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Abstract. Business process improvement ideas can be validated
through sequential experiment techniques like AB Testing. Such
approaches have the inherent risk of exposing customers to an inferior
process version, which is why the inferior version should be discarded as
quickly as possible. In this paper, we propose a contextual multi-armed
bandit algorithm that can observe the performance of process versions
and dynamically adjust the routing policy so that the customers are
directed to the version that can best serve them. Our algorithm learns
the best routing policy in the presence of complications such as multiple
process performance indicators, delays in indicator observation, incom-
plete or partial observations, and contextual factors. We also propose a
pluggable architecture that supports such routing algorithms. We evalu-
ate our approach with a case study. Furthermore, we demonstrate that
our approach identifies the best routing policy given the process perfor-
mance and that it scales horizontally.

Keywords: Multi-armed bandit · Business Process Management
AB Testing · Process Performance Indicators

1 Introduction

Business improvement ideas often do not lead to actual improvements [9,10].
Contemporary Business Process Management Systems (BPMSs) enable quick
deployment of new process ideas, but they do not offer support for validating
the improvement assumptions existent in the new version. Support for validating
such assumptions during process redesign is also limited.

The AB testing approach from DevOps can be adopted in Business Processes
Management to provide fair validation support. A new process version can be
deployed alongside the older version on the same process engine such that these
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versions (A and B) are operational in parallel. User requests can be routed
to either of these versions using various instance routing algorithms. Based on
the performance of each version, the routing configuration can be dynamically
adjusted to ultimately find the best performing version. This general idea has
been introduced in AB-BPM [14]. However, the routing algorithm proposed in
AB-BPM does not address scenarios where the process performance is measured
through multiple Process Performance Indicators (PPIs) which may be available
at different times. It also does not provide support for evaluating processes for
which some of these PPIs may never be available, and processes that are affected
by external factors (e.g. the weather condition).

In this paper, we address these shortcomings by revising the routing mech-
anism of AB-BPM. We propose a pluggable instance router architecture that
allows routing algorithms to asynchronously collect and evaluate PPIs. We
also propose a routing algorithm, ProcessBandit, that can be plugged into the
instance router. ProcessBandit finds a good routing policy in the presence of
delays and incompleteness in observing PPIs, and also when true performance
depends on contextual external conditions. We show that our approach identifies
the best routing policy given the performance, and that it scales horizontally.
We also demonstrate the overall approach using a synthetic case study.

The remainder of the paper starts with a discussion on the background, key
requirements, and related work in Sect. 2. Section 3 describes the architecture of
the instance router and the details of ProcessBandit algorithm. In Sect. 4, we
analyze the behaviour of the algorithm, and study a use case. Section 5 discusses
our approach and draws conclusions.

2 Background

2.1 Problem Description and Requirements

Business process improvement efforts are often analysed by measuring four per-
formance dimensions: time, cost, flexibility, and quality. Improvement decisions
have to reflect trade-offs between these dimensions [7,13]. In many cases, short-
comings in one dimension may not be compensated by improvements in other
dimensions. For example, a low user satisfaction cannot be compensated with
faster performance. In addition, the relationships between these dimensions may
not be intuitive. This is illustrated by an anecdote of a leading European bank.
The bank improved their loan approval process by cutting turnaround time down
from one week to few hours. However, this resulted in a steep decline in customer
satisfaction: customers with a negative notice would complain that their appli-
cation might have been declined unjustifiably; customers with a positive notice
would inquire whether their application had been checked with due diligence.

