitives: P1 inserts a new dataset in the lake and P4 generates a profiles for
it; then P8 processes the dataset with a machine learning algorithm while P7

identifies possible relationships with another dataset. Eventually, P5 produces
a query recommendation. Users can mark the primitives in the pipeline with a
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Fig. 1. Example of a data preparation pipeline.

watchpoint to inspect some intermediate result. For example, in Fig. 1 we have
defined a watchpoint on P7, P5, P3, and P8.

Note that, we assume here that the output of a primitive is not directly used
as input of the following primitive; they rather communicate indirectly by storing
data in the lake or metadata in a catalog. Primitives can be synchronous when
they do not allow the execution of a subsequent primitive before its completion,
or asynchronous, when can be invoked and executed concurrently.

Metadata Management. Kayak extracts metadata from datasets explicitly,
with ad-hoc primitives (e.g., P4), or implicitly, when a primitive needs some
metadata and uses the corresponding profiling task (e.g., Ta in P1). Metadata
are organized in a set of predefined attributes and are stored in a catalog so that
they can be accessed by any task.

Specifically, Kayak collects intra-dataset and inter-dataset metadata. Intra-
dataset metadata form the profile associated with each single dataset, which
includes descriptive, statistical, structural and usage metadata attributes. Inter-
dataset metadata specify relationships between different datasets or between
attributes belonging to different datasets. They include integrity constraints
(e.g., inclusion dependencies) and other properties proposed by ourselves, such
as joinability (Ω) and affinity (Ψ) between datasets. Inter-dataset metadata
are represented graphically, as shown in Fig. 2(a) and (b). Intuitively, joinabil-
ity measures the mutual percentage of common values between attributes of
two datasets, whereas affinity measures the semantic strength of a relationship
according to some external knowledge. The affinity is an adaptation, to data
lakes, of the entity complement proposed by Sarma et al. [21].

Time-to-Action and Tolerance of the User. Let us call time-to-action the
amount of time elapsing between the submission of a primitive in a pipeline and
the instant in which a data scientist is able to take an informed decision on how to
move forward to the next step of the pipeline. To shorten primitive computation
when unnecessarily long, we let the data scientist specify a tolerance. A high
tolerance is set by the data scientist who does not want to wait for long and
believes that an approximate result is enough informative. On the contrary, a
low tolerance is specified when the priority is on accuracy. For instance, in the
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pipeline of Fig. 1, primitives P4 and P7 have been specified with a tolerance of
60% and 35%, respectively.

Incremental Execution for Reducing Time-to-Action. In Kayak, prim-
itives can be executed incrementally and produce a sequence of previews along
their computation. A primitive is decomposed into a series of tasks. Each task
can be computed as a sequence of steps that returns the previews. A preview is
an approximation of the exact result of the task and it is, therefore, computed
much faster. Two strategies of incremental execution exist. A greedy strategy
aims at reducing the time-to-action by producing a quick preview first, and then
updating the user with refined previews within her tolerance. Alternatively, a
best-fit strategy aims at giving the best accuracy according to the given tol-
erance. It generates only the most accurate preview that fits the tolerance of
the user.

Confidence of Previews. Each preview comes with a confidence indicating
the uncertainty on the correctness of the result with a value between 0 and 1. A
confidence is 0 when the result is random and it is 1 when it is exact. A sequence
of previews is always produced with an increasing confidence so that the user
is always updated with more accurate results and metadata are updated with
increasingly valuable information.

Extensibility. Kayak provides a set of built-in, atomic tasks that can be easily
extended for implementing new functionalities. Specifically, tasks implementing
common activities of data preparation and therefore can be used by different
primitives. For instance, referring to Table 2, task Tb is used by three primitives.
In addition, a new task can be defined by the users, who needs to specify also
the cost model for the computation of the task and all the possible ways to
approximate it, as we will show next.

3 Modeling a Data Lake

In this section, we discuss on how data and metadata are represented and man-
aged in our framework. Let us start with some basic notions.

