
Association Rules for Anomaly
Detection and Root Cause Analysis

in Process Executions

Kristof Böhmer(B) and Stefanie Rinderle-Ma

Faculty of Computer Science, University of Vienna, Vienna, Austria
{kristof.boehmer,stefanie.rinderle-ma}@univie.ac.at

Abstract. Existing business process anomaly detection approaches typ-
ically fall short in supporting experts when analyzing identified anoma-
lies. Hereby, false positives and insufficient anomaly countermeasures
might impact an organization in a severely negative way. This work tack-
les this limitation by basing anomaly detection on association rule min-
ing. It will be shown that doing so enables to explain anomalies, support
process change and flexible executions, and to facilitate the estimation of
anomaly severity. As a consequence, the risk of choosing an inappropri-
ate countermeasure is likely reduced which, for example, helps to avoid
the termination of benign process executions due to mistaken anomalies
and false positives. The feasibility of the proposed approach is shown
based on a publicly available prototypical implementation as well as by
analyzing real life logs with injected artificial anomalies.

Keywords: Anomaly detection · Process · Root cause · Rule mining

1 Introduction

Process anomaly detection enables to reveal anomalous process execution behav-
ior which can indicate fraud, misuse, or unknown attacks, cf. [3,4]. Typically,
whenever anomalous behavior is identified an alarm is sent to a security expert.
Subsequently, the expert determines the alarm’s root cause to choose an appro-
priate anomaly countermeasure, such as, terminating an anomalous process,
ignoring a false alarm, or manually correcting process execution behavior, cf. [4].

Analyzing anomaly detection alarms and choosing countermeasures is chal-
lenging, cf. [13]. This applies also to the process domain as processes operate in
flexible open environments, cf. [4]. Hence, thousands of alarms must be carefully
analyzed as they could be false positives that report benign behavior as anoma-
lous [4,13] (e.g., because of incorrectly interpreted noise or ad hoc changes).

Existing work, cf. [3,4,6], reports only if an execution is anomalous or not.
However, we assume that additional information, e.g., which behaviour moti-
vated the (non-) anomalous decisions or the anomaly severity, are a necessity.
Without such information anomalies, likely, cannot be fully understood and it

c© Springer International Publishing AG, part of Springer Nature 2018
J. Krogstie and H. A. Reijers (Eds.): CAiSE 2018, LNCS 10816, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-91563-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_1&domain=pdf

4 K. Böhmer and S. Rinderle-Ma

becomes hard to differentiate between harmful anomalies and false positives but
also to choose appropriate countermeasures as anomalies vary in effect and form.

Further on, existing process focused work frequently applies monolithic
anomaly detection signatures, cf. [3,6], to identify anomalies. Such signatures,
compress all the expected execution behavior into a complex interconnected
structure. Thus, they must be recreated from scratch whenever a process
changes, are hard to understand, and can be computationally intense to cre-
ate. Monolithic signatures were also found to be overly detailed and specific so
that benign noise or ad hoc changes (such as, slightly varying resource assign-
ments or activity execution orders) are typically reported as anomalies [4]. This
could hinder an organization as benign process executions could be unnecessarily
terminated.

To address these limitations this work proposes a novel unsupervised anomaly
detection heuristic. Instead of monolithic signatures it applies small sets of inde-
pendent association rules. Hereby, individual rules can easily be replaced if a
process changes. As association rules only represent direct relations between
variables (e.g., activity A and C occur during the same execution) they are easy
to understand but lack in expressiveness compared to other formalisms, such as,
Liner Temporal Logic (LTL) – which we see as an advantage. We assume that
the more expressive rules become the more likely it is that they are misunder-
stood and the more computational intense it is to mine them, cf. [10,14], hence,
simple formalisms (e.g., association rules) foster mining and understandability.

Further, the proposed approach prevents false positives as it supports noise
and ad hoc changes. This is because process executions, differently to mono-
lithic signatures, no longer must be completely represented by the signatures
but only by a fraction of the rules which a signature is composed of, cf. [4]. This
also enables to provide more details about the individual anomalies, as it can
be reported which rules a process execution (trace resp.) supports and which
not, but also the anomaly severity. The latter is composed of the aggregated
automatically calculated rule significance of each non-supported rule.

Let P be a process that should be monitored for anomalies and let L hold
all execution traces t of P . The key idea is to represent the given behavior in
L as a set of association rules R. To analyze if a novel execution trace t′ /∈ L
is anomalous it is determined which rules in R are supported by t′ (ex post).
Supported means that a trace complies to the conditions specified by the rule.
If it is found that t′ has a lower rule support than the trace t ∈ L that is most
similar to t′ then t′ is identified as anomalous and an alarm is triggered.

This work follows the design science research methodology, cf. [21]. For this,
design requirements were derived from existing work on anomaly detection in
the security domain, in general, and the process domain. As a result an existing
rule formalism, i.e., association rules, lays the foundations for a novel anomaly
detection approach, cf. Sects. 2 and 3. This artifact is evaluated in two ways,
cf. Sect. 4. First, its feasibility is shown by performing a cross validation with
real life process executions and injected anomalies. Secondly, the findings are
compared with related work (cf. Sect. 5) and the achieved root cause analysis

Association Rules for Anomaly Detection and Root Cause Analysis 5

capabilities are discussed, cf. Sects. 3 and 6. Stakeholders of the proposed app-
roach are process managers and security experts.

