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Abstract. Gaze direction is one of the most important interaction cues that is
widely used in human-machine interactions. In scenarios where participants’
head movement is involved and/or participants are sensitive to body-attached
sensors, traditional gaze tracking methods, such as using commercial eye
trackers are not appropriate. This is because the participants need to hold head
pose during tracking or wear invasive sensors that are distractive and uncom-
fortable. Thus, head orientation has been used to approximate gaze directions in
these cases. However, the difference between head orientation and gaze direc-
tion has not been thoroughly and numerically evaluated, and thus how to derive
gaze direction accurately from head orientation is still an open question. In this
article, we have two contributions in solving these problems. First, we evaluated
the difference between people’s frontal head orientation and their gaze direction
when looking at an object in different directions. Second, we developed func-
tions that can map people’s gaze direction using their frontal head orientation.
The accuracy of the proposed gaze tracking method is around 7°, and the
method can be easily embedded on top of any existing remote head orientation
method to perform non-invasive gaze direction estimation.
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1 Introduction

Gaze direction is one of the most useful interaction cues in human-machine interactions
(HMI). Gaze tracking has been widely applied in fields such as human–computer
interaction [1–3], human-robot interaction [4–6], and virtual reality [7, 8]. Many
existing gaze tracking technologies use invasive methods [9], such as wearing eye
tracking glasses [10] and attaching electrooculogram sensors around the eyes [11].
However, many people cannot use such methods due to their sensitivity to body
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attached hardware [12]. In addition, wearing hardware limits people’s activities and
may cause discomfort, too. While there are some methods to avoid direct contact with
the hardware, such as using eye trackers that can be place in front of the participant
[13], the calibration process of these devices are time consuming and may not work for
some participants such as very young children. In addition, participants need to hold
their head still during tracking, which is not applicable in HMI studies that require large
head movements [12, 14]. In addition, most of these devices are expensive and only
available to professionals. Thus, gaze tracking methods using invasive hardware and/or
requiring head to be held do not satisfy many HMI scenarios.

Since people tend to turn their head to a target when looking at it, head orientation
can also be used to indicate gaze direction. Previous research has used frontal head
orientation to approximate gaze direction directly [15]. However, literature [16, 17] and
common sense tell us that differences exist between people’s frontal orientation and
their gaze direction. Therefore, other studies modeled gaze direction as an uncertainty
with assumed probability distribution on top of head orientation [18] or captured clear
eye images (usually requires cameras positioned closely to the participant) and
ensemble gaze angles on top of head orientation [19, 20]. Nevertheless, only a few
works [16, 17] have studied the difference between head orientation and gaze direction
carefully, while most of them focused on this difference for attention tracking, instead
of the explicit relation between gaze and head orientation.

We aim to solve these problems in this paper. First, we conducted a detailed
evaluation on the difference between frontal head orientation and gaze direction.
Based on this difference, we introduced a novel gaze direction estimation method that
accommodates the rotation of head, without the need of invasive hardware or cap-
turing clear eye images.

This new method approximates gaze direction of a person using his/her head
orientation information. Head orientation can be detected remotely and precisely using
computer vision techniques [21]. In this paper, we chose Microsoft Kinect, which is a
low cost device available to the public. Seven adults participated in a data collection
experiment, where their synchronized gaze direction data and head orientation data
were recorded. These data were used to train mapping functions that use head orien-
tation as input to calculate the corresponding gaze direction.

Comparing to previous gaze direction estimation methods, the proposed method
can be implemented directly on top of any existing head orientation method and does
not require any extra hardware for gaze tracking. Since the computational cost of the
mapping functions is low, real-time gaze tracking is possible if the functions are
applied on real-time head orientation estimation methods. As remote head orientation
estimation methods [21], such as the CSIRO Face Analysis SDK [22] and Microsoft
Kinect, have been well developed, applying the gaze mapping functions on top of these
methods results in non-invasive gaze tracking easily.

This paper is structured as follows: Sect. 2 shows the data collection and processing
of this study. Section 3 presents the difference between gaze direction and frontal head
orientation. Section 4 introduces how the gaze direction estimation functions were
designed accordingly and their accuracies. Finally, Sect. 5 concludes this article and
discusses future works.
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2 Data Collection and Processing

Functions that map head orientation to gaze direction were derived by data fitting. We
conducted a data collection experiment with seven adults recruited as participants.