This anecdote shows that customer preferences are difficult to anticipate
before deployment and that there is a need to carefully test improvement
hypotheses in practice. Up until now, only the AB-BPM approach [14] supports
the idea of using principles of AB testing to address these problems. As an early
proposal, AB-BPM has a number of limitations regarding utilization of PPIs.
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Table 1. Requirements of AB testing system and our approach

Requirement Approach

R1 Performance of a process execution is
determined by multiple PPIs

Reward design encapsulating all PPIs

R2 Individual PPIs are available at
different times

Asynchronously fetch PPIs and
update rewards

R3 Most process instances do not provide
all PPIs

Maintain ratio of complete and
incomplete rewards

R4 Performance of a process instance is
affected by contextual factors

Identify and integrate contextual
factors in the algorithm

First of all, there may be multiple process performance indicators involved
in determining a better version. For instance, both user satisfaction score and
process execution time are acceptable PPIs for a process instance. Second, not all
of the required Process Performance Indicators (PPIs) may be observable at the
same time. A PPI such as the user satisfaction score is obtained at different times
with delays of varying length. This means that the evaluation mechanism should
support a PPI to be collected and aggregated asynchronously, i.e., at different
points in time. Finally, some process instances will not produce all of the PPIs. It
is likely, for example, that the number of users who do not respond to requests
for providing satisfaction scores will outnumber those who do. Therefore, we
should also be able to handle the missing or incomplete PPI observations.

Another aspect to consider is the effect of contextual factors. The perfor-
mance of a process can be influenced by factors such as resource constraints,
the environment, and market fluctuation. One example of influence of weather
has been observed in “teleclaims” process of an insurance company [1]. The call
centers of this company receive an incoming call volume of 9,000 per week. How-
ever, during a storm season, the volume can reach up to 20,000 calls per week.
In order to manage this influx, the managers manually escalate the cases to
maintain quality and meet deadlines. Identifying and acting on such contextual
factors is crucial to find the best process version.

From the above analysis, we derive four key requirements and propose
approaches outlined in Table 1. To address these requirements, we have imple-
mented a two-pronged solution: a pluggable architecture for instance routing,
and a routing algorithm that asynchronously learns about process performance.

2.2 Related Work

AB testing is a commonly used approach for performing randomized sequential
experiments. This approach is widely used to test micro changes in web applica-
tions [6,10,11]. In applying AB testing to business process versions, performing
randomized experiments can inadvertently introduce risks such as loss of revenue.
Risks in this context are higher than that for standard web applications, where
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the changes and the effects are small (e.g. the placement of buttons). Therefore,
user requests should be distributed according to performance of process versions.

We introduced the idea of AB testing for business process versions in AB-
BPM [14], where we modeled this routing challenge as a contextual multi-armed
bandit problem [2,4,12]. We proposed LtAvgR, which is based on LinUCB
[5,12] – a well-known contextual multi-armed bandit algorithm. LtAvgR dynam-
ically adjusts how user requests are routed to each version by observing numerical
rewards derived from process performance. LtAvgR defines an experimentation
phase where observing rewards is emphasized over optimal routing, and a post-
experimentation phase where the best routing policy is selected based on the
observed rewards. LtAvgR updates its learning by averaging historical rewards,
which enables it to support long-running processes. However, LtAvgR can only
handle scenarios where all PPIs are available at the same time. In this paper,
we propose ProcessBandit, an algorithm that addresses this limitation.

Multi-armed bandit algorithms have been adopted for various kinds for exper-
iment designs [4]. However, work on the effect of feedback delay and impact of
partial rewards is not well studied. Furthermore, the effect of sparseness of some
rewards, such as those with user satisfaction scores, have not been considered for
multi-armed bandits. Temporal-difference (TD) learning can be used to converge
towards the best routing configuration in presence of delayed rewards [17, Chap. 6].
Silver et al. [16] propose an asynchronous concurrent TD learning approach
for maximizing metrics such as customer satisfaction by learning from partial
customer interactions. This approach can be used in sequential scenarios like
marketing campaigns where interactions can affect customer state. We propose
a simpler multi-armed bandit algorithm that handles asynchronous learning with
partial rewards, adapted for scenarioswhere only one interaction (processes instan-
tiation) needs to be observed.

Approaches for prediction based on imbalanced data include techniques such
as oversampling and undersampling [8, Chap. 2]. Such techniques make assump-
tions about what balanced data should look like, and do not introduce any new
knowledge. In our scenario, imbalance occurs when only a subset of all PPIs are
observed. Since AB testing aims to remove implicit assumptions, we avoid sam-
pling techniques. Instead, we ensure that the routing algorithm learns mostly
through observations that have all PPIs.

