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Abstract. With the increasing availability of business process related
event logs, the scalability of techniques that discover a process model
from such logs becomes a performance bottleneck. In particular,
exploratory analysis that investigates manifold parameter settings of dis-
covery algorithms, potentially using a software-as-a-service tool, relies on
fast response times. However, common approaches for process model dis-
covery always parse and analyse all available event data, whereas a small
fraction of a log could have already led to a high-quality model. In this
paper, we therefore present a framework for process discovery that relies
on statistical pre-processing of an event log and significantly reduce its
size by means of sampling. It thereby reduces the runtime and memory
footprint of process discovery algorithms, while providing guarantees on
the introduced sampling error. Experiments with two public real-world
event logs reveal that our approach speeds up state-of-the-art discovery
algorithms by a factor of up to 20 .
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1 Introduction

Process mining emerged as a discipline that targets analysis of business processes
based on event logs [1]. Such logs are recorded by information systems during the
conduct of a process, such that each event denotes the timestamped execution of
a business activity for a particular instance of the process. One of the essential
tasks in process mining is process discovery—the construction of a model of the
process from an event log.

In recent years, a plethora of algorithms have been proposed for process
discovery [2]. These algorithms differ along various dimensions, such as the
imposed assumptions on the notion of an event log (e.g., atomic events vs. inter-
val events [3,4]), the applied representational bias (e.g., constructing transition
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systems [5], Petri-nets [6], or BPMN models [7]), the handling of log incomplete-
ness and noise (e.g., heuristics to balance over-fitting and under-fitting [8] or
filter noise [9]), and the formal guarantees given for the resulting model (e.g.,
ensuring deadlock-freedom [10]).

Regardless of the specific algorithm chosen, efficiency becomes an increas-
ingly important requirement for process discovery, due to several reasons. First,
the increasing pervasiveness of data sensing and logging mechanisms led to a
broad availability of large event logs in business contexts, reaching up to billions
of events [11]. Hence, the manifesto of the IEEE Task Force on Process Mining
concludes that ‘additional efforts are needed to improve performance and scala-
bility’ [12]. Second, discovery algorithms typically have multiple parameters that
need to be configured. Since these parameters have a large impact on the result-
ing model [13], discovery becomes an exploratory analysis rather than a one-off
procedure. Third, companies started to offer software-as-a-service solutions for
process mining, see Signavio1 or Lana-Labs2, which are trouble-some to use if
analysis needs to be preceded by an upload of very large logs.

Acknowledging the need for more efficient process discovery, divide-and-
conquer strategies enable the decomposition of a discovery problem into smaller
ones [14,15]. Also, models for distributed computation may be exploited to
increase efficiency [16,17]. All these techniques fundamentally consider all avail-
able data, conducting a complete scan of the event log. Yet, in practice, we observe
that a small fraction of a log may already enable discovery of a high-quality model.
This holds in particular as logs are not trustworthy and discovery algorithms
apply heuristics to cope with incomplete information and noise in the data. Hence,
small deviations between models discovered from a complete log and a partial log,
respectively, may be considered a result of the inherent uncertainty of the process
discovery setting. Following this line, the challenge then becomes to answer the
following question: How to systematically determine how much of data of an event
log shall be considered when discovering a process model?

In this paper, we set out to answer the above question with a framework for
statistical pre-processing of an event log. More specifically, this paper contribu-
tions are as follows:

(1) A statistical framework for process discovery that is based on an incremental
pre-processing of an event log. For each trace, we assess whether it yields
new information for the process at hand. By framing this procedure as a
series of binomial experiments, we establish well-defined bounds on the error
introduced by considering only a sample of the log.

(2) We instantiate this framework for control-flow discovery. That is, we show
how discovery algorithms that exploit the directly-follows graph of a log such
as the Inductive Miner [9,10] can benefit from this framework.

(3) We handle the enrichment of discovered process models with information on
execution times, e.g., to estimate the cycle time of a process. That is, we
elaborate on different variants to incorporate the respective information in
our framework.

1 https://www.signavio.com/.
2 https://lana-labs.com/.
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In the remainder, we first introduce preliminary notions and notations (Sect. 2),
before presenting our statistical framework for process discovery and its instan-
tiation (Sect. 3). An evaluation of our techniques with two real-world datasets
reveals that they indeed reduce the runtime and memory footprint of process dis-
covery significantly (Sect. 4). We close with a discussion of related work (Sect. 5)
and conclusions (Sect. 6).