In each experiment session, a participant was asked to look at a moving marker (a
red spot) projected on a wall (a plane). The position of the marker was used to indicate
the ground truth of the participant’s gaze direction. Before the experimental trials, the
marker was at the center of the display region, and the participant’s head orientation
when his/she was looking at the marker was recorded as a baseline value. This value
was used to calibrate the data for each participant as discussed in the later part of this
section. The marker’s movement was arranged in multiple trials. In each trial, the
marker started from a random position and moved horizontally, vertically, and diag-
onally following a random order. The participant may unconsciously anticipate the
motion of the marker if it moved in the same direction for a long period. To solve this
problem, we kept each trial short, which lasted from a few seconds to about a minute.
Meanwhile, the moving speed of the marked was adjusted so that participants could
follow the motion of the marker easily. After each trial, the marker disappeared and
showed up in another position to start the next trial until the end of the experiment
session. The combined path of the marker in all the trials covered a region of
360 cm � 117 cm. Figure 1 illustrates an example of the path that the moving marker
followed.

During the experiment, the participant was seated facing the central part of the
display region. The center of the head was approximately 150 cm from the ground and
160 cm from the display region. Therefore, in order to look at the whole display region,
the participants’ gaze needed to shift from �48:37� to 48:37� in horizontal direction
and from �18:81� to 21:34� in vertical direction, respectively, as shown in Fig. 2. This
simulates a normal gaze range when people are communicating with other agents or
paying attention to objects in front of them. When a participant was looking at the
marker, his/her head orientation was estimated using Microsoft Kinect. As shown in
Fig. 2, the Kinect was placed at the bottom of the display region’s central part, facing
the participant. Thus, the participant’s head was in the view of the Kinect to estimate
the head pose, while the Kinect did not block the participant’s vision towards the

Fig. 1. Moving marker path example (Color figure online)
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display region. The head orientation data were recorded and synchronized with the
participant’s ground truth gaze direction, and thus data pairs can be used to calculate
the difference between gaze direction and frontal head orientation as well as fit
mathematical functions that map head orientation to gaze direction.

The frontal head orientation (a vector) f
*

was computed from the head rotation
quaternions given by the Kinect for Windows Software Development Kit 2.0. The term

f
*

was projected horizontally and vertically, and thus generated two angles, a and b,
which represented the head rotation horizontally and vertically from the frontal
direction, respectively. As mentioned in the last section, before the experimental trials,
each participant’s baseline head orientation was recorded when they were instructed to
look at the center of the display region, which was approximately right in front of the
participant. The baseline orientation was used to calibrate a participant’s head orien-
tation. This is necessary since different participant tended to look at the same spot in the
display region with different head orientation. For example, some people may raise
head a little more than others, and some people may turn their head to one side a little
more than the other side. Therefore, we recorded a participant’s head orientation at the
calibration point as ac; bcð Þ, and all the head orientation data was subtracted by this pair
to eliminate the baseline differences, i.e., af ¼ a� ac, bf ¼ b� bc þDb. The cali-
bration point is slightly higher than the exact horizontal direction. Db is the difference
between the horizontal direction and the vertical direction of the calibration point,
which is approximately 1.43° in this study.

The calibrated head orientation angles af and bf are used to fit the mapping
functions. As shown in Fig. 3, we define the position of the moving marker as ðx; yÞ,
which is associated with the ground truth gaze direction ðag; bgÞ. Based on the
geometry of the experimental setup,

ag ¼ tan�1ðx=160Þ; ð1Þ

bg ¼ tan�1ðyþ 4=160Þ: ð2Þ

As illustrated in Fig. 3, the gaze direction does not overlap with the head orien-
tation exactly.