Definition 1 (Dataset). A dataset D(X,C,R) has a name D, and is composed
by a set X of attributes, a set C of data objects, and a profile R. Each data
object in C is a set of attribute-value pairs, with attributes taken from X. The
profile R is a set of attribute-value pairs, with attributes taken from a predefined
set M of metadata attributes.

A metadata attribute of a dataset D can refer to either the whole dataset or to an
attribute of D. We use the dot notation to distinguish between the two cases. For
instance, if D is a dataset involving an attribute ZipCode, the profile of D can
include the pairs 〈D .CreationDate : 11/11/2016 〉 and 〈ZipCode.unique : true〉.
For simplicity, we assume that each dataset is stored in a file and therefore we
often blur the distinction between dataset and file.
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Definition 2 (Data Lake). A data lake D is a collection of datasets having
distinct names.

Differently from a profile of a dataset, inter-dataset metadata capture relation-
ships between different datasets and between attributes of different datasets.
They are represented as graphs and are introduced next.

Affinity. In the affinity graph of a data lake D, the nodes represent the attributes
of the datasets in D and an edge between two attributes represents the presence
of some time-independent relationship between them (e.g., the fact that they
refer to the same real-world entity). Edges can have weights that measure the
“strength” of the relationship.

Specifically, we consider a domain-knowledge affinity Ω(D1.Ai,D2.Aj) that
measures the “semantic” affinity between attributes D1.Ai and D2.Aj , which is
computed by taking advantage of some existing external knowledge base (such
as a domain ontology). The value assigned by Ω(D1.Ai,D2.Aj) ranges in [0, 1]
(i.e. 0 when there is no affinity and 1 when the affinity is maximum). Here,
we take inspiration from the notion of entity complement proposed by Sarma
et al. [21]. However, different kinds of affinity can be used such as those based
on text classification.

We can now define the graph representing the affinity of the attributes A of
the datasets in the data lake D.

Definition 3 (Affinity Graph of Attributes). The affinity graph of
attributes in D is an undirected and weighted graph GΩ

A = (NA, EΩ
A) where

NA contains a node for each attribute A in A and EΩ
A contains an edge

(A1, A2, Ω(A1, A2)) for each pair of attributes A1 and A2 in A such that
Ω(A1, A2) > 0.

The notion of affinity between attributes can be used to define the affinity
between two datasets D1 and D2.

Definition 4 (Affinity of Datasets). Let X1 and X2 be the set of attributes
of the datasets D1 and D2, respectively, and let X̂ = X1 × X2. The affinity
between D1 and D2, denoted by Ω(D1,D2), is defined as follows:

Ω(D1,D2) =
∑

(Aj ,Ak)∈X̂

Ω(Aj , Ak)

Analogously, we can define an affinity graph of datasets.

Definition 5 (Affinity Graph of Datasets). The affinity graph of datasets
for D is an undirected and weighted graph GΩ

D = (ND, EΩ
D ) where ND contains

a node for each dataset D in D and ED contains an edge (D1,D2, Ω(D1,D2))
for each pair of dataset D1 and D2 in D such that Ω(D1,D2) > 0.
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Fig. 2. Inter-dataset metadata.

We are clearly interested in highly affine relationships. Therefore, we consider
a simplified version of the graph where the edges have weights higher than a
threshold τ , defined by the user. This is equivalent to consider irrelevant affinities
below τΩ . An example of affinity graph of attributes is reported in Fig. 2(a).

Joinability. Another way to relate attributes and dataset is simply based on
the existence of common values. We introduce the concept of joinability for this
purpose.

Definition 6 (Joinability). Given two attributes Ai and Aj belonging to the
datasets D1 and D2, respectively, their joinability Ψ is defined as

Ψ(D1.Ai,D2.Aj) =
2 · |πAi

(D1 ��Ai=Aj
D2)|

(|πAi
(D1)| + |πAj

(D2)|)

The joinability measures the mutual percentage of tuples of D1 that join with
tuples of D2 on D1.Ai and D2.Aj , and vice versa. This notion enjoys interesting
properties, which we can discuss by considering the example in Fig. 3.

Fig. 3. Tabular
datasets.