2 Prerequisites and General Approach

This paper proposes an anomaly detection heuristic to classify process execution
traces as anomalous or not. For this association rules are mined from a set of
recorded execution traces L (i.e., a log). This is beneficiary as L: (a) represents
real process execution behavior; (b) incorporates manual adaptions, noise, and
ad hoc changes; (c) is automatically generated during process executions; and (d)
is independent from abstracted/outdated documentation, cf. [11]. The proposed
approach is unsupervised as the traces in L are not labeled, formally:

Definition 1 (Execution Log). Let L be a set of execution traces t ∈ L;
t := 〈e1, · · · , en〉 holds an ordered list of execution events ei := (ea, er, es, ec);
ei represents the execution of activity ei.ea, by resource ei.er, which started at
timestamp ei.es ∈ R>0 and completed at ei.ec ∈ R>0; t’s order is given by ei.es.

This notion represents information provided by process execution log formats
such as, the eXtensible Event Stream, and enables the analysis of the control,
resource, and temporal perspective. Accordingly, the first event in the running
example, cf. Table 1, is e1 = (A, Mike, 1, 5). Auxiliary functions: {· · · }0 returns a
random element from a set/bag. c := a⊕b appends b to a copy c of the collection
given by a; 〈·〉l retains the last element of a list; 〈·〉i retains the list item with
index i ∈ N>0 while 〈·〉+i retains all list items with an index > i.

Fig. 1. Proposed rule based process anomaly detection approach – overview

Figure 1 provides an overview of the proposed anomaly detection heuristic;
algorithms are presented in Sect. 3. Firstly, a signature R is created for a process
P based on the associated execution log L (rule mining), i.e., L is assumed as
given input 1 . Here, a signature R is a set of rules that represent behavior
mined from L. A rule represents, e.g., that activity C should be a successor of A.

Here, rule mining is inspired from the Apriori algorithm [2] which mines value
relationships in large unordered datasets as association rules. However, process
execution traces are temporally ordered, e.g., based on the start timestamp of
each event. To take this aspect into account association rules are extended into
Anomaly Detection Association Rules (ADAR) – (rule for short) – to detect
control, resource, and temporal anomalies in process execution traces, formally:

6 K. Böhmer and S. Rinderle-Ma

Definition 2 (ADAR). r := 〈rp1, · · · , rpm〉 is a rule with conditions rpj :=
(ra, rd). Let t ∈ L be a trace. All conditions in r must be matched by t to
conclude that t supports r, cf. Definition 4. The condition indices j represents
their expected order in r, i.e., rpj must be matched by a trace before rpj+1 can be.
Each rule condition rpj represents an expected activity rpj .ra and an optional
execution duration represented as classes, i.e., rpj .rd ⊆ {low, avg, high} based
on L.

The following projections were defined for rules (r) and conditions (rp):
rt(r) �→ {control, temporal, SoD, BoD} represents that a rule can specify con-
trol, temporal, or resource behavior. The latter focuses on the assignment of
resources to activities which is analyzed in the form of Separation of Duty (SOD)
or Binding of Duty (BoD), cf. [7]. Further, as rules (conditions) are mined based
on given traces (events); we define projections for rules (conditions) on their
trace (event) so that rtr(r) := t (re(rp) := e).

Imagine the rule r1 := 〈rp1, rp2〉 where rt(r1) = control, rp1 = (A, ·), and
rp2 = (B, ·) is matched with the running example in Table 1. As r1 is a control
flow rule, execution duration classes are not relevant/defined. While trace t1
supports r1 the second does not. This is because an execution of activity A
succeeded by an execution of activity B is only given in trace t1. If rp1.ra = A
and rp2.ra = C then the rule would be supported by both traces t1 and t2.

Table 1. Exemplary running example log L containing the exemplary traces t1 and t2

Event e Process P Trace t Activity ea Resource er Start timestamp es End timestamp ec

e1 P1 t1 A Mike 1 5

e2 P1 t1 B Mike 6 9

e3 P1 t1 C Sue 12 16

e4 P1 t2 B Mike 18 21

e5 P1 t2 A Tom 22 29

e6 P1 t2 C Sue 32 38

The applied rule mining consists of three stages. Initially, see 2 , the basis
for the mining is laid by converting each event e, given by L’s traces, into an
individual rule. Hence, at this stage each rule only holds a single condition, so
that ∀r ∈ R; |r| = 1. In the following these initial set of rules (the individual
rules in R, resp.) is repeatedly extended and verified to create the final anomaly
detection rule set. When assuming that the running example log only consists of
t1 then the initial rule set is R := {r1, r2, r3} where each rule consists of a single
rule condition, e.g., r1 := 〈rp1〉 where rp1.ra = A given that rt(r1) = control.

Subsequently, rule extension and verification approaches are iteratively
applied. The rule extension, see 3 , extends each rule in R by one additional
rule condition in each possible way to identify new potential rules. For example,
to extend r1 all successors of activity A (i.e., the last rule condition, �→ rl

1, in r1,
cf. Definition 3) are determined, i.e., activity B and C. Secondly, activity B and

Association Rules for Anomaly Detection and Root Cause Analysis 7

C are utilized to extend the ADAR r1 into r′
1 := 〈rp1, rp′

2〉 and r′′
1 := 〈rp1, rp′′

2〉
where rp′

2.ra = B and rp′′
2 .ra = C. Formally, this is defined as:

Definition 3 (Extending individual ADARs). Let E be the set of all events
in a log L and RP be the set of all rule conditions. Let r := 〈rp1, · · · , rpm〉 be
a rule and t := 〈e1, · · · , en〉 ∈ L be an execution trace with rtr(r) = t. Rule
extension function ext : R × L �→ R extends r by:

ext(r, t) := {r ⊕ torp(e, rt(r))|e ∈ {e′ ∈ t|e′.es > e′′.es; e′′ = re(rl)}} (1)

where torp : E× {control, temporal, SOD, BOD} �→ RP converts an event e
into a rule condition rp, cf. Definition 5; Sect. 3.1 defines how this is performed
for each of the four rule types, i.e., rt(r) ∈ {control, temporal, SOD, BOD}.