2 Preliminaries

This section defines event logs, as well as directly-follows graphs and process
trees as two process modelling formalisms, and elaborates on their discovery
from event logs.

Trace Activity Start Complete

1 R: Receive Claim 9:05 9:05
1 F: Fetch Previous Claim 9:05 9:10
1 P: Plausibility Check 9:08 9:20
1 U: Update Claim Status 9:20 9:22
1 U: Update Claim Status 9:46 9:50
2 R: Receive Claim 9:51 9:51
3 R: Receive Claim 9:55 9:55
2 P: Plausibility Check 9:57 10:03
2 F: Fetch Previous Claim 10:01 10:06
3 F: Fetch Previous Claim 10:12 10:17
3 P: Plausibility Check 10:13 10:22
3 U: Update Claim Status 10:22 10:25

Fig. 1. Example event log.

Event Logs. Following [4,18], we adopt
an interval-based notion of an event log.
Let A be a set of activity identifiers (activ-
ities, for short) and T be a totally ordered
time domain, e.g., given by the positive
real numbers. Then, an event e recorded
by an information system is characterised
by at least the following information: an
activity e.a ∈ A; a start time e.s ∈ T ; and
a completion time e.c ∈ T with e.s ≤ e.c.
We say that an event e is instantaneous,
if e.s = e.c. Furthermore, let E denote the
universe of all possible events. A single exe-
cution of a process, called a trace, is modelled as a set of events, ξ ⊆ E . However,
no event can occur in more than one trace.

An event log is modelled as a set of traces, L ⊆ 2E . To illustrate this notion,
Fig. 1 depicts the log of an example claim handling process. It contains three
traces, each comprising events that denote the execution of particular activities.
Each event has a start and completion time. As a short-hand, we define AL =
{a′ ∈ A | ∃ ξ ∈ L, e ∈ ξ : e.a = a′} as the set of activities referenced by events
in the log. Using the activity identifiers in Fig. 1, we have AL = {R,F, P, U} for
the example.

F

R

P

U

Fig. 2. Example DFG.

Process Models. A rather simple formalism to cap-
ture the behaviour of a process, which is widely used
in process mining tools in practice, is a directly-follows
graph (DFG). A DFG is a directed graph G = (V,E).
Vertices V denote the activities of a process. Directed
edges E ⊆ V × V model that the target activity can be
executed immediately after the source activity in a pro-
cess instance. A plain DFG may be extended by marking
some vertices V<, V> ⊆ V as start and completion ver-
tices. Then, a path in the DFG from a start to a completion vertex represents a



242 M. Bauer et al.

possible execution sequence of the process. An example DFG is given in Fig. 2.
With V< = {R} and V> = {U,F}, it defines that 〈R,F,U〉 would such an
execution sequence.

→

�

τU

∧

PF

R

Fig. 3. Process tree.

Based on DFGs, richer types of models that feature
explicit concepts, e.g., for repetitive behaviour and con-
current execution can be constructed. In this work, we
consider the formalism of a process tree [10,18]. In a pro-
cess tree, leaf nodes denote activities or a specific silent
activity τ . Non-leaf nodes are control-flow operators, such
as sequence (→), exclusive choice (×), concurrency (∧),
interleaving (||) and structured loops (�). Given a process tree, a set of execution
sequences of activities is constructed recursively. For a leaf node, this set contains
a single execution sequence, consisting of the respective activity (the sequence
is empty for the silent activity). For non-leaf nodes, semantics is induced by a
function that joins the execution sequences of the subtrees of the node. The pro-
cess tree given in Fig. 3, e.g., defines that 〈R,P, F, U, U〉 would be an execution
sequence of the process.

Models such as process trees may also be annotated with additional informa-
tion, such as times or costs of activity execution. Adopting the model from [4],
for instance, each activity is assigned a duration in terms of a cumulative dis-
tribution function (CDF). Semantics of such a timed process tree are no longer
given in terms of execution sequences of activities, but in terms of events, which,
as defined above, associate activity executions with start and completion times.
To this end, an execution sequence of the untimed tree is enriched by construct-
ing the start time for each activity execution based on the completion time of
the previous activity, while the completion time is then determined by drawing
a duration from the respective CDF.

Process Discovery. Process discovery constructs a process model from an event
log. With L and M as the universe of event logs and process models, respectively,
a discovery algorithm can thus be seen as a function ρ : L → M.