Fig. 4. Business logic of the framework.

The maximum joinability, (e.g., Ψ(D1.A1,D2.A2) = 1), is when each value
of one attribute matches a value of the other attribute. If the result of the join
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between the two attributes is empty, the joinability is 0 (e.g., Ψ(D2.A2,D4.A4)
= 0). A joinability in (0, 1) means that there are several matching values. The
joinability takes also into account, for both attributes, the number of distinct
values that do not match. For the dataset in Fig. 3 we have: Ψ(D1.A1,D2.A2) >
Ψ(D1.A1,D3.A3) > Ψ(D1.A1,D4.A4).

Similarly to the property of affinity, we can build a joinability graph of
attributes and a joinability graph of datasets, where we represent only those
edges whose joinability is higher or equal than a threshold parameter τΨ . An
example of a joinability graph is reported in Fig. 2(b).

4 Incremental Execution of Primitives

In this section, we describe the incremental execution of primitives, a mechanism
that allows users to obtain previews of a result at an increasing level of accuracy.

Basic Idea. Users submit a primitive over an input I, which is typically a set
of datasets. As we can see from Fig. 4, a primitive is composed of one or more
tasks of type T . Each task type is associated with one or more steps. A step is
an operation that is able to return a result for T over I. The result of a step can
be either exact or approximate. We use t for indicating the step that computes
the exact result r for t for T over I (i.e., r = t(I)). We use sT

i for indicating the
i-th approximate step of T , which returns a preview pi = sT

i (I). Therefore, a
preview pi is an approximation of r.

We have several types of approximate steps, corresponding to different ways
to approximate a task. For instance, some step reduces the input I (e.g., sam-
pling), while other steps apply heuristics over I. In our framework, we have
components that support the approximate steps, as shown in Fig. 4. The list of
steps ST for a task type T is declared in the definition of T . For simplicity, the
following discussion considers a primitive with a single task type T , but this
generalizes easily to primitives with many tasks. The incremental execution of a
task type T over I is a sequence of m steps sT

1 , . . . , sT
m, where possibly the last

step is the exact task t (i.e. t = sT
m).

Each preview comes with a confidence, indicating the uncertainty on the cor-
rectness of the result with a number between 0 and 1. A confidence is 0 when
the result is random and it is 1 when the result is exact. Kayak computes the
confidence executing a function embedded in the step definition. This function
considers the confidence associated with the input of the step, e.g., the confi-
dence of a metadata attribute. Note that, since previews are produced with an
increasing confidence, metadata are stored with increasingly precise information
and the user is always updated with more accurate primitive results.

In addition, each step is associated with a cost function that estimates its
computational time over an input I, i.e. cost(sT

i , I). We have defined the cost
functions using the Big-Θ time complexity. All other time-based measures like
the load of the system and the tolerance have to be comparable with the cost
and are therefore expressed in terms of the same virtual time. Moreover, we want
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to underline that there is no formal relationship between the cost of a step and
the confidence of the preview it produces.

Optimization. Kayak needs to find a suitable incremental execution for a
primitive, that is the order of the execution of steps. To this aim, Kayak takes
into account the tolerance of the user and the current workload. The tolerance
is fixed by the user for each of the primitives in the pipeline. The workload is
given by the sum of the costs of the steps of the primitives to be executed.

In our framework, we devised several incremental execution strategies and
further strategies can be defined. For example, we have a so-called best-fit strat-
egy that tries to generate only the most accurate preview that fits within the
tolerance. This tends to limit the overall delay while still reducing the time-to-
action according to the user’s tolerance. Another strategy is the so-called greedy
strategy that aims at minimizing the time-to-action and to update the user
with subsequent previews. However, due to lack of space, we do not detail any
strategy.

Step Dependency. At the end of the step generation, we set dependencies to
enforce a correct execution of primitives composed of many tasks. Since we allow
for a parallel execution of steps, a DAG of dependencies is considered. In the
DAG, each node Ti is a task type and each edge (Ti, Tj) represents a dependency
of a task Tj (the destination node) from another task Ti (the source node). A
dependency indicates that Tj can start its execution only after Ti is completed.