Finally, rule verification is applied 4 . Each rule is verified by analyzing its
support, i.e., sup(r, L) := |{t ∈ L|mp(r, t) = true}| / |L| (function mp is defined
in Definition 4). Here the support of a rule represents the percentage of traces in
L a rule could be successfully mapped on (match the rule conditions, resp.). If
the support (i.e., the percentage of traces t ∈ L a rule supports) of a rule is below
user configurable mins ∈ [0, 1] then the rule is removed from R. Subsequently,
the rule extension and verification steps are applied repeatedly till the rules in R
are extended to a user configurable maximum length of rl ∈ N≥1 rule conditions.

The verification variables mins and rl enable to fine tune rules for specific
use cases and process behavior. For example, we found that the mining of longer
rules resulted in stricter signatures than the mining of short rules. In comparison
choosing a low mins value could result in overfitting the signatures and a high
amount of rules. Further discussions on the variables are given in Sect. 4.

Definition 4 (ADAR mapping). Let r := 〈rp1, · · · , rpm〉 be a rule (cf.
Definition 2) and t := 〈e1, · · · , en〉 an execution trace, cf. Definition 1. Mapping
function mp : R × L �→ {true, false} determines if r is supported by (matching
to, resp.) t. Rule type rt(r) determines the matching strategy to be applied, see
Sect. 3.1.

The rule r′
1, as given previously, achieves a support of 0.5 for the running

example, cf. Table 1. This is because it expects activity A is succeeded by activity
B. Accordingly, it can only be mapped onto trace t1 but not on t2. Imagine, that
mins was defined as 0.9, then r′

1 would be removed during the verification phase
from R as 0.5 < 0.9. In comparison rule r′′

1 would not be removed as it is
supported by both traces t1 and t2 (i.e., sup(r′′

1 , L) = 1 so that 1 ≮ 0.9). Rule
r′′
1 matches to (is supported by, resp.) traces where A is succeeded by activity C.

Finally, the mined rules R (the signature) are applied to classify a given
process execution trace t′ /∈ L as anomalous or not. For this a trace t ∈ L
is identified that is most similar to t′, see 5 . The similarity between traces
is measured based on the occurrence of activities in the compared traces, cf.
Definition 6. Then t′ and t are mapped onto R’s rules to determine the aggregated
support of both traces. Finally, if the aggregated support of t′ is below the
aggregated support of t then the given trace t′ is classified as being anomalous,
see 6 .

8 K. Böhmer and S. Rinderle-Ma

3 ADAR Based Anomaly Detection

This section presents the algorithms for the approach set out in Fig. 1.

3.1 Anomaly Detection Association Rule Mining

The applied ADAR mining approach, cf. Algorithm 1, combines the main
mining steps described in Fig. 1. This is the rule set initialization, along
with the iteratively applied rule extension (cf. Definition 3) and verifica-
tion steps (cf. Definition 4). Depending on the user chosen rule type ty ∈
{control, temporal, SoD, BoD} different algorithms are applied to mine either
control, temporal, or resource behavior given in L into rules. While each rule
type is mined individually, rules of all types can be combined in a single signature
(i.e., the union of all individual rule sets).

Algorithm ruleMining(log L, min support mins, max rule length rl, rule type ty)
Result: set of mined rules R (i.e., a signature)
R := ∅; // initially the rule set (signature, resp.) is empty
foreach t ∈ L do // initializing the rule set R with base rules

foreach e ∈ t do
R := R ∪ {〈torp(e, ty)〉} // initial base rule with one condition,
Definition 5

for rcsize := 0 to rl do // generate rules up to a size of rl conditions per rule
R := {ext(r, rtr(r))|r ∈ R} // extend rules in R, cf. Definitions 2 and 3
foreach r ∈ R do

if sup(r, L) < mins // verification, calc. rule support, cf. Definition 4
then

R := R \ {r} // remove r from R because its support is too low

return R // final set of mined rules R for behavior given by the log L

Algorithm 1. Mines rules for a given execution log L and rule type ty.

Definition 5 (Transforming events to ADAR conditions). The auxil-
iary function torp(e, ty) : rp transforms an event e into a rule condition rp.
Depending on the chosen rule type (given by variable ty) one out of the three fol-
lowing rule condition mining approaches is applied. For example, if ty = control

then the following control flow rule mining approach is used.

Mining Control Flow ADARs. Control flow rules represent expected activity
orders, e.g., that activity A should be succeeded by activity C during a process
execution. Hereby, control flow rules enable to identify process misuse, cf. [3],
such as, the execution of a financially critical “bank transfer” activity without
the previous execution of a usually mandatory “transfer conformation” activity.

Event to Control Condition. Accordingly, transforming an event e, during
rule extension, into a rule condition: rp = (e.ea, ·). Hence, when transforming
e1, as given by the running example in Table 1, into a rule condition rp then
rp = (A, ·).