3 Solution

Our solution consists of two parts. First, we propose a pluggable and scalable
architecture that facilitates a routing algorithm to learn the best routing policy
even when PPIs are missing, delayed, or incomplete, and when the performance
is affected by contextual factors. Second, we propose a routing algorithm named
ProcessBandit that learns routing policies by utilizing this architecture.
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3.1 The Instance Router

The instance router is a modular system composed of an Asynchronous Task
Queue, the Controller, the Routing Algorithm, the Context Module, the Tasks
Module, and the Rewards Module. Figure 1 shows the architecture of the system.

Fig. 1. The architecture of instance router

Algorithm 1. ProcessBandit Instance Routing
Input: α ∈ R+, λ ∈ R, M ∈ N

// α is the LinUCB’s tuning parameter; λ and M are experimentation decay and length
Output: arm id

1 I ← empty set // set of contextual factors
2 for t = 1, 2, 3, ..., T do // t is the request count

3 Observe features of all arms a ∈ At : xt,a ∈ R
d

4 constructFeatureVector(I) // Algorithm 3
5 for a ∈ At do
6 if a is new then
7 Aa ← Id, ba ← 0d // identity and zero matrices of dimension d × d, resp.

8 θ̂a ← A−1
a ba

9 pt,a ← θ̂ᵀ
a xt,a + α

√
xᵀ
t,a A−1

a xt,a

10 arm alinucb = argmax
aεAt

pt,a with ties broken arbritarily

11 if t � M then // experimentation phase
12 prexp ← sample y from Exp(λ) s.t. x = t
13 Choose arm at = alinucb or aalternate with probability prexp
14 Schedule update task

15 else
16 Choose arm at = alinucb

The instance router assigns an instance of the deployed processes, version A
or B, to an incoming request. Upon receiving a request, the Controller invokes
the Context Module to extract contextual information from the request and
construct a feature vector. If required by the Routing Algorithm, the Context
Module captures and stores hypothesized contextual factors associated with each
request. These hypothesized contextual factors are set at the start of AB tests.
If a contextual factors is confirmed through the analysis of the stored values, the
Context Module integrates the contextual factor in the feature vector. Using this
feature vector, the Controller invokes the Routing Algorithm, which instantiates
a process and returns an identifier. This process instance identifier is used by
the Controller to schedule an update task on the Asynchronous Task Queue.
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An update task asynchronously polls the BPMS for PPIs of the instantiated
process, and calculates a numerical reward using the PPIs. When only a subset
of the desired PPIs are available, update tasks are re-scheduled by the Tasks
Module so that that the missing PPIs can be collected and evaluated at a later
point in time. In such scenarios, temporary rewards are calculated using the
available PPIs. Reward calculation is delegated to the Rewards Modules. The
Routing Algorithm can learn a routing policy through these numerical rewards.

3.2 ProcessBandit Algorithm

We propose ProcessBandit, a routing algorithm that can be plugged into the
architecture. The algorithm asynchronously observes PPIs associated with a
particular request, distributes requests to process versions, observes process per-
formance, and learns the best routing policy given the process performance.

The pseudo code for sampling a process version (or “arm” in multi-armed
bandit terminology) to test its performance is shown in Algorithm1. The algo-
rithm maintains an average of complete, incomplete, and overall rewards for
each d-dimensional context in relevant matrices, indicated as b. These values are
updated asynchronously according to the performance of each process instance.

The algorithm consists of experimentation (P1) and post-experimentation
(P2) phases. When contextual factor detection is enabled, the experimentation
phase is further divided into pre-contextual factor (P1A) and post-contextual
factor (P1B) phases. The phases are configured using an exponential decay func-
tion exp(λ), experimentation request threshold M , and pre-contextual factor
reward threshold. Request count is incremented on process instantiation. Reward
count is incremented when a reward calculated using all PPIs is received.