In Kayak, we do not have a centralized representation of the DAG, but
dependencies are set within each task. For example, in Fig. 5(a) we have the
DAG for the primitive P5 that is composed of four tasks Tb, Tc, Td and Tq, as in
Table 2. The task Tq is the last task of the primitive and uses metadata provided
by Tb, Tc and Td. For this reason, Tq has a dependency with every other task. In
addition, there is a dependency between Td and Tb. This means that Tb and Tc

can execute before the others, possibly in parallel.

(a) DAG of tasks (b) DAG of steps

Fig. 5. Dependencies among tasks of a primitive.

When a primitive is executed in incremental mode, the step generation phase
produces a DAG that considers every single step. Let us suppose that Tb, Tc and
Tq are executed incrementally in two steps each, while Td is executed in a single
step. Figure 5(b) shows the resulting DAG for this primitive execution. We set a
dependency between two subsequent steps of the same task, such as (sb

1, s
b
2), to
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preserve the increase of the confidence of results. If this dependency is not set,
then a preview might overwrite another preview with higher confidence.

We also need to set the inter-task dependencies. In this case, we set a depen-
dency between the first generated steps of the two tasks. Using the example of
P5, the dependency (Tc, Tq) is established by the dependency (sc

1, t
q
1). No inter-

task dependency between following steps is considered. The reason behind this
decision is, again, aimed at reducing the time-to-action.

There are two side effects that motivate this decision. The former is when,
for example, tc1 and tc2 terminate before tq1 has started. It follows that tq1 will
use metadata produced by tc2, resulting in a higher confidence. The latter side
effect is when tq1 is computed between tc1 and tc2. The final result of tq1 will be less
accurate but the time-to-action is minimized. However, the user is notified of
the fact that more accurate metadata is present for, possibly, refining the result
of the primitive she just launched.

Scheduling of Steps. Dependencies are used for guaranteeing the consistency
of primitives’ results but they do not suffice to reduce the time-to-action of tasks
coming from different primitives. To avoid a random order of execution, we use
a step scheduling mechanism where the order of execution is done with respect
to a priority assigned to each step. Steps with higher priority are executed first,
while low priority steps are treated like processes to execute in background when
the system is inactive. The priority function is defined as follows:

priority(s) =
1

cost(s)
+ freshness(s) + completeness(s)

where:

– The cost is used to favor shorter steps, with the aim of reducing the time-to-
action. It is given by the same function used in the previous sections.

– The freshness is used to avoid starvation. It uses the creation time of steps
(with older steps having higher freshness). Let us explain the motivation
behind this factor with an example. Let us consider the submission of a heavy
task of type Tc followed by the submission of many shorter tasks of type Ta.
If we consider only the cost factor, the task Tc will never be executed and it
will starve in the queue.

– The completeness is used to balance the time-to-action across different primi-
tives. It considers how many steps have already been instantiated for the task
type. For instance, the completeness gives an advantage to the first step of
task Tc over the second step of another task Ta. In fact, if we use only cost
and freshness some step for Tc might not fulfill its time-to-action objective.

Note that our scheduling mechanisms do not conflict with mechanisms of cluster
resource managers (e.g., Apache Mesos or Apache Yarn) used by data processing
engines. We decide when a step can start its execution, while they schedule jobs
of data processing only once their corresponding step has already started.

Use Case: Incremental Computation of Joinability. We now show the
incremental execution of the task type Tc that computes the joinability of a
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dataset against the rest of the datasets in the lake (see Definition 6). Since the
data lake D can have a large number of datasets with many attributes, this task
is computationally expensive and does not scale with the size of D. Since this
task is used by many primitives, it is often convenient to execute incrementally.
Below we list the techniques used to generate previews of Tc.

1. Joinability over frequent items. Our least accurate step for Tc is given by a
heuristic that takes the most frequent items present in the domain of two
attributes along with the number of occurrences. This information is present
in our metadata catalog and it is collected by other profiling tasks. We then
compute the intersection between the two sets that allows us to determine the
joinability of a small portion of the two attribute’s domains in a constant time.
The confidence is computed by considering the percentage of the coverage that
the frequent items have over the entire domain.