As mentioned earlier, a large number of specific algorithms have been pro-
posed in recent years [1,2]. Referring to the above formalisms for process models,
a DFG may trivially be constructed from a log L, once a total order 
ξ has been
defined for the events of each trace ξ ∈ L. For an interval-based log, this order
may be derived from either the start times or the completion times (breaking
ties, if needed). Then, a DFG is discovered as (AL,
) with 
=

⋃
ξ∈L 
ξ. This

simple construction of a DFG may be adapted through frequency-based tech-
niques for noise filtering [5]. The DFG in Fig. 2 is obtained from the log in Fig. 1,
when ordering events by their completion time.

Process trees may be discovered by various variants of the Inductive Miner.
In its basic version, this algorithm relies on the DFG and iteratively identifies
cuts, specific sets of vertices, in the graph to build a process tree [10]. The tree in
Fig. 3 would be discovered for the log in Fig. 1, using the DFG in Fig. 2. Variants
of the miner target robustness against noise [9] or exploit start and completion
times to distinguish interleaved from concurrent execution [18] and detect delays
between activities [4].
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3 A Statistical Framework for Process Discovery

This section introduces our approach to statistical pre-processing of an event
log. By reducing a log’s volume through sampling of traces until no new infor-
mation is encountered, the efficiency of process discovery algorithms is improved.
Below, we first give an overview of the general framework (Sect. 3.1), before we
instantiate it for control-flow discovery (Sect. 3.2) and extraction of performance
information (Sect. 3.3).

3.1 Statistical Pre-processing of Event Logs

The general idea of our approach is to avoid a full scan of an event log during pro-
cess discovery. This is to cope with the phenomena of traces that contain highly
redundant information. Specifically, even though each event in a trace constitutes
original information, process discovery typically works only on abstractions of
events and traces. As a consequence, many events and traces are considered to
be equivalent or highly similar by a discovery algorithm. Hence, it is reasonable
to assume that process discovery based on a representative subset of traces (and
thus events) of a log can be expected to yield a highly similar result compared to
the model obtained by processing a complete log. Based on this assumption, we
propose the following statistical approach to reason on the ‘discovery sufficiency’
of a given subset of traces.

A Statistical View on Log Sampling. When parsing a log trace-by-trace,
some traces may turn out to be similar to those already encountered. As moti-
vated above, this similarity is assessed in terms of the information used by a
discovery algorithm. On a conceptual level, this is captured by a trace abstrac-
tion function ψ : 2E → X that extracts from a trace, information of some domain
X that is relevant for discovery. This information may, for example, relate to the
occurrence of activities, their ordering dependencies, or quantitative information,
and needs to be instantiated for a specific discovery algorithm.

Based on the trace abstraction function, one can define a random Boolean
predicate γ(L′, ξ) that captures whether a trace ξ ∈ 2E provides new information
with respect to an event log L′ ⊆ 2E . Here, in a strict sense, trace ξ provides
novel information solely if its abstraction is not part of those jointly derived for
all traces in L′:

γ(L′, ξ) ⇔ ψ(ξ) /∈
⋃

ξ′∈L′
ψ(ξ′). (1)

In some cases, however, the abstraction function of a trace yields information
of rather fine granularity, e.g., numerical values that represent the time or cost
of activity execution. If so, it is reasonable to also consider a relaxed notion of
new information. Assuming that the distance between the abstract information
provided by traces can be quantified by a function d : X × X → R

+
0 and given a

relaxation parameter ε ∈ R
+
0 , we therefore also consider the following predicate:
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γε(L′, ξ) ⇔ d

⎛

⎝ψ(ξ),
⋃

ξ′∈L′
ψ(ξ′)

⎞

⎠ > ε. (2)

In other words, if the observed abstraction ψ(ξ′) is ε far from L′, then ψ(ξ′) adds
new information beyond L′.

Next, we define the discovery sufficiency property for an event log L′ ⊆ L,
with respect to an abstraction ψ, a relaxation parameter ε, and some probability
measure δ.

Definition 1 (Discovery Sufficiency). An event log L′ ⊆ L is called (δ, ε, ψ)-
discovery sufficient, if for a newly sampled trace ξ : ξ ∈ (L \ L′), it holds that:

pγ(L′, ξ) = P (γ(L′, ξ) = 1) < δ, (3)

with P being a standard probability measure.

Essentially, discovery sufficiency of L′ requires that the chance of a newly sam-
pled trace to add new information beyond L′ is bounded by δ. Our goal is to
come up with a (δ, ε, ψ)-discovery sufficient log L′ based on the original log L.
When it is clear from the context, we shall use discovery sufficiency without its
parameters.