The algorithm uses an approach similar to LinUCB [12] to select a candidate
arm alinucb such that the expected reward is maximized. When the algorithm is in
experimentation phase, it either chooses alinucb or the alternate arm based on the
probability sampled from the exponential decay function. Asynchronous reward
updates are scheduled for all decisions made in the experimentation phase.

Asynchronous Reward Update. We define an ideal PPI vector pideal as the
vector that represents the best possible values for each PPI. We also introduce
a reference vector pref, which defines values that can be used as a substitute
for missing PPIs. In AB testing scenarios, historical data of one process version
is available. This can be used to inform the choice of pref. Finally, we define
the effective vector peff as the vector that contains all PPIs used to evaluate
a reward. If not all PPIs are available at the time of observing a completed
process instance, an effective vector peff is constructed using components of ref-
erence vector pref instead of the unavailable PPIs. If/when these PPIs are made
available, an update is applied by removing the effect of previous peff, and then
using the new effective vector. This helps us address requirements R1 and R2.
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Algorithm 2. Asynchronous Update
Input: τ, xt,at , Aat , bat // τ: ratio of (in)complete rewards, others as in Algorithm 1

1 Aat ← Aat + xt,at xt
t,at

2 Construct peff and derive reward
3 begin with context xt,at
4 rincomplete ← avg. incomplete reward, rcomplete ← avg. complete reward
5 ravg ← average overall reward
6 if old reward then update rincomplete, and rcomplete
7 if new reward then
8 if reward ratio � τ or bootstrap period then
9 if all PPIs seen then update rcomplete, increment rcomplete count

10 else update rincomplete, increment rincomplete count

11 else
12 if all PPIs seen then update rcomplete, increment rcomplete count
13 else update rincomplete as moving average

14 update ravg

15 Update bat such that ravg represents xt,at

Using peff, rewards can be calculated through a point-based or classification
based approach, as illustrated in Fig. 2. In the point-based method, the Rewards
Module constructs peff, applies weights to PPIs (if any), and then normalizes all
components of peff and pideal. After the normalization, it calculates the effective
reward as the euclidean distance between peff and pideal. Therefore, the objective
of the algorithm is to choose versions that produce shorter distances between
the effective vector and the ideal vector.

The point-based approach is intuitive and easy to implement. However, it
makes the implicit assumption that a decrease in one PPI can be compensated
by an increase in another PPI [3, Chap. 2]. In many real-world scenarios, this may
not be the case. For example, while the increase in costs may be compensated
with better processing times, lower user satisfaction may not be compensated
with any other metric. In addition, granular and insignificant differences in dis-
tance can accumulate and produce an effect on routing. In such scenarios, a
better approach is to classify performance into categories aligned with business
goals.

Therefore, in the classification-based approach domain experts design reward
classes and assign weights to each class. Weights represent the relative impor-
tance of each class. peff is constructed as above and a reward is assigned as the
weight of the class it falls on. The most important class Ci has the highest weight
wi. As depicted in Fig. 2, the most important class C1 has the highest weight
w1, C2 has a lower weight w2, and so on. The objective of the algorithm is to
choose versions that produce the highest average weight.
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Fig. 2. Reward design approaches.
Rewards can be categorical or dis-
tance based.

The algorithm specification is indepen-
dent of how reward values are derived from
PPIs. Without loss of generality we typi-
cally choose rewards on a negative scale (e.g.
w1 �→ −1, . . . , w5 �→ −5). The learning rate
and convergence are, however, dependent on
the quantity of the reward. It is possible for
the algorithm to be misled by a large quantity
of rewards derived from partially observed
metrics. If only a small percentage of pro-
cess instances provide information about all
PPIs, the effect of rewards derived from these
process instances can be diluted by rewards
derived using incomplete PPI observations from other process instances. To
ensure that such dilution does not occur, the algorithm keeps track of the ratio of
complete and incomplete rewards, τ , for each version in each context. To accom-
modate τ , Algorithm 2 starts in bootstrap mode for the first few requests. During
bootstrap, rewards are collected regardless of τ . The algorithm accepts a partial
reward either at the bootstrap period when the number of complete rewards is
below a certain threshold, or when the reward ratio is less than or equal to τ .
The usage of reward ratios in this manner addresses requirement R3.