Fig. 2. Data collection experiment configuration
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Data streams of ðag; bgÞ and ðaf ; bf Þ were synchronized so that all the ground truth
gaze direction data were paired with their synchronized and calibrated head orientation
data. From the 7 participants, 7281 pairs of data were collected initially. Even though
the participants were instructed to stare at the moving marker as much as possible, we
still observed occasional unconscious gaze shift and its corresponding head rotation
shift during the experiment. Therefore, to eliminate outliers, we divided the display
region in to 300 grids, and each grid was 12 cm (length) by 11.7 cm (height). For each
grid, the following steps were executed:

Step 1: All the ðaf ; bf Þ that correspond to ðag; bgÞ within this grid were used to

calculate their mean values ð�af ; �bf Þ and the standard deviation ðraf ; rbf Þ.
Step 2: For a head orientation data point ðaif ; bif Þ, if aif

�
�
�

�
�
�[ �af þ 2raf or

bif

�
�
�

�
�
�[ �bf þ 2rbf , this point was removed from the dataset along it’s paired gaze

point.

After these two steps, 554 pairs (7.6%) were removed from the initial synchronized
data, leaving 6727 pairs for fitting the mapping functions.

3 Difference Between Gaze Direction and Frontal Head
Orientation

Figure 4 plots ag and bg against ðaf ; bf Þ in a 3 dimensional space. We can see that the
frontal head orientation and gaze direction are related but not coincident. The distri-
butions of the points are slightly non-linear.

In addition, from the data, we found that the further a participant was looking away
from his/her frontal direction, the larger the difference between his/her head orientation
and gaze direction was. This is an important behavioral phenomenon that needs to be
considered when approximating gaze direction using head orientation.

We divided the data into 21 sets in both horizontal and vertical directions, based on
the data’s distance from the center of the display. Thus, each horizontal set covers a
range of about 4.61°, and each vertical set covers a range of about 1.91°. Then, we

Fig. 3. Illustration of the gaze angles and head orientation angles
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calculated the difference between the frontal head orientation and the gaze direction in
each direction within each set. Figure 5 shows the patterns clearly, where each bar
indicates the difference in one set (marked from −10 to 10). Subfigures (a) and (b)
illustrate the average values of ag � af

�
�

�
� and bg � bf

�
�

�
�, respectively. Larger

x-coordinates represent longer distances from the center of the display. In the horizontal
direction, bar at 0 indicates the difference in the center set ([−2.31°, 2.31°]), bars at
negative x coordinates are the differences on the left plane, and bars at positive x
coordinates are the differences on the right plane. In the vertical direction, bar at 0
indicates the difference in the center set ([−0.96°, 0.96°]), bars at negative x coordinates
are the differences on the lower plane, and bars at positive x coordinates are the dif-
ferences on the upper plane.

From Fig. 5, we can see that the differences between gaze direction and the frontal
head orientation became larger when the participants looked further away from the
center in both horizontal and vertical directions. In horizontal direction, the difference
in the range of [−20.75°, 16.14°] (bar −4 to bar 3) was lower than 8°. The minimum

Fig. 4. Plots of ag and bg against ðaf ; bf Þ

Fig. 5. Differences between gaze direction and frontal head orientation
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difference (4.31°) was at [−2.31°, 2.31°] (bar 0). The difference increased as the
participants’ gaze shifted to the sides. At bar −10 and 10, the differences are 16.71° and
16.26°, respectively. In the vertical direction, the difference in the range of [−10.51°,
8.60°] (bar −5 to bar 4) was lower than 6°. The minimum difference (3.86°) was at
[−4.78°, −2.87°] (bar −2). The difference increased as the participants’ gaze shifted
upwards and downwards. At bar −10 and 10, the differences are 11.41° and 16.03°,
respectively.

4 Derivation of the Mapping Functions for Gaze Direction
Estimation

Two mapping functions F1 and F2 were derived as ag ¼ F1ðaf ; bf Þ and bg ¼ F2ðaf ; bf Þ
by fitting 2D surfaces using the points clouds. Linear and polynomial regressions were
conducted with linear interpolation. The average error of linear regression for F1 and
F2 was 7.81° and 7.83°, respectively. The RMSDs decrease slightly in polynomial
regressions, however, high orders beyond the second cause overfitting and thus are not
appropriate. Therefore, we choose the second-order polynomial regression, and the
average error of F1 and F2 was 7.74° and 7.63°, respectively. The form of the mapping
functions are as follows, with the coefficients listed in Table 1:

F ¼ P00 þP10af þP01bf þP02a
2
f þP11afbf þP02b

2
f : ð3Þ

Therefore, F1 and F2 can be used to approximate the participants’ gaze direction
using their frontal head orientation within the range of the experimental setup.
Figure 6, shows the fitted surface that represent F1 and F2, respectively. The nonlin-
earity of the two functions can be observed in the graph, especially in F2. These two
functions can be easily embedded to any existing head orientation estimation methods
for gaze tracking.