2. Joinability over a subset of attributes and sampled datasets. This step uses
some heuristics that aim at selecting those attributes that are likely to have
higher values of joinability against the input dataset. It specifically selects a
subset of attributes Zi of the lake to be used in the computation of the join-
ability against attributes of Di. Then, the datasets which the attributes of
Zi belong from are sampled to further reduce the cost of the operation. The
approximation of joinability is similar to compute approximate joins [4,11].
The sample rate is chosen dynamically according to the size of the dataset,
with lower sample rate for higher dataset size. The selected attributes Zi are
those having: (a) overlapping among the most frequent items of the attributes,
(b) an inclusion dependency with Di (we check from available metadata with-
out computing Te of Table 2), (c) high affinity with the attributes of Di as
taken from the affinity graph of attributes. The confidence of this level is
given by the used sample ratios and the number of attributes that have been
selected.

3. Joinability over a subset of attributes. This step selects the attributes of the
previous case but does not apply any sampling over the datasets.

4. Joinability over a subset of sampled datasets. This step selects a set Yi of
datasets in D having high affinity with Di by checking the affinity graph
of datasets. Then, it computes the joinability between attributes of Di and
attributes of datasets in Yi.

5. Joinability over a subset of datasets. This step selects the same set Yi of
datasets of the previous case but, differently from it, sampling is not applied.

6. Joinability over a sampled data lake. This step selects a sample from each of
the datasets in D and then it applies the joinability between the attributes
of Di and any other attribute in D.

We have described here the steps of the joinability task. The implementation
of these steps makes use of other optimizations such as those in presence of
inclusion dependencies or those that return zero when data types are different
or domain ranges do not overlap. However, we do not discuss them in detail here
because they do not deal with the approximation of the exact results.
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5 Experimental Results

5.1 Set-Up

The architecture of Kayak is discussed in [15]. Kayak is implemented in Java 8
and exploits java.util.concurrent library for the concurrent execution of tasks.
The current version limits the use to json and to csv files only. The Metadata
Catalog relies on two different database systems, namely MongoDB for the intra-
dataset catalog and Neo4j for the inter-dataset catalog. The Queue Manager uses
RabbitMQ as a messaging queue system. The User Interface is implemented
using JSP pages and servlets on the web application server Tomcat 8. We also
rely on external tools such as Spark 2.1 with MLib and SparkSQL add-ons for
parallelizing operations on large datasets, and on Metanome4 for some of the
tasks for which the Metadata Collector is in charge.

5.2 Results

This section presents the experimentation that was conducted on a cluster of
m4.4xlarge machines on Amazon EC2. Each machine is equipped with 16 vCPU,
64 GB and running a 2,3 GHz Intel Xeon with 18 cores. We created a data lake
with 200 datasets ranging from hundreds of MBs to few TBs. We have taken
datasets from the U.S. open data catalog5 and from the NYC Taxi trips6. We
have also generated synthetic datasets to create uses cases that were not covered
with downloaded datasets.

(a) Accuracy of joinability (b) Incremental strategies comparison

Fig. 6. Incremental step generation at work.

Effectiveness. In this campaign, we have measured the trade-off between accu-
racy and time-to-action for the joinability task. It is a fundamental task in our
framework that is used by many primitives. The results are in Fig. 6(a). We

4 https://github.com/HPI-Information-Systems/Metanome.
5 https://www.data.gov/.
6 http://www.nyc.gov/html/tlc/html/about/trip record data.shtml.

https://github.com/HPI-Information-Systems/Metanome
https://www.data.gov/
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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have divided the tests in three sections according to the range of the joinability
value Ψ : low (0.0 ≤ Ψ ≤ 0.35), medium (0.35 < Ψ ≤ 0.70) and high (0.70 < Ψ
≤ 1.0). The time-to-action is represented in terms of percentage of the time for
the exact step. Each point of the graph represents the average of six joinability
computations (we have six different tests for each of the sections). As we can
see, the accuracy is constantly high for low values of joinability. This is due to
the fact that a reduced input is already able to show that two attributes do not
join well. A similar behavior is for medium values, although accuracy slightly
degrades for low time-to-action. High values of joinability are more difficult to
approximate with shorter time-to-action than previous sections, but we consider
this accuracy still good for many practical situations.