Contextual Factor Detection and Context Integration. Algorithm 3
shows our solution to requirement R4 – the context integration mechanism.
The algorithm starts in the pre-contextual factor phase (P1A). In this phase,
contextual feature vectors are constructed using information available with the
user requests (e.g., age group). Hypothesized contextual factors are observed
and stored by the controller for future analysis. When the pre-contextual factor
reward threshold is reached, the correlation between the hypothesized contex-
tual factors and process performance is analysed. If the correlation is above
a pre-determined threshold, the algorithm state is reset to accommodate new
contextual information. This marks the beginning of the post-contextual factor
experimentation phase (P1B). From this point onward, contextual feature vec-
tors are constructed using the information from user requests and the observed
values of the contextual factors. Finally, when the experimentation request count
is achieved, the algorithm switches to the post-experimentation phase (P2). In
this phase, the algorithm stops learning from new requests. However, to account
for long delays between process instantiation and reward observation, the algo-
rithm continues learning from the requests made in phase P1B.

In summary, we address requirements R1 and R2 through asynchronous
partial reward updates using effective and ideal vectors. Requirement R3 is
addressed by maintaining a user defined reward ratio τ between complete and
incomplete rewards, and handling updates accordingly. Finally, R4 is addressed
by identifying and integrating contextual features in contextual feature vectors.
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Algorithm 3. Contextual Factor Detection
1 def constructFeatureVector(I) // I: set of contextual factors
2 if reward count < pre-contextual factor reward count then
3 collect data points for hypothesized contextual factors

4 if reward count = pre-contextual factor reward count then
5 test hypothesized contextual factor using pearson correlation
6 if contextual factors are found then
7 update set I
8 reinitialize all variables in Algorithm 1

9 collect data points for set I
10 construct and return feature vector

4 Evaluation

In this section, we analyse the behaviour of the approach and specifically the
ProcessBandit algorithm in the presence of contextual factors, and in scenarios
where an important PPI is available only for a small number of requests. We
also evaluate the response times of the algorithm under various infrastructure
settings. Finally, we demonstrate the approach using an example process.

The instance router is prototyped using Python and served by Nginx HTTP
server1 and uWSGI application server2. We use Redis3 as the asynchronous task
queue and data store. Two worker processes operate on the asynchronous queue.
Tasks that require rescheduling are scheduled after 1 s.

4.1 Convergence Characteristics

In the following experiments, we study how ProcessBandit routes requests to
process versions and whether the AB tests converge to the best routing pol-
icy given the rewards. We consider two baselines: a näıve randomized routing
algorithm with uniform request distribution, random-udr, and LTAvgR [14].

Our experiment setup consists of a simulated BPMS which returns two PPIs,
user satisfaction and profit margin, for two process versions. We assume two pro-
cess versions, A and B, which perform differently based on the context, X and Y,

Table 2. PPI configuration.

Context Contextual factor f = 1 Contextual factor f = 2

Profit margin User satisfaction Profit margin User satisfaction

Version A Version B Version A Version B Version A Version B Version A Version B

X 9 11 3 2.5 11 9 2.5 3

Y 11 9 2.5 3 9 11 3 2.5

1 https://nginx.org/ Accessed 15-06-2017.
2 https://uwsgi-docs.readthedocs.io/en/latest/ Accessed 15-06-2017.
3 https://redis.io/ Accessed 15-06-2017.

https://nginx.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://redis.io/
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and an contextual factor f. Table 2 summarizes the PPIs returned by each version
under various conditions. These PPIs are mapped to the reward design models
shown in Fig. 2. pideal represents user satisfaction score of 5 and profit margin
of 20%. pref represents user satisfaction score of 5 and profit margin of 10%. We
chose an optimistic reference point with the philosophy that users who do not
provide satisfaction scores are happy, and that profit margin is good. Rewards
are derived using the classification model in Fig. 2 with weight mapping of
{C1 �→ w1, C2 �→ w2, . . . , C5 �→ w5} such that w1 = −1, w2 = −2, . . . , w5 = −5.