The mapping functions were embedded into the existing Kinect head orientation
estimation program. Due to the low computational cost, this gaze tracking method can
work in real-time (about 30 frames per second).

Table 1. Coefficients of F1 and F2 (rounded to 6 decimals)

P00 P10 P01 P11 P20 P02

F1 1.492150 1. 320722 0.082641 −0.007427 −0.001641 −0.002192
F2 4.338289 −0.024300 1.066991 −0.003938 −0.004744 0.000685
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5 Conclusion and Discussion

Since people tend to turn their head towards the target when looking at it, we can
extract gaze direction using frontal head orientation. In this work, we first studied the
relation, especially the difference, between people’s gaze direction and their frontal
head orientation. Then, we proposed a gaze direction estimation method based on
frontal head orientation. Seven participants were recruited and instructed to look at a
moving marker that indicated their ground truth gaze direction. Meanwhile, their head
orientation when looking at the moving marker was recorded using Microsoft Kinect.
We found that people’s gaze direction deviate from their head orientation when they
look away from frontal direction. In order to use head orientation to estimate gaze
direction, mapping functions could be fitted using the synchronized gaze and frontal
head orientation data. Two second-order polynomial mapping functions were derived
through regression. The average error of the proposed method is below 8°. The
functions are with low computational cost and are independent of the particular
devices/hardware for head orientation detection. Therefore, it can be applied on any
existing head orientation estimation techniques, such as using a Microsoft Kinect, to
achieve real-time gaze tracking with low cost. Comparing with other gaze tracking
methods, the proposed method does not require any other hardware/sensors particularly
for gaze tracking except those for head orientation estimation. Since head orientation
has been studied for decades and there are many available methods and products for it,
extending them for gaze tracking using the proposed method is easy and handy.

However, there are a few limitations of the current work that need to be addressed
in the future. First, the accuracy (around 7°) is low compared with that of using
commercial eye trackers under careful calibration and withholding head pose. There-
fore, the proposed method may not be applied to studies that require very accurate gaze
tracking, such as tracking the exact point that a participant is looking at. Instead, the
proposed method can be used in scenarios where a general and quick referring of
people’s gaze is enough, such as distinguishing what large objects a participant looks at
and the gaze switching between these objects [16]. Since the objects in many

Fig. 6. Plots of mapping functions
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human-machine interaction studies are separated much more than 8° visually, the
proposed method has a great potential to provide a quick solution for referring gaze in
these studies. Examples include: (1) human-robot interaction studies, where the system
needs to distinguish whether a participant is looking at a robot or another object
positioned far away from the robot [14]; and (2) human-computer interaction studies,
where participants need to look at different monitors during the interaction [12].

The second limitation of the current study is the small sample size. Only seven
participants’ data were used, and thus the fitted functions are tuned for this small
group. In order to develop a general function that works well for larger population,
more data need to be collected from a large sample in the future.

Another way to improve the current work is to study how the combination of head
orientation and body gestures impacts the gaze direction. The current work studied
participants’ looking behaviors when they were facing the object (i.e., the display
region). However, people’s gaze direction with respect to the head orientation may be
influenced by body posture. For example, when a person is called from back, he/she
may turn the upper body half way and rotate the head to look back, or this person may
turn the whole body to the back completely without turning the head with respect to the
body. These are more complex cases compared with the current study and have not
been thoroughly and symmetrically addressed in previous research.

In summary, this paper introduced an easy and quick way to estimate gaze from
frontal head orientation. The proposed method gives a coarse gaze direction estimation
and can be applied on human-machine interactions that require rough gaze direction.
This method can be embedded into any existing head orientation estimation methods
and does not require extra hardware. Although limitations exist, we believe the current
work is an important step towards more accurate, cost effective, and non-invasive gaze
tracking technologies.
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