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Abstract. In many situations it is important to detect and recognize people and
vehicles. In this study the purpose was to examine human performance to detect
and recognize vehicles on the ground from synthetic video sequences captured
from a simulated unmanned aerial vehicle. A visual and an infrared sensor was
used on an unmanned aerial vehicle with camera scan rate of the field of view on
the ground relative to the ground of either 8 m/s or 12 m/s. The results from this
study demonstrated that performance was affected by type of sensor, camera scan
rate and type of vehicle. Subjects performed worse with infrared than with visual
sensor and increased camera scan rate caused more errors. Also, the results show
that recognition performance varied between 67 and 100% depending on type of
vehicle. Recognition of specific vehicles was also affected negatively by inter‐
ference from vehicles of similar appearance. Consequently, a vehicle with unique
appearance within the set was easier to recognize.
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1 Introduction

Gathering information with new and better sensors is positive since users can access
more information, but it is necessary to have an understanding of what is the most vital
information in a given situation. To accomplish this, users’ need a good understanding
of the whole system. Data overload may be a serious problem, and how to help human
cognition using e.g. computers is fundamental to ensure good situation awareness and
good user performance. Regardless of type of system it is also necessary to have a good
understanding of the user and the context. The ecological approach [1] and representa‐
tion design [2] describes a cognitive triad between environment, interface and users.
There is a reciprocal coupling between the user and the environment, which often is
mediated by a user interface. The interface effectiveness is determined by the mapping
between the environment and interface (correspondence) and the mapping between the
user and interface (coherence). To develop an effective and user-friendly system all these
three parts must be taken into account. Information that reaches the user has often been
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acquired with some type of sensor system that involves signal processing, acting as a
filter between the environment and the interface. In order to be able to understand the
complete picture of study sensor-related aspects the model has to be extended to also
include environment, interface and human aspects. Since the sensor is a central part in
our research, we add the sensor to the representation visualization (Fig. 1).

Fig. 1. The relation between user, interface, environment and sensor. Icons were adopted from
Iconshock [3].

Even though the whole system always have to be taken into account, the main focus
here is on the ability and limitations of the users and their performance to extract correct
information from sensor data.

Seeing an object could mean different things, but one way to analyze observers’
ability to perform visual tasks is to use the Johnson criteria [4, 5] that distinguish between
detection (i.e. whether there is something of potential interest), recognition (e.g. the
difference between a human and car) and identification (e.g. whether it is a friend or
foe). According to Johnson criteria, possible detection distance is calculated based on
how many pixels an object must contain. In order to detect static objects it requires 2 ×
2 pixels, orientation 8 × 2.8 pixels, 8 × 8 pixels for recognition, and identification
required 12.8 × 12.8 pixels [6]. However, this should be interpreted as values under best
possible conditions. There is also a variety of factors that must be considered, including
the contrast between objects and background, atmospheric disturbances, the number of
objects in the picture, light, contextual clues, color and type of optics. Moreover,
performance is affected by the type of task, the experience of the participants and their
level of training for the specific task, motivation, and the relative importance between
quick decisions and correct results [4]. Also the methods Triangle Orientation Discrim‐
ination (TOD), Targeting Task Performance (TTP) and Thermal Range Model (TRM)
could be considered. For further description of these methods see Näsström et al. [7],
Wittenstein [8], and Vollmerhausen and Jacobs [9].

Even though theoretically calculated values (e.g. Johnson criteria) could be of some
value to get an indication of what objects that can be detected, recognized or identified,
experiments with users should be conducted to get a better understanding of a real situa‐
tion. There is an obvious risk of confusion regarding the interpretation of concepts, since
the concepts are used by researchers in different context without a standardized defini‐
tion. It is absolutely necessary to clarify and define the concepts used.
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Identification of friend or foe is different from actual identification of a face from
memory or a database. In many situations one must be absolutely certain about the
identity of a person or vehicle to make a decision whether to use military force. Also, it
is necessary to have a good understanding of roles of engagement (ROE), when military
force can and cannot be used. Friendly fire, where a soldier accidentally opens fire on
his own troops, is a well-known phenomenon that must be avoided. In other cases, such
as intelligence, is it important to describe what is seen according to a predetermined
classification scheme and not just describe what users think they see.

In military contexts, it is sometimes important to find a particular type of vehicle
among other similar military vehicles, and it is also important to distinguish between
military and civilian vehicles. To increase knowledge about this, our work involves
assessing actual sensor performance but also investigating how operators use and inter‐
pret sensor information. Even though the interest from a human factors perspective is
mainly on user performance to detect and recognize people and vehicles, we also conduct
technology driven sensor studies [10] and thorough investigation of the real setting [11].
There are many interesting studies focusing on detection, recognition and identification.
Colomina and Molina [12] discuss the evolution and use of unmanned aerial systems in
photogrammetry and remote sensing that can be used in both military and civilian oper‐
ations, e.g. search and rescue missions. Other research with unmanned aerial vehicle
(UAV) and target detection focus has a more technical approach, e.g. develop algorithms
for autonomous target detection [13] or autonomous UAVs for search and rescue [14].
There are also interesting studies using multiple cooperative vehicles [15] or a swarm
of unmanned vehicles [16] which shows that multiple vehicles can improve perform‐
ance. Other research has a clearer connection to human factors issues and user perform‐
ance. Hixson et al. [17] used soldiers to investigate the relation between performance in
the laboratory and in the field for tasks including detection, recognition and identifica‐
tion. The results shows that perception laboratory performance using real or simulated
imagery relates well to imagery performance in the field.

The research question in the first experiment was to investigate how fast and to what
degree of correctness can users detect and recognize one selected military vehicle among
other similar vehicles and how is performance affected by type of sensor, camera scan
rate of the field of view on the ground (hereafter referred to as scan rate) and distance?
The research question in the second experiment was to investigate to what degree of
correctness can users recognize eight military vehicles with an infrared sensor, at camera
scan rate of 8 m/s at a distance of 400 meters?

It is important to investigate and understand the sensors’ pros and cons in different
situations. Only the infrared sensor can be used at night while both the visual and infrared
sensor can be used during daytime. However, it is not obvious which sensor is preferred
during daytime in different situations and it is therefore important to investigate this. In
some situations it is certainly better to use the visual sensor, but sometimes the vehicle
can be partly hidden under e.g. branches or trees and then it is advantageously to use
the infrared sensor also during daytime. From a tactical perspective it may be advanta‐
geous to fly the unmanned aerial vehicle at night, but then only the infrared sensor can
be used. Also, at night there are significantly fewer civilian vehicles in motion and less
vehicles that gives heat signatures which facilitates detection and recognition of military
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vehicles. If performance decreases with one of the sensors quantification would be
important. It is preferable to use high camera scan rate since larger geographic areas can
be covered, but if it results in decreased performance it may be necessary to use a lower
speed. Even though user performance is expected to decline at increased camera scan
rate it is important to objectively quantify performance decrease. If the unmanned aerial
vehicle fly at high altitude there are tactical advantages such as lower risk for the UAV
being detected, but if it results in decreased performance it is not recommended.

Here, two experiments were conducted that is part of a larger study where the overall
goal is to investigate how different sensors should be used in unmanned aerial vehicles
to gather information. The purpose with these two experiments were to investigate
subjects’ performance of vehicle detection and recognition from a simulated unmanned
aerial vehicle. In the first experiment, detection and recognition of one selected vehicle
among a total of eight vehicles was investigated at two different camera scan rate (seen
from the UAV) with visual- and IR-sensor. In the second experiment recognition of all
eight vehicles was investigated at a camera scan rate