We define the following key terms that we use in the experiments below:

tppi1: the time between request invocation and observation of the first PPI,
tobs: the time between request invocation and observation of the full reward,
d: delay between the first and the second PPI such that tobs = tppi1 + d,
ρ: ratio between the average request inter-arrival rate and tobs.

Convergence is shown by evaluating regret over time. Regret is defined as the
difference between the sum of rewards associated with the optimal solution and
the sum of rewards collected by pulling the chosen arm [19]. The objective of our
algorithm is to find a configuration where the average regret of future actions
tends to zero. Graphically, this is the case when the cumulative regret curve
tends to become parallel to the x-axis. Given the initial uncertainty about the
performance of the versions, the algorithm needs to start with experimentation,
and hence by necessity accumulate some regret at first.

Overall behavior. Figure 3 shows cumulative regret of the algorithms using
various probabilistic decay functions such that M = 500, d = 0.2 · tppi1 and
f = 1 for all process instances. In this experiment, we emulate business processes
by sampling the completion time of each version from the process execution data
of one of the processes from the BPIC 2015 Challenge [18]. The best routing
policy can be found only if contextual factor f, context information, and both
PPIs are available. To ensure that these algorithms can be compared, regret
for LtAvgR and random-udr is calculated using the weights of reward classes
in the same manner as ProcessBandit. We observe that ProcessBandit correctly
distributes requests to better performing versions, and converges to the best
routing policy. However, LtAvgR consistently makes the wrong decision because
it never sees the actual value of the second PPI, and is incapable of updating
past rewards.

Figure 4 shows the cumulative regret of ProcessBandit with various delays
between the observation times of the first and second PPI. In this experiment,
we use deterministic completion times for each process instance so that the value
of the PPI delay is the same for all observations. We can observe that the regret
curves have similar characteristics, and that the algorithm converges to the best
routing policy in all cases. There are some small differences in cumulative regret
in all scenarios. However, these differences do no support the idea of a conclusive
relationship between the delays and overall regret. The magnitude of cumula-
tive regret can be affected by the non-determinism inherent in the algorithm’s
experimentation phase, and the order in which the PPIs were observed.
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Fig. 3. Cumulative Regret of various
algorithms with d = 0.2 · tppi1.

Fig. 4. Convergence at various
reward delays.

Fig. 5. Convergence with various reward ratio and experiment phase parameters.

Partial rewards and failures. In this section we evaluate convergence charac-
teristics of ProcessBandit when only one PPI can be observed for some instances.
We use an experiment setup with f = 1, ρ = 160, d = 0.2 · tppi1, and a constant
execution time for all process instances. Each process instance returns the first
PPI (profit margin) immediately after execution. The other PPI (user satisfac-
tion) is either never returned, or returned after a delay – which can be expected
if, e.g., users are asked to participate in a short survey.

We define p as the percentage of process instances that return both PPIs.
We compare regret characteristics of ProcessBandit with random-udr because
random-udr is agnostic to p. Figure 5 shows the convergence characteristics for
parameter values of λ = 100, M = 500, and τ = 0, respectively τ = 1. It depicts
behavior for values of p that highlight when convergence happens (e.g., 30%
for τ = 1) and when not (20% in the same configuration). We observe that by
increasing τ from 0 to 1, the algorithm can converge when p is smaller.

The resilience to partial rewards depends on the values of λ, τ and M . There
must be enough complete observations in every context so that it is possible to
reach a state where the current reward ratio is equal or below τ . In some cases
where the best routing policy is found, the algorithm can temporarily perform
worse than random-udr. Increasing λ to 500 (not shown in figures), convergence
is achieved with p = 20%. This is further improved to p = 10% when τ is
increased to 1.5, and finally to p = 2.5% when M is increased to 750.
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Fig. 6. Response times of various stages
and configurations of ProcessBandit.