Association Rules for Anomaly Detection and Root Cause Analysis 9

Control ADAR Support. Trace t supports a control flow rule r if t holds all
activity executions specified by the rule conditions in rp ∈ r, 1 . Further the
activity executions must occur in accordance to the order of rule conditions in
r, 2 . This represents that activity executions are mutual dependent on each
other. 1 and 2 are verified by Algorithm2 to determine if a trace t supports
the control flow rule r. Accordingly, a rule r = 〈rp1, rp2〉 where rp1.ra = A
(rp1 = (A, ·), resp.) and rp1.ra = B (meaning that activity A must be succeeded
by B) would only be supported by trace t1 but not by t2 in the running example,
cf. Table 1.

Algorithm ControlSupport(trace t, control flow rule r)
Result: if r is supported by t 	→ true or not 	→ false
for j = 1 to |r| // |〈·〉| retains the length of the list 〈·〉 do

for i = 1 to |t| do
if ti.ea = rj .ra // verify control flow rule condition matching then

t := t+i ; r := r+
j ; break // remove successfully matched parts of t, r

return |r| = 0?true:false // return true if r fully matches to t else false

Algorithm 2. Checks if a trace t supports the control flow rule r.

This work applies a relaxed rule matching. Hence, a rule is assumed as sup-
ported by a trace as long as this trace contains at least a single combination of
events that match to the rule conditions. This enables to deal with loops and
concurrency but also it enables to be flexible enough to not struggle with noise
and ad hoc changes. However, as found during the evaluation it is still specific
enough to differentiate benign and anomalous process executions, cf. Sect. 4.

Mining Temporal ADARs. Temporal rules focus on activity durations. Those
were found to be a significant indicator for fraud and misuse, cf. [5,8]. However,
while control flow rules focus on representing distinct values (e.g., explicitly
activity A is expected) this is not possible for temporal rules. This is because
distinct durations, e.g., one second or one hour, are so specific that even a minor
temporal variation, which we assume as being likely, would render a rule to be
no longer supported by a trace. This can, potentially, result in false positives.

To tackle this challenge we propose fuzzy temporal rules. These rules are
not representing durations with explicit values but with duration classes. These
classes represent, for example, that the expected duration of activity A is roughly
comparable or below/above the average execution duration of activity A – given
by the traces in L. In this work three duration classes are in use, i.e., PDC :=
{low, avg, high}. Increasing the number of classes would be possible but it was
found that this can result in overfitting the generated temporal rules (signature).

Event to Temporal Condition. A temporal rule condition consists of an
expected activity execution along with its expected duration classes. For this the
activity execution duration is represented as a subset of the possible duration
classes PDC. So, based on an event e a temporal condition rp is constructed

10 K. Böhmer and S. Rinderle-Ma

Algorithm TempClass(event e, log L, duration classes PDC, widen w ∈ [0; 1])
Result: set of representative duration classes DC ⊆ PDC for e
// calculate durations D for L, min and max duration, duration class timespan
part, duration d of event e, relative class timespan widening wspan

D := {e′.ec − e′.es|e′ ∈ t, t ∈ L : e′.ea = e.ea}
min := {d|d ∈ D, ∀d′ ∈ D; d ≤ d′}0; max := {d|d ∈ D, ∀d′ ∈ D; d ≥ d′}0

part := (max − min)/|PDC|; d := e.ec − e.es; wspan = part · w; i := 0
foreach pdc ∈ PDC // check for each class in PDC if it is representative do

start := min − wspan + part · i; end := start + wspan · 2 + part; i := i + 1
if d ≥ start ∧ d ≤ end then

DC := DC ∪ {pdc}
return DC // set of representative duration classes for event e

Algorithm 3. Determines for a log L the duration class for an event e.

by defining the expected activity, i.e., rp.ra := e.ea and selecting one or more
duration class which are expected to be observed, e.g. rp.rd := {low} ⊆ PDC.

Algorithm 3 determines the representative duration classes for an event e
based on L. Hereby, variable w ∈ [0; 1] “widens” the covered timespan of each
duration class so that the rule support calculation becomes less strict to prevent
overfitting. Compare Fig. 2. It depicts the three duration classes of PDC and how
widening affects them. For example, while the activity duration 1 can clearly
be represented by class low this is not the case for the duration 2 . As this
duration is between the avg and the high class the “widening” (w) comes into
effect, so that 2 is represented by both classes. Accordingly, the two exemplary
constraints rp1.rd = {avg} and rp2.rd = {high} would both match to 2 .

Hence, when converting e1, see the example in Table 1, into a temporal rule
condition rp1 it would be defined as rp1.ra = A while rp1.rd = {low} when using
a widening factor of w := 0.1. Given this widening factor, the average class for
activity A would match durations between 3.9 and 4.1. In comparison event e5
would convert into a condition rp2 so that rp2.ra = A while rp2.rd = {high}.

Fig. 2. Duration class representation, motivating example

Temporal ADAR Support. A trace t supports the temporal rule r (i.e.,
rt(r) = temporal) if t holds all activity executions specified by the rule con-
ditions in r with the expected durations. In addition, these activity and dura-
tion pairs must occur in the expected order given by r’s conditions. To verify
this Algorithm 2, is extended by calculating and comparing duration classes, cf.
Algorithm 4.