Strategies Comparison. In this campaign, we test the differences between
two incremental strategies, that we have briefly mentioned above. Again, we
consider the joinability task. Let us consider the delay as the extra time spent
on the incremental execution with respect to the non-incremental counterpart.
We measure how the time-to-action and the delay vary with respect to the
tolerance. Both the measures are taken in percentage with respect to the duration
of the exact step. As we can see from the results in Fig. 6(b), the time-to-action
for the greedy strategy is constant because the same short level is executed
independently of the user’s tolerance, while for the best-fit strategy the time-
to-action increases linearly with the tolerance. However, the time-to-action is
always lower than the tolerance due to a fragmentation effect that makes it hard
to have the cost of a step that perfectly fits the tolerance. The delay of the
greedy strategy is always greater than the delay of the best-fit strategy, because
of all the short steps executed at the beginning. The delay for both strategies
tends to diminish as the tolerance increases. The delay of the best-fit strategy
has an opposite behavior w.r.t. the time-to-action. Indeed, the delay is inversely
proportional to the tolerance. This is because as the tolerance increases, the
best-fit strategy tends to schedule fewer and fewer steps.

6 Related Work

We divide related work of Kayak into categories discussed separately.

Data Catalogs. There are several tools that are used for building repositories
of datasets [1,3,5,10,12]. Basic catalogs like CKAN [1] do not consider relation-
ships among datasets and metadata are mostly inserted manually. DataHub [5]
is a catalog that enables collaborative use and analysis of datasets. It includes
features like versioning, merging and branching for datasets, similarly to version
control systems in the context of software engineering. Goods is an enterprise
search system for a data lake that is in use at Google [10]. It proposes, among
the others, a solution with the semi-automatic realization of a metadata cata-
log, an annotation service, an efficient tracking of the provenance and advanced
search features based on full-text indexing. All above catalogs use basic ways to
understand relationships among datasets and give little support to users who are
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unaware of the content of the datasets, though they are not explicitly designed
for data preparation and exploration purposes.

Profiling Tools. In data science, tools such as R7, IPython [19], Pandas-
profiling8 and notebook technologies9 are extensively used for data exploration.
They mainly compute statistical summaries integrated with some plotting fea-
tures. More advanced data profiling consists on the discovery of constraints in
the data [7,14,16,18]. Metanome, for instance, offers a suite of different algo-
rithms for data profiling [16]. Some of these algorithms run by sharing pieces of
computation [7] or by the aid of approximate techniques [14,18]. In Kayak we
have tasks that make use of these algorithms such as for example Tc in Table 2.

Data Wranglers. Schema-on-read data access has opened severe challenges
in data wrangling [8,23] and specific tools are aimed at solving this prob-
lem [2,3,22]. Data TamR helps in finding insights thanks to novel approaches
of data curation and data unification [2,22]. Trifacta is an application for self-
service data wrangling providing several tools to the user [3]. All these systems
provide features that can be embedded in Kayak to be executed incrementally
for minimizing the time-to-action.

Approximate Querying Systems. Another branch of work specifically
focuses on approximating analytical query results [4,11,20]. Hellerstein et al. [11]
propose an incremental strategy that aggregates tuples online so that the tempo-
rary result of the query is shown to the user, who can decide to interrupt the pro-
cess anytime. Differently, when computing analytical queries with BlinkDB [4],
users are asked the trade-off between time and accuracy in advance, and the sys-
tem dynamically selects the best sample that allows replying the query under the
user’s constraints. This is similar to our best-fit strategy but we do not apply only
sampling and we do not consider analytical queries. A critical aspect in all these
works is the estimation of the error. To overcome these problems, DAQ [20] has
recently introduced a deterministic approach to approximating analytic queries,
where the user is initially provided with an interval that is guaranteed to contain
the query result. Then, the interval shrinks as the query answering proceeds, until
the convergence to the final answer. All these techniques work well on OLAP
queries but since they require the workload in advance, they cannot be applied
in our context where the user has usually not accessed the data yet and sampling
cannot be the only technique for reducing the workload.