We now formulate a statistical hypothesis testing procedure to assess when
enough information has been extracted from the log, thereby giving a criterion
to terminate the construction of L′. Then, we shall present an algorithm that is
based on the procedure.

Given L′ ⊆ L, we would like to test whether it is discovery sufficient. We
assume under the null hypothesis that L′ is sufficient; or not, under the alter-
native hypothesis. Next, we consider an independent and identically distributed
(i.id.) sample of N traces ξ1, . . . , ξN from L, such that ξi �= L′. We denote
p = pi = pγ(L′, ξi) the probability that ξi will yield new information, i.e., the
probability that γ(L′, ξi) = 1. By the i.id. assumption, the probability pi to have
new information in ξi is the same for all ξi. Hence, under the null hypothesis,
it holds p = 0; under the alternative, we hypothesise p > 0. Further, let k be
the number of traces of the N samples that bring new information. Under our
assumptions, k is binomially distributed, with parameters N and 1 − p.

To assure that L′ is discovery sufficient, we wish to bound the probability
pγ(L′, ξ) by δ for new ξ. In statistical terms, we wish to bound the probability
that the null hypothesis is not rejected, given that the alternative is true for
L′. Furthermore, we want to provide a statistically significant answer, with sig-
nificance level α. To ensure α, and bound pγ(L′, ξ) with δ, we must select an
appropriate sample size Nmin, which is referred to as minimum sample size [19].
Using the normal approximation to the binomial distribution, the minimal sam-
ple size is given by,

Nmin ≥ 1
2δ

(
−2δ2 + z2 +

√
z
)
, (4)

with z corresponding to the realisation of a standardised normal random variable
for 1−α (one-sided hypothesis test). For α = 0.01 and δ = 0.05, for example, we
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obtain Nmin ≥ 128. After seeing 128 traces without new information, sampling
can be stopped knowing with 0.99 confidence that the probability of finding new
information in the remaining log is less than 0.05. We apply this idea in what
follows.

Statistical Framework for Process Discovery. The above observations are
exploited as formalised in Algorithm 1. This statistical framework for process
discovery takes as input an event log, a significance level α, a sufficiency bound
δ, a predicate to determine whether a trace provides new information, and a
discovery algorithm. After initialisation, in line 3, the algorithm computes the
number of trails that need to fail, i.e., the number of consecutive traces that do
not provide new information, according to Eq. 4. Then, it samples traces from
the log (line 4–line 14). For each trace, it determines whether new information
has been obtained (line 6). If so, an iteration counter is reset. Once the counter
indicates that N traces without new information have been sampled, the proce-
dure terminates by applying the mining algorithm to the sampled log.

From a technical point of view, the framework in Algorithm 1 is indepen-
dent of the chosen discovery algorithm, which is applied only once a sampled
log has been obtained. However, it relies on a predicate to decide whether a
trace provides new information over a set of traces. This predicate, in turn, shall
be devised with respect to the properties of a trace that are exploited by the
discovery algorithm. Consequently, the effectiveness of the approach is not only
affected by the configuration of Algorithm 1 in terms of statistical significance
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and sufficiency bound, but depends also on the definition of the respective pred-
icate. How often it holds true is influenced by the relation of the richness of the
employed trace abstraction and the variability of the event data to the overall size
of the original log. With richer abstractions and higher variability, more traces
will provide new information, so that the size of the sampled log approaches the
size of the original log.

3.2 Instantiation for Control-Flow Discovery

Next, we turn to the instantiation of the above framework for control-flow dis-
covery, which yields a process model comprising a set of activities along with
their execution dependencies. According to the model introduced in Sect. 3.1,
this requires us to define a suitable trace abstraction function. Based thereon,
using predicate γ(L′, ξ) of Eq. 1, it is determined, whether a trace ξ provides new
information over a log L′.

As a particular example, we consider the Inductive Miner [10] for the def-
inition of this predicate. As detailed in Sect. 2, this miner constructs a DFG
and then, deterministically, builds a process tree from this graph. Hence, a trace
provides new information, if the sets of vertices or edges of the DFG change.
Considering also explicit start and completion vertices (not exploited by the
Inductive Miner, but useful when employing the DFG directly), we define a
trace abstraction function as follows. Given a total order of events in a trace
(see Sect. 2), the function yields a tuple of the contained activities, their order,
and the minimal and maximal elements induced by that order:

ψIM (ξ) �→
(

A{ξ},
ξ,min�ξ

(ξ),max�ξ

(ξ)
)

(5)

Lifting union of sets and containment of elements in sets to tuples of sets, the
predicate γ(L′, ξ) based on the trace abstraction function ψIM holds true, if, intu-
itively, trace ξ shows a new activity, a new order dependency, or new information
about activities starting or completing the process.

As an example, consider the information extracted by the above func-
tion from the first two traces of the log in Fig. 1. Here, ψIM (ξ1) ∪
ψIM (ξ2) yields the following information in terms of known activ-
ities, their order dependencies, and the minimal and maximal ele-
ments: ({R,F, P, U}, {(R,F ), (R,P ), (F, P ), (P, F ), (P,U), (U,U)}, {R}, {F,U}).
We note that this information is sufficient to construct the DFG in Fig. 2. Hence,
adding the third trace of the example log does not provide any new information,
as ψIM (ξ3) = ({R,F, P, U}, {(R,F ), (F, P ), (P,U)}, {R}, {U}).

When aiming at process discovery with other variants of the Inductive Miner,
the above trace abstraction may also be applied, even though the respective dis-
covery algorithms exploit further information. For instance, the Inductive Miner
Infrequent [9] incorporates relative frequencies of edges in the DFG to cope with
noise in event logs. On the one hand, these frequencies may be neglected dur-
ing sampling from the event log (applying the above abstraction) and only be
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derived from the selected sample of traces. In that case, the guarantee in terms
of δ-similarity of the sampled log would not cover these frequencies, though.
A different approach, thus, is to consider the relative edge frequencies in the
abstraction, so that they influence the predicate to assess whether a trace con-
tains new information. As these relative frequencies can be expected to change
slightly with each sampled trace, the relaxed predicate, see Eq. 2, needs to be
applied. Then, the relative edge frequencies stabilise during sampling and traces
that incur only minor changes in these frequencies are not considered to provide
new information.

3.3 Instantiation for Performance Discovery

We complement the above discussion with an instantiation of the framework that
incorporates additional aspects of a trace, beyond execution dependencies. That
is, we consider the extraction of performance details in terms of the cycle time,
i.e., the time from start to completion of the process. However, further aspects of
a trace, such as costs induced by a trace or the involved roles, may be integrated
in a similar manner.

The cycle time of a process is commonly captured as a numerical value at a
rather fine granularity. Consequently, observations of the cycle time of particular
traces will show some variability—if at all, only very few traces will have the
same cycle time. According to the model presented in Sect. 3.1, this suggests to
rely on the relaxed predicate γε(L′, ξ), see Eq. 2. It allows for a certain deviation,
bound by ε, of the information provided by ξ from the one known already from L′,
while still considering ξ as providing no new information. Without this relaxation,
all traces with different cycle times would add new information, even if the
absolute difference of these times is negligible. To incorporate information on
cycle time and instantiate predicate γε(L′, ξ), we need to define a respective
trace abstraction function and a distance function, as detailed below.

Model-Based and Activity-Based Cycle Time Approximation. The esti-
mation of the average cycle time of a process based on a log may be approached
in different ways. One solution is to compute the average over the cycle times
observed for all traces, considering each trace as an independent observation.
Another solution is to compute the cycle time analytically based on the aver-
age durations of activities. The latter approach builds a performance annotated
process model such as the timed process tree discussed in Sect. 2, fitting a dis-
tribution for the duration of an activity based on all observations.

Either approach is realised in our framework by specific trace abstraction
functions. If the cycle time is considered per trace, referred to as model-based
approximation, the abstraction captures the time between the start of the first
event and the completion time of the last event of a trace (again, 
ξ is the total
order of events in trace ξ):

ψtCT (ξ) �→ {e2.c − e1.s} with e1 = min�ξ

(ξ) and e2 = max�ξ

(ξ). (6)
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If the cycle time is captured on the level of activities (activity-based approxima-
tion), the trace abstraction function yields the observed durations per activity:

ψaCT (ξ) �→
⋃

a′∈A{ξ}

{(

a, avg
e∈ξ,e.a=a′

(e.c − e.s)

)}

(7)

For the first trace in the log in Fig. 1, these abstractions yield ψtCT (ξ1) =
45 (minutes) for the model-based approximation, and ψaCT (ξ1) =
{(R, 0), (F, 5), (P, 12), (U, 3)} for activity-based approximation, where (U, 3)
stems from two events related to U in ξ1.

Difference of Cycle Time Approximations. Using one of the above trace
abstractions, instantiation of the predicate γε(L′, ξ) further requires the defini-
tion of a distance function, to assess whether the information provided by ξ
deviates with less than ε from the information provided by L′. To this end, we
compare the cycle times computed based on the measurements from L′ and com-
puted based on L′ and ξ. Specifically, while adding traces to L′, the cycle time
computation is expected to converge, so that the difference will continuously fall
below ε at some point.

We illustrate the definition of this difference for the trace abstraction function
ψtCT . Then, given a trace ξ, the singleton set with its cycle time ψtCT (ξ) = CTξ,
and the cycle times of all traces in the sampled log

⋃
ξ∈L′ ψtCT (ξ) = CTL′ , this

difference is measured as the change in the average of cycle times, if trace ξ is
incorporated:

d(CTξ, CTL′) �→
∣
∣
∣
∣
∣

avg
ct∈CTL′

(ct) − avg
ct∈CTL′∪CTξ

(ct)

∣
∣
∣
∣
∣
. (8)

If this difference is smaller than ε, the cycle time measurement provided by trace
ξ is negligible and, thus, the trace is considered to not provide any new informa-
tion. It is worth to mention that sequence of average cycle time measurements
obtained when adding traces to L′ corresponds to a Cauchy-sequence, as the
sequence converges and the space of possible cycle times is a complete metric
space. Hence, it can be concluded, for any chosen ε, that after a certain number
of traces have been incorporated, adding additional traces will not increase the
difference above ε again.

Referring to our running example, the log in Fig. 1, consider the case of having
sampled the first and second trace already. Then, with L′ = {ξ1, ξ2}, we obtain
CTL′ = {45, 15}. Trace ξ3 with CTξ3 = {30} does not add new information,
as the average of values in CTL′ and the average of values in CTL′ ∪ CTξ3 are
equivalent.

The definition of the difference function for the case of ψaCT uses the same
principle, applied to individual activities. For each activity duration, we assess,
whether the average of values observed in L′ is changed by more than ε, if the
values in ξ are incorporated.

Inspecting the third trace ξ3 of the log in Fig. 1, again, it would not pro-
vide new information: Activity R is instantaneous and F has the same duration
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(5 min) in all traces. For activities P and U , the durations in ξ3 correspond to
the averages of durations observed in traces ξ1 and ξ2.

Using the above functions means that the effectiveness of sampling depends
on the selection of parameter ε and the variability of cycle times (or activity
durations) in the log. A high value for ε means that the information provided
by more traces will be considered to be negligible, leading to a smaller sampled
log as the basis for discovery. We later explore this aspect in our experimental
evaluation.

4 Experimental Evaluation

This section reports on an experimental evaluation of our statistical framework
for process discovery. Using two real-world datasets, we instantiated the frame-
work with the Inductive Miner Infrequent, a state-of-the-art algorithm, for the
construction of timed process trees. Our results indicate that the runtime of
the algorithm can be reduced by a factor of up to 20. Below, we elaborate on
datasets and the experimental setup (Sect. 4.1), before turning to the actual
results (Sect. 4.2).

4.1 Datasets and Experimental Setup

Datasets. We relied on two event logs that have been published as part of
the Business Process Intelligence (BPI) Challenge and are, therefore, publicly
available.

BPI-2012 [20] is a log of a process for loan or overdraft applications at a Dutch
financial institute. It contains 262,200 events of 13,087 traces.

BPI-2014 [21] is the log of an incident management process as run by Rabobank
Group ICT. For the experiments, we employed the event log of incidence
activities, which comprises 343,121 events of 46,616 traces.

Discovery Algorithms. For our experiments, we adopted the Inductive Miner
Infrequent (IMI) [9] as a discovery algorithm. This choice is motivated as follows:
IMI discovers a process tree and, thus, supports common control-flow structures,
such as exclusive choices and concurrency. Second, IMI features a frequency-
based handling of noise in event logs, making it suitable for the application to
real-world event logs.

In the experiments, the IMI is applied to construct a process tree using a
20% noise filtering threshold. In addition, we collect the performance details
needed to quantify the cycle time of the process from the log. Hence, our frame-
work is instantiated with a combination of two trace abstraction functions, one
focusing on control-flow information (Eq. 5) and one extracting performance
details. Regarding the latter, we employ the model-based cycle time approxima-
tion (Eq. 6) as a default strategy. In one experiment, however, we also compare
this strategy with the activity-based approximation.
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When sampling the event log, we set α = 0.01 and δ = 0.99, so that the
information loss is expected to be small. Due to the consideration of performance
details, we use the relaxed version of the predicate to indicate new information
(Eq. 2). Hence, the relaxation parameter ε of this predicate becomes a controlled
variable in our experiments.