Mining SoD and BoD ADARs. Separation and Binding of Duty rules repre-
sent expected relative pairs of activities and resource assignments, cf. [7], i.e., all

Association Rules for Anomaly Detection and Root Cause Analysis 11

Algorithm TempRuleSupport(trace t, temporal rule r, duration classes PDC, w ∈ [0; 1])
Result: true if r is supported by t; false otherwise
for j = 1 to |r| // |〈·〉| retains the length of the list 〈·〉 do

for i = 1 to |t| do
if ti.ea = rj .ra ∧ ((TempClass(ti, L, PDC, w) ∩ ti.rd) �= ∅) then

t := t+i ; r := r+
j ; break // cf. Algorithm 2

return |r| = 0?true:false // return true if r fully matches t else false

Algorithm 4. Checks if trace t supports the temporal rule r

activities covered by a SoD rule must be executed by different resources while all
activities covered by a BoD rule must be executed by the same resource. Failing
to support resource rules can be an indicator for fraudulent behaviour, cf. [3,6].

Event to Resource Condition. Converting an event e into a SoD or BoD rule
condition rp is performed by extracting the activity related to e, i.e., rp.ra :=
e.ea. Accordingly, for e1, in Table 1, rp.ra = A holds.

Resource ADAR Support. To verify if a trace t is supporting a resource
rule r, a set is generated that holds all resources RS := {e.r|e ∈ t ∧ e.ea ∈
{rp.ra|rp ∈ r}} that have executed activities which are specified in r’s conditions
(cf., rp.ra). For a BoD rule it is expected that all executions utilize the same
resource, i.e., |RS| = 1. For a SoD rule the amount of resources taking part in the
activity executions should be equal to the amount of conditions, i.e., |RS| = |r|.
Accordingly, a rule r = 〈rp1, rp2〉 where rp1.ra = A, rp2.ra = B, and rt(r) = SoD
would only be supported by trace t2 but not by t1 (cf. Table 1). This is because
for trace t1 the set RS = {Mike} (i.e., |RS| = 1) while |r| = 2 so that |RS| �= |r|.

3.2 ADAR Based Anomaly Detection

The mined ADARs (i.e., a signature) are applied to classify a given trace t′ /∈ L
as anomalous or not. For this the artificial likelihood of t′ is calculated and
compared with the likelihood of the trace t ∈ L that is most similar to t′. If
t′ is identified as less likely it is assumed as being anomalous, cf. Definition 6.
Hereby, the presented approach follows and exploits the common assumption
that anomalous behavior is less likely than benign behavior, cf. [4,6,8]. The
artificial likelihood of a trace is determined by aggregating the overall support
(based on L) of the rules which the trace is supporting, cf. Definition 4. This
implies: the more rules a trace supports the more likely it and its occurrence is
assumed to be.

Definition 6 (Anomaly detection). Let L be an execution log and t′ be an
execution trace with t′ �∈ L. Let further R be a set of rules, i.e., signature, that
was mined for L and let R be the set of all signatures. Anomaly detection function
adec : R × L �→ {true, false} with

adec(R, t) :=

⎧
⎪⎨

⎪⎩

true if
∑

r∈R
mp(r,t′)=true

sup(r, L) <
∑

r∈R
mp(r,tsim(t′,L))=true

sup(r, L)

false otherwise.

12 K. Böhmer and S. Rinderle-Ma

where tsim(t′, L) returns the trace t ∈ L that is most similar to t′ �∈ L.

The proposed anomaly detection approach requires to identify, for a given
trace t′ /∈ L, the most similar trace t ∈ L. For this function tsim(t, L) : t is
applied. In detail: both traces are first converted into bags of activities (each
one holds activities executed by the respective trace). Subsequently, the Jaccard
similarity J({· · · }, {· · · }), cf. [19], between both activity bags is calculated. This
means: the more equal activities1 the traces contain (have executed) the more
similar they are, i.e., J({A, C}, {B, C}) = |{A, C} ∩ {B, C}| / |{A, C} ∪ {B, C}| = 0.3.
Overall the underlying similarity measure can be user chosen but this approach
was found to be simple, fast, and sufficient during the evaluation, cf. Sect. 4.

Dealing with Change and Flexibility. The proposed approach applies the
common assumption that benign behavior is more likely than anomalous behav-
ior, cf. [4]. Nevertheless benign noise and ad hoc changes still occur in the signa-
ture mining data (i.e., L) but also in the traces that are analyzed for anomalies,
cf. [4]. These kinds of behavior can, if the applied signature is too strict or over-
fitting, be misinterpreted as being anomalous and so result in false positives.
Hence, the proposed approach applies three strategies to mitigate this risk:

Similarity: given traces are not compared with strict fixed signatures or thresh-
olds. Instead the signature and the expected behavior is individually and
automatically adapted for the trace that is analyzed by dynamically selecting
a similar trace in L which is utilized as a source for comparable behavior.

Rule significance: the significance and impact of each rule is dynamically cal-
culated during the anomaly detection phase. For this the rule support given
by L (i.e., the percentage of traces in L that the rule supports) is utilized.
Hence, each rule gets automatically assigned an individual significance.

Signature strictness: a trace must not match to all rules a signature R is
composed of. Instead the applied approach aggregates the support of each
rule so that a trace can “compensate” an unsupported rule by supporting
other rules. Such a relaxed approach, in comparison to stricter existing work,
cf., [1], provides a basis to deal with noise and ad hoc changes, cf. [5].