7 Conclusion and Future Work

In this paper, we have presented Kayak, a end-to-end framework for data man-
agement with a data lake approach. Kayak addresses data preparation, a crucial
aspect for helping data-driven businesses in their analytics processes. Kayak

7 https://www.r-project.org/.
8 https://github.com/JosPolfliet/pandas-profiling.
9 http://zeppelin-project.org/.

https://www.r-project.org/
https://github.com/JosPolfliet/pandas-profiling
http://zeppelin-project.org/
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provides a series of primitives for data preparation that can be executed by
specifying a tolerance when the user prefers a quick result instead of an exact
result. The framework also allows to define pipelines of primitives.

We have several future work directions in mind. We want to integrate the
framework with components for supporting unstructured data, query expansion,
and data visualization. We want to introduce a dynamic scheduling for the tasks
and the possibility to set a tolerance for an entire pipeline. Finally, we would
like to define a declarative language for designing primitives data preparation.

References

1. CKAN: The open source data portal software. http://ckan.org/. Accessed Nov
2017

2. Tamr. http://www.tamr.com/. Accessed Nov 2017
3. Trifacta. https://www.trifacta.com/. Accessed Nov 2017
4. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB:

queries with bounded errors and bounded response times on very large data. In:
EuroSys, pp. 29–42 (2013)

5. Bhardwaj, A.P., Deshpande, A., Elmore, A.J., Karger, D.R., Madden, S.,
Parameswaran, A.G., Subramanyam, H., Wu, E., Zhang, R.: Collaborative data
analytics with DataHub. PVLDB 8(12), 1916–1927 (2015)

6. Deng, D., Fernandez, R.C., Abedjan, Z., Wang, S., Stonebraker, M., Elmagarmid,
A.K., Ilyas, I.F., Madden, S., Ouzzani, M., Tang, N.: The data civilizer system. In:
CIDR (2017)

7. Ehrlich, J., Roick, M., Schulze, L., Zwiener, J., Papenbrock, T., Naumann, F.:
Holistic data profiling: simultaneous discovery of various metadata. In: EDBT, pp.
305–316 (2016)

8. Furche, T., Gottlob, G., Libkin, L., Orsi, G., Paton, N.W.: Data wrangling for big
data: challenges and opportunities. In: EDBT, pp. 473–478 (2016)

9. Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: SIG-
MOD, pp. 2097–2100 (2016)

10. Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.:
Goods: organizing Google’s datasets. In: SIGMOD (2016)

11. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: SIGMOD, pp.
171–182 (1997)

12. Hellerstein, J.M., Sreekanti, V., Gonzalez, J.E., Dalton, J., Dey, A., Nag, S.,
Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., Donsky, M., Fierro,
G., She, C., Steinbach, C., Subramanian, V., Sun, E.: Ground: a data context
service. In: CIDR (2017)

13. Heudecker, N., White, A.: The data lake fallacy: all water and little substance.
Gartner Report G 264950 (2014)

14. Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: CORDS: automatic
discovery of correlations and soft functional dependencies. In: SIGMOD, pp. 647–
658 (2004)

15. Maccioni, A., Torlone, R.: Crossing the finish line faster when paddling the data
lake with KAYAK. PVLDB 10(12), 1853–1856 (2017)

16. Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling
with metanome. PVLDB 8(12), 1860–1863 (2015)

http://ckan.org/
http://www.tamr.com/
https://www.trifacta.com/


KAYAK: A Framework for Just-in-Time Data Preparation 489

17. Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J., Schönberg, M.,
Zwiener, J., Naumann, F.: Functional dependency discovery: an experimental eval-
uation of seven algorithms. PVLDB 8(10), 1082–1093 (2015)

18. Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency dis-
covery. In: SIGMOD, pp. 821–833 (2016)
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