Fig. 7. Response time in Phase P1A. i
and q are number of servers for instance
router and task queue respectively.

4.2 Response Time

We measure end-to-end response time and throughput using two servers, one for
the instance router and one for the BPMS. We define our SLA metrics in terms
of response time and correctness: our system adheres to SLA if it serves 100%
of requests under 300 ms. We host these components on Amazon EC2 M4 large
instances with 2 vCPUs and 8 GB RAM. We use the reward setup described in
Table 2. Figure 6 shows the response times of these configurations, each named
with the convention Phase-Configuration.

Response times are shown as the average of all requests during a 5 min burst
of the corresponding workload. We observe that the throughput is lower and the
responses are slower when contextual factor detection is enabled. This is caused
by the instance router making additional request to the BPMS to observe the
value of f. Performance can be improved by adjusting sampling rates of f. For
example, factors like weather condition can be sampled every minute instead.

We observe that the CPU utilization is generally high (above 90%) and pro-
portional to the workload but memory utilization is low (5–7%). The random-udr
algorithm serves up to 400 requests per second under our SLA criterion. On the
same infrastructure, ProcessBandit achieves a throughput that is between 10%
and 25% of random-udr, depending on the configuration.

Based on this observation, we conduct a second experiment to test the hor-
izontal scalability of ProcessBandit at its slowest configuration. This configu-
ration, deployed on a single machine, serves a baseline. Then we deploy the
instance router and the asynchronous task queue in separate servers, and hori-
zontally scale the number of the instance router servers. We evaluate response-
time and throughput for three deployment configurations. The results are shown
in Fig. 7. Because instance router was the bottleneck, we observe that increasing
the number of instance router servers increases the throughput.
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Table 3. User satisfaction model

Outcome Duration Version Satisfaction

Ret. New

Approved �5 wks A 4 5

B 5 5

�5 wks A 3 4

B 4 4

Rejected �5 wks A 2 3

B 3 3

�5 wks A 1 2

B 2 2

Fig. 8. Performance classification

4.3 AB Test with Synthetic Process

We demonstrate our approach using process versions from the domain of heli-
copter pilot licensing, as introduced in [14]. The process consists of six activities:
Schedule, Eligibility Test, Medical Test, Theory Test, Practical Test, and License
Processing. We here add two contextual factors associated with an applicant –
age group and applicant type (new or returning). The probability of success in
the Medical Test activity is set to be higher for younger age groups. For other
activities, success probabilities are the same regardless of age groups.

Activities in Version A of the process are ordered sequentially such that
a scheduling activity occurs before each test activity. In Version B, one
scheduling activity is performed at the start, which determines the sched-
ules of all the tests, thus reducing the costs of having multiple scheduling
activities. We use the activity costs and durations outlined in [14]. Using
these process versions, we design an experiment where the process perfor-
mance is determined by two PPIs: satisfaction score, and cost. Rewards are
derived from four categories shown in Fig. 8. Satisfaction scores are derived
from the outcome and the duration of the process. Satisfaction score is
high if the license is approved and processing is fast, and low otherwise.

Fig. 9. Probability of receiving sat-
isfaction score over time

Satisfaction scores also depend on whether
the applicant is new or returning – we assume
that returning applicants are harsher on the
older version. This is shown in Table 3. While
the age group is treated as known context,
applicant type is treated as a hypothetical
contextual factor.

To simulate a scenario where the sat-
isfaction score is not always available, we
assume that satisfaction scores are collected
within 60 days after process completion.
Applicants are notified four times after
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Table 4. Performance of versions A and B