Fostering Root Cause Analysis and Understandability. One of the main
driver for this work was the need for and lack of root course analysis capabilities
in the process anomaly detection domain, cf. [4]. An insufficient support for
root cause analysis can, for example, harden it to choose and apply appropriate
countermeasures for identified anomalies. This aspect is tackled by:

Severity: existing process anomaly detection approaches frequently generate
binary results, i.e., they mark traces either as anomalous or not, cf. [4]. How-
ever, this does not allow to assess the severity of an anomaly. Hence, we
propose to utilize the aggregated rule support of a signature/traces (t vs. t′)
as an indicator for the deviation severity between a trace and a signature.

1 Activity equivalence is considered as label equivalence here.

Association Rules for Anomaly Detection and Root Cause Analysis 13

Granularity: binary detection results are also insufficient to perform a thor-
ough anomaly analysis as they do not indicate which specific parts of a trace
did not comply to the utilized signatures. In comparison, the proposed app-
roach comprises the signature from multiple fine granular rules which can be
individually reported as supported or not; enabling to fine granularly report
which parts of a given trace were affected by an identified anomaly.

Simplicity and clarity: during the evaluation the mined signatures were
found to contain a relative low amount of rules (e.g., below 100 temporal
and control rules). Given the low amount of short and simple rules those can,
likely, easily be grasped and taken into account by experts when analyzing
process executions (traces resp.) which were found to be anomalous.

For root cause analysis, first of all, the proposed approach estimates the
severity of each anomaly, which enables to quickly rank anomalies as less or more
crucial. Secondly, it reports which rules are supported or not. This enables to
quickly grasp the differences between expected and observed behaviour. Hereby,
it can, for example, become evident that a combined resource and control rule
violation origins from an inexperienced employee which can be contacted to
explain and sort out the situation (countermeasure selection). Alternatively, it
could become evident that a large amount of rules are not supported and that
the execution must be terminated, as a countermeasure, to prevent further harm.

4 Evaluation

The evaluation utilizes real life process execution logs from multiple domains
and artificially injected anomalies in order to assess the anomaly detection per-
formance and feasibility of the proposed approach. It was necessary to inject
artificial anomalies as information about real anomalies are not provided by
today’s process execution log sources. The utilized logs were taken from the BPI
Challenge 20152. (BPIC) and Higher Eduction Processes (HEP), cf. [20].

The BPIC logs hold 262,628 execution events, 5,649 instances, and 398 activi-
ties. The logs cover the processing of building permit applications at five (BIPC 1
to BIPC 5) Dutch building authorities between 2010 and 2015. The HEP logs
contain 28,129 events, 354 instances, and 147 activities – recorded from 2008
to 2011 (i.e., three academic years �→ HEP 1 to HEP 3). Each trace holds the
interactions of a student with an e-learning platform (e.g., exercise uploads). All
logs contain sufficient details to apply the proposed approach (e.g., execution
events, activities, timestamps, resource assignments, etc.).

The logs were evenly randomly separated into training (for signature gener-
ation) and test data (for the anomaly detection performance evaluation). Sub-
sequently, 50% randomly chosen test data entries were randomly mutated to
inject artificial anomalies. By randomly choosing which, how many, and how fre-
quently mutators are applied on a single chosen test data entry (trace, resp.) this

2 http://www.win.tue.nl/bpi/2015/challenge – DOI: https://doi.org/10.4121/uuid:
31a308ef-c844-48da-948c-305d167a0ec1.

http://www.win.tue.nl/bpi/2015/challenge
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

14 K. Böhmer and S. Rinderle-Ma

work mimics that real life anomalies are diverse and occur in different strengths
and forms. Further the application of mutators enables to generate labeled non-
anomalous (i.e., non-mutated) and anomalous (i.e., mutated) test data entries.
Hereby, it becomes possible to determine if both behavior “types” are correctly
differentiated by the proposed approach (cross validation). The applied mutators
inject random control flow, temporal, and resource anomalies:

(a) Control Flow – two mutators which randomly mutate the order and
occurrence of activity execution events; and (b) Temporal – randomly cho-
sen activity executions get assigned new artificial execution durations; and (c)
Resource – activity/resource assignments are mutated to mimic, for example,
BoD anomalies.

The applied mutators were adapted from our work in [5,6]. Combining multi-
ple mutators enables to represent the diversity of real life anomalies. In addition,
the applied random training and test data separation also evaluates if the pro-
posed approach is capable of dealing with benign noise and ad hoc changes by not
identifying them as anomalous. This is, because the test data contains benign
behavior which is not given by the training data (e.g., bening ad hoc changes).
The following results are an average of 100 evaluation runs. This enables to even
out random aspects, such as, the random data separation and trace mutation.

Metrics and Evaluation. Here, the feasibility of the presented approach is
analyzed. For this, a cross validation is performed to determine if known anoma-
lous (mutated) execution traces are correctly differentiated from known non-
anomalous (non-mutated) ones. Through this four performance indicators are
collected: True Positive (TP) and True Negative (TN), i.e., that anomalous (TP)
and non-anomalous (TN) traces are correctly identified. False Positive (FP) and
False Negative (FN), i.e., that traces were incorrectly identified as anomalous
(FP) or non-anomalous (FN). Finally, these indicators are aggregated into:

(a) Precision P = TP/(TP+FP) – if identified anomalous traces were in fact
anomalous; and (b) Recall R = TP/(TP + FN) – if all anomalous traces were
identified (e.g., overly generic signatures could result in overlooking anomalies);
and (c) Accuracy A = (TP +TN)/(TP +TN +FP +FN) – a general anomaly
detection performance impression; TP, TN,FP, FN ∈ N; P,R,A ∈ [0; 1].

An optimal result would require that TP and TN are high while FP and FN
are low so that the accuracy becomes close to one. Further, the Fβ-measure,
Eq. 2, provides a configurable harmonic mean between P and R, cf. [9]. Hence,
β < 1 results in a precision oriented result while β = 1 generates a balanced
result.

Fβ =
(β2 + 1) · P · R

β2 · P + R
(2)

Results. The results were generated based on the BPIC 2015 and HEP process
execution logs and following proof of concept implementation: https://github.
com/KristofGit/ADAR. The implementation was found to be calculating a sig-
nature within minutes and required only seconds to classify a trace as anomalous
or not. Once generated the signatures can be reused and easily adapted by adding
new rules or removing old ones, e.g., to address concept drift. To ensure that

https://github.com/KristofGit/ADAR
https://github.com/KristofGit/ADAR

Association Rules for Anomaly Detection and Root Cause Analysis 15

for both data sources roughly the same amount of traces is analyzed only traces
which did take place during 2015 were used from the BPIC 2015 logs.

Primary tests were applied to identify appropriate configuration values, e.g.,
the maximum rule length rl := 3 (control and temporal) and rl := 2 (resource).
Longer rules can result in stricter potentially overfitting signatures. This is
because longer rules contain more details and thus provide less flexibility than
shorter ones. In comparison, the minimum support a rule has to achieve mins
during the mining phase, to be accepted as a part of the signature, was set to
0.9/0.8 for control/temporal rules. For this variable it was found that higher
values could potentially result in a very small rule set or in finding no rules at
all. In comparison, using a lower value could result in finding a very high amount
of rules. This does not necessarily result in better anomaly detection results as
it increases, as we found, the risk of generating overfitting signatures.

Finally, the fuzzy temporal rule generation can be configured based on the
chosen temporal class widening variable w which was set to 0.2. Lowering this
value would result in stricter signatures (temporal rules, resp.) that could poten-
tially struggle when dealing with noise and ad hoc changes while a higher value
would result in potentially overlooking anomalies as the signatures become less
strict. Given the low amount of configuration variables we assume that exist-
ing automatic optimization algorithms should, likely, be able automatically find
optimal settings for the proposed approach based on given training data.

The average evaluation results are shown in Table 2. Overall, an average accu-
racy of 81% was achieved along with an average precision of 77% and an average
recall of 89%. Given these results we conclude that the proposed approach is fea-
sible to identify the injected anomalies in the analyzed process execution data.
Moreover, it becomes visible that the detection of diverting anomalous behav-
ior becomes harder the more diverse and complex the benign behavior is (e.g.,
because of noise or ad hoc changes). Accordingly the anomaly detection per-
formance of the BPIC 2015 logs are lower than the results for the HEP logs.
Nevertheless, an average anomaly detection accuracy of 75% was achieved for
the more challenging BPIC 2015 process execution log data.

Table 2. Anomaly detection performance of the presented approach

HEP 1 HEP 2 HEP 3 BPIC5 1 BPIC5 2 BPIC5 3 BPIC5 4 BPIC5 5

Precision 0.86 0.87 0.85 0.73 0.70 0.78 0.69 0.69

Recall 0.98 0.98 0.97 0.90 0.85 0.75 0.87 0.84

Accuracy 0.91 0.91 0.90 0.78 0.74 0.77 0.73 0.73

F0.5-measure 0.88 0.88 0.87 0.76 0.73 0.77 0.72 0.72

F1-measure 0.92 0.92 0.91 0.80 0.77 0.77 0.77 0.76

16 K. Böhmer and S. Rinderle-Ma

5 Related Work

The most comparable work [18] also applies association rules for anomaly
detection in processes. However, rules are largely manually generated (e.g., a
user defines the expected maximum activity duration) and order dependencies
between activities are not verified. Our survey on anomaly detection in busi-
ness processes [4] reveals several shortcomings in most existing work: (a) only
single process perspectives are supported; and (b) the analysis of anomalies is
not fostered/supported; and (c) monolithic signatures are frequently utilized –
which are hard to grasp, struggle with noise and ad hoc changes, but also can-
not be partially updated whenever the underlying process changes. Likely, these
limitations hinder the application of process anomaly detection in the real world.

Further, compliance checking approaches are related, cf. [14,15]. These
approaches utilize, e.g., rule based, definitions of expected process behavior to
analyze its definition and execution for deviations and, partially, deviation root
causes, cf. [14,16]. However, such work typically does not take noise and ad hoc
changes into account, possibly resulting in false positives. Further the expected
behavior definitions are typically assumed as given as their creation can result in
extensive (manual) efforts that require in depth domain and process knowledge.

In the security domain, anomaly detection and root cause analysis are major
research areas. However, existing approaches are too specialized to be applied to
process data, cf. [5,12], because they focus on single unique use cases and data
formats, such as, specific network protocols, e.g., the Session Initiation Protocol,
cf. [17]. These approaches can hardly be generalized and applied to process
execution logs which hold different data, formats, and contextual attributes.

One could argue that instead of applying anomaly detection the process def-
inition could be secured by applying security focused modeling notations, cf. [7].
In real world scenarios, this would require to be aware of all potential sources for
security incidents during the design phase and to constantly update the processes
to meet novel security challenges. In comparison the proposed anomaly detection
approach is self learning and can also deal with process changes automatically.

6 Discussion and Outlook

This paper focuses on two main challenges (a) the detection of anomalies in
process executions; and (b) taking a first step towards supporting the analysis of
detected anomalies. We conclude that this paper was able to meet the first chal-
lenge as the conducted evaluation showed an average anomaly detection recall
of 89%. This goes with a substantial simplification of the generated signatures
compared to previous work in [6] (complex likelihood graphs vs. short rules)
which fosters the understandability of the signatures and identified anomalies.

As the identified anomalies (and related traces) can be complex and hard to
understand we argue that anomaly detection approaches should support experts
when analyzing anomalies along with the related alarms. For this experts would,
as we assume, require, inter alia, information about (a) which part of an exe-
cution trace is affected by an anomaly; and (b) the anomaly severity, cf. [13].

Association Rules for Anomaly Detection and Root Cause Analysis 17

It is shown how such information can be provided by the proposed rule based
anomaly detection approach. To our knowledge this is the first process anomaly
detection approach that does so. We assume that it is necessary to identify but
also to understand anomalies to choose appropriate anomaly countermeasures.

Future work will concentrate on expanding and evaluating the proposed
approaches’ root cause analysis capabilities. For this, visualization and man-
agement tools will be created that enable to handle the provided information
(e.g., which rules are supported or not) in an interactive manner. Further, user
studies will be performed to assess the benefits of the provided information in
detail.

References

1. Van der Aalst, W.M., de Medeiros, A.K.A.: Process mining and security: detecting
anomalous process executions and checking process conformance. Theor. Comput.
Sci. 121, 3–21 (2005)

2. Agrawal, R., Srikant, R., et al.: Fast algorithms for mining association rules. In:
Very Large Data Bases, vol. 1215, pp. 487–499 (1994)

3. Bezerra, F., et al.: Anomaly detection using process mining. Enterp. Bus. Process
Inf. Syst. Model. 29, 149–161 (2009)

4. Böhmer, K., Rinderle-Ma, S.: Anomaly detection in business process runtime
behavior-challenges and limitations. arXiv arXiv:1705.06659 (2017)

5. Böhmer, K., Rinderle-Ma, S.: Multi instance anomaly detection in business pro-
cess executions. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS,
vol. 10445, pp. 77–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65000-5 5

6. Böhmer, K., et al.: Multi-perspective anomaly detection in business process execu-
tion events. In: Debruyne, C., et al. (eds.) Cooperative Information Systems, pp.
80–98. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-48472-3 5

7. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: modeling
and enforcing access control requirements in business processes. In: Access Control
Models and Technologies, pp. 123–126. ACM (2012)

8. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. Comput.
Surv. 41(3), 15 (2009)

9. Chinchor, N., Sundheim, B.: MUC-5 evaluation metrics. In: Message Understand-
ing, pp. 69–78. Computational Linguistics (1993)

10. Czepa, C., et al.: Plausibility checking of formal business process specifications in
linear temporal logic, pp. 1–8 (2016)

11. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data
Knowl. Eng. 67(1), 74–102 (2008)

12. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data:
a survey. Knowl. Data Eng. 26(9), 2250–2267 (2014)

13. Julisch, K.: Clustering intrusion detection alarms to support root cause analysis.
Inf. Syst. Secur. 6(4), 443–471 (2003)

14. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.: Com-
pliance monitoring in business processes: functionalities, application, and tool-
support. Inf. Syst. 54, 209–234 (2015)

http://arxiv.org/abs/1705.06659
https://doi.org/10.1007/978-3-319-65000-5_5
https://doi.org/10.1007/978-3-319-65000-5_5
https://doi.org/10.1007/978-3-319-48472-3_5

18 K. Böhmer and S. Rinderle-Ma

15. Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process
compliance using compliance rule graphs. In: Meersman, R., et al. (eds.) OTM
2011. LNCS, vol. 7044, pp. 82–99. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25109-2 7

16. Ramezani, E., Fahland, D., van der Aalst, W.M.P.: Where did i misbehave? Diag-
nostic information in compliance checking. In: Barros, A., Gal, A., Kindler, E.
(eds.) BPM 2012. LNCS, vol. 7481, pp. 262–278. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32885-5 21

17. Rieck, K., Wahl, S., Laskov, P., Domschitz, P., Müller, K.-R.: A self-learning system
for detection of anomalous SIP messages. In: Schulzrinne, H., State, R., Niccolini, S.
(eds.) IPTComm 2008. LNCS, vol. 5310, pp. 90–106. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89054-6 5

18. Sarno, R., et al.: Hybrid association rule learning and process mining for fraud
detection. Comput. Sci. 42(2), 59–72 (2015)

19. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn.
Addison-Wesley, Boston (2005)

20. Vogelgesang, T., et al.: Multidimensional process mining: questions, requirements,
and limitations. In: CAISE Forum, pp. 169–176. Springer, Heidelberg (2016)

21. Wieringa, R.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

https://doi.org/10.1007/978-3-642-25109-2_7
https://doi.org/10.1007/978-3-642-25109-2_7
https://doi.org/10.1007/978-3-642-32885-5_21
https://doi.org/10.1007/978-3-540-89054-6_5
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

	Association Rules for Anomaly Detection and Root Cause Analysis in Process Executions
	1 Introduction
	2 Prerequisites and General Approach
	3 ADAR Based Anomaly Detection
	3.1 Anomaly Detection Association Rule Mining
	3.2 ADAR Based Anomaly Detection

	4 Evaluation
	5 Related Work
	6 Discussion and Outlook
	References