Measures. We measure the effectiveness of our statistical pre-processing by the
size of the sampled log, i.e., the number of traces, and relate it to the size of the
original log.

As the effectiveness of sampling is an analytical, indirect measure for the
efficiency of our approach, we also quantify its actual efficiency as implemented in
ProM [22]. To this end, we measure the total runtime (in ms) and total memory
footprint of the complete discovery procedure, contrasting both measures with
the plain IMI implementation.

To explore a potential loss of information incurred by our approach, we also
compare the quality of the models obtained with IMI and our approach. Here,
the control-flow dimensions is considered by measuring the fitness [23] between
the model and the event log, while we consider performance information in terms
of the approximated cycle time.

For all measures, we report the mean average of 100 experimental runs, along
with the 10th and 90th percentiles.

Experimental Setup. We implemented our approach based on the IMI imple-
mentation within ProM [22]. Specifically, we developed two ProM plugins, one
targeting the direct application of our approach by users and one conducting the
experiments reported in the remainder of this section. Both plugins are publicly
available at github.3

Data on the efficiency of our statistical framework for process discovery
has been obtained on a PC (Dual-Core, 2.5 GHz, 8 GB RAM) running Oracle
Java 1.8.

4.2 Experimental Results

The first experiment concerned the effectiveness of the statistical pre-processing
of the event log. For both datasets, Fig. 4 illustrates the number of traces that are
included in the sampled log by the statistical version of IMI (denoted by sIMI),
when varying the relaxation parameter ε. As a reference point, the flat blue line
denotes the size of the complete event log as used by the plain version of the IMI.
Choosing the smallest value for the relaxation parameter means that virtually
every trace provides new information, so that pre-processing has no effect. For
any slightly higher value, however, the sampled log is significantly smaller than
the original one. Already for ε values of around 20 (corresponding to deviations
in performance details of 20 min for a process that runs for 9 days on average),
the sampled log contains only a small fraction of all traces. This provides us

3 https://github.com/Martin-Bauer/StatisticalInductiveMinerInfrequent.

https://github.com/Martin-Bauer/StatisticalInductiveMinerInfrequent
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(a) BPI-2012 (b) BPI-2014

Fig. 4. Effectiveness of process discovery: # Traces vs. relaxation parameter. (Color
figure online)

(a) Runtime (log) vs. relaxation parameter. (b) Memory (log) vs. relaxation parameter.

Fig. 5. Efficiency of process discovery for the BPI-2012 event log. (Color figure online)

with evidence that our approach can indeed reduce the volume of event data in
process discovery significantly.

The drastic reduction of the size of the event log immediately improves the
actual efficiency of process discovery. Figure 5 shows the runtime and memory
footprint measured when running the statistical and the plain version of the
IMI in ProM for the BPI-2012 dataset (BPI-2014 yields the very same trends).
Runtime drops drastically when increasing the relaxation parameter (note the
logarithmic scale). Compared to the runtime of the plain algorithm, we observe
speed-ups by a factor of 20. Figure 5a further illustrates that the time spent in
the pre-processing of the event log is relatively small, compared to the overall
runtime of the discovery procedure.

In terms of memory consumption, the statistical variant of the IMI is more
efficient than the plain one, see Fig. 5b. While there is a large variability in the
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(a) Fitness vs. relaxation parameter. (b) Cycle time approx. vs. relaxation parameter.

Fig. 6. Quality of the resulting models in terms of fitness and cycle time approximation
for the BPI-2012 event log.

measurements, we see that this variability is also observed for the implementation
of the plain IMI in ProM (blue dashed lines denote the 10th and 90th percentiles).
However, the statistical variant of the IMI has a consistently smaller memory
footprint.

Next, Fig. 6 illustrates results on the quality of the obtained models. For the
BPI-2012 dataset, the fitness measured between the discovered model and the
event log is shown in Fig. 6a, also in relation to the fitness of the model mined
by the IMI for the complete log. The results demonstrate that, while the exact
same fitness value is not guaranteed to be obtained due to noise filtering by the
IMI, the observed deviations are arguably negligible. For the BPI-2014 dataset
(not visualised), the plain IMI and the statistical variant achieve a fitness value
of 1.0 in all configurations and experiment runs.

Figure 6b further demonstrates, for the BPI-2012 dataset, that also the cycle
times approximations obtained with the models discovered from the sampled
log are relatively close to the one derived from the complete log, even for very
large relaxation parameters. The same trend also materialised for the BPI-2014
dataset.

Fig. 7. Cycle time approx. strategies.

Finally, we turn to the two strategies
for cycle time estimation, see Sect. 3.3.
For the BPI-2012 dataset, Fig. 7 com-
pares the model-based strategy with the
activity-based one in terms of the sam-
pling effectiveness. Both variants show
the same trend. It turns out, though,
that the activity-based strategy yields a
smaller log for the same ε value. This is
explained by the fact that this strategy
considers performance details at a more
fine-granular level. That is, deviations of
size ε need to be observed on average for all activities, instead of the complete
trace, in order to mark a trace as containing new information.
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5 Related Work

Having discussed some traditional approaches to process discovery in Sect. 1,
below, we review literature on incremental and online process discovery, and
sampling methods.

Incremental and Online Discovery. In the Big Data era, it is essential to
consider process discovery from streams of data. Mining procedural and declar-
ative process models from event streams was first proposed in [24], and [25],
respectively. These works propose novel discovery algorithms for settings where
continuously arriving data cannot be fully stored in memory. Subsequently, a
more generic event processing architecture was proposed by [26], thus allowing
to re-use existing discovery algorithms such as the α-miner [27], and the induc-
tive miner [9,10], on streams of events. In this paper, we apply our statistical
sampling method to finite historical data, which is large enough to incur high
performance costs, yet exists as a batch.

While most online methods for process discovery rely on incremental process-
ing, the latter is relevant also in the context of event logs. For instance, it has
been argued that process discovery based on region theory and Petri net synthe-
sis shall be conducted incrementally, to avoid full re-computation of the model
when a new log becomes available [28]. Incremental techniques are also motivated
by performance considerations. As mentioned earlier, divide-and-conquer strate-
gies to decompose discovery problems have been explored for mining based on
directly follows graphs [14,15] as well as for region-based approaches [29]. Unlike
our approach, however, these methods always consider the complete event log.

Sampling Sequences. The statistical part of our approach is based on sampling
from sequence databases, i.e., datasets that contain traces, similarly to process
logs. In process discovery, it has been suggested to sample Parikh vector of traces
from a log to increase processing efficiency [30]. Yet, this approach does not give
sample size guarantees, as detailed in our work. In the related field of specification
mining, the notion of k-confidence has been introduced to capture the probability
that a log is complete [33], yet without providing statistical guarantees. The
latter was addressed by Busany and Maoz [31], who developed theoretical lower
bounds on the number of samples required to perform inference. The approach
was instantiated for the k-tails algorithm [32] and mining of Markov Chains. Our
work adopts this general idea, yet focuses on trace abstractions used by common
process discovery algorithms.

6 Conclusion

In this paper, we developed an approach to increase the efficiency of common
process discovery algorithms. We argued that, instead of parsing and analysing
all available event data, a small fraction of a log can be sufficient to discover a
process model of high quality. Following this line, we presented a statistical frame-
work for process discovery. In a pre-processing step, a sampled log is obtained,
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while still providing guarantees on the introduced error in terms of the probabil-
ity of missing information. We instantiated this framework for a state-of-the-art
algorithm for control-flow discovery, namely the Inductive Miner Infrequent, and
also showed how the framework is used when discovering performance details
about a process. Our experiments with two publicly available real-world event
logs revealed that the pre-processing indeed yields a drastic decrease in run-
time and reduces the memory footprint of a ProM-based implementation of the
respective mining algorithm. At the same time, the resulting models show only
minor deviations compared to the model mined from the complete log.

Note that the presented instantiation of our framework, in terms of trace
abstraction functions, is applicable for a broad range of mining algorithms. Our
abstraction for control-flow information relies on directly-follows graphs (DFG),
a model employed, e.g., by the family of α-algorithms [34] or mining based on
activity dependencies [35]. Similarly, the abstraction for performance informa-
tion captures what is incorporated by common performance-aware variants of
heuristic discovery, e.g., as implemented in Disco.4 For algorithms that extract
further information from traces, the respective abstractions need to be adapted.
For instance, for delay-aware process discovery as introduced in [4], the abstrac-
tion would include interval relations between activities.
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