Age group Applicant Reward class distribution Samples

Version A Version B Version A Version B

18–24 Returning C1 - 0%
C2 - 60.0%
C3 - 40.0%
Avg Reward = −2.4

C1 - 59.17%
C2 - 11.42%
C3 - 29.41%
Avg Reward = −1.7

29 304

New C1 - 52.67%
C2 - 11.03%
C3 - 36.3%
Avg Reward = −1.84

C1 - 47.06%
C2 - 5.88%
C3 - 47.06%
Avg Reward = −2.0

299 34

25–40 Returning C1 - 0%
C2 - 28.57%
C3 - 71.43%
Avg Reward = −2.71

C1 - 56.16%
C2 - 11.64%
C3 - 32.19%
Avg Reward = −1.76

27 307

New C1 - 61.48%
C2 - 14.84%
C3 - 23.67%
Avg Reward = −1.62

C1 - 50.0%
C2 - 12.5%
C3 - 37.5%
Avg Reward = −1.88

299 34

40+ Returning C1 - 0%
C2 - 57.14%
C3 - 42.86%
Avg Reward = −2.43

C1 - 56.14%
C2 - 14.04%
C3 - 29.82%
Avg Reward = −1.74

24 310

New C1 - 50.88%
C2 - 21.05%
C3 - 28.07%
Avg Reward = −1.77

C1 - 42.86%
C2 - 14.29%
C3 - 42.86%
Avg Reward = −2.0

300 33

process completion – on the 7th, 14th, 21st, and 42nd day. The cumulative prob-
ability of response is assumed to jump after a notification, a behavior similar to
the response rates of web-based career survey [15]. Response probabilities are
shown in Fig. 9.

With this setup, the algorithm needs to account for two PPIs (R1), the delay
in receiving satisfaction scores (R2), availability of satisfaction scores (R3), and
the effect of applicant type on the PPIs (R4). The results of performing AB tests
on this setup are shown in Table 4. We observe that in all cases more requests
are sent to the version that performs better on average (shown in bold).

5 Discussion and Conclusion

Summary. We introduce ProcessBandit, a dynamic process instance routing
algorithm that learns a routing policy based on process performance. The algo-
rithm is supported by a modular architecture. ProcessBandit meets all of our
requirements and, while not very fast, can be scaled horizontally. It makes sound
decisions in scenarios where performance is determined by delayed PPIs which
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may be fully observed only for some process instances. It also identifies contex-
tual factors at runtime and uses these factors to make routing decisions.

Discussion. ProcessBandit assumes that overall performance can be summa-
rized using the mean. Rewards are averaged per context and version, which
helps the algorithm learn its routing policy. As shown in Table 4, the rewards
are not always normally distributed. If other statistical properties are important
in decision-making, the mechanism for estimating rewards should be changed in
the algorithm. Average performance can be ineffective in scenarios where per-
formance deviations from the norm are small but very important. For example,
a tiny number of instances may take exceptionally long time. Rewards for such
cases are received late and have negligent effect on the mean. Such cases can be
handled by an upper bound on the duration: if the process does not complete
within an acceptable time, a strong negative reward can be assigned.

There is a threat to external validity by using synthetic datasets. In previous
work [14], we demonstrated that AB-BPM can work on real-world datasets, by
deriving a single PPI from the available data. Despite our best efforts, we could
not find or produce a real-world dataset that combined all features (multiple
PPIs, context, etc.) to evaluate ProcessBandit. We aimed to minimize this risk by
producing synthetic datasets based on parameters taken from the literature [15],
industry (described in [14]), and a BPI Challenge [18] where possible.

Our contextual factor detection approach is based on correlation. In our
experiments, we set the correlation thresholds low, so that the context sensitivity
could be evaluated. The detection of contextual factors does not need to be
based on correlation. Our approach is not tied to how these contextual factors
are identified. Contextual factor detection is however a challenge per se that
needs further investigation.

Conclusion and Future Work. Unlike prior work on AB testing, our solu-
tion provides a risk-managed approach tailored for the requirements of business
processes. We demonstrate that this solution meets these requirements by eval-
uating the behaviour of the routing algorithm, the horizontal scalability of the
approach, and its effectiveness in a synthetic business process. Our future plans
include extension of the approach to accommodate other statistical properties
in reward evaluation and upper bound on duration. We also plan to collaborate
with domain experts to conduct field tests in the industry.

Acknowledgements. The work of Claudio Di Ciccio has received funding from the
EU H2020 programme under MSCA-RISE agreement 645751 (RISE BPM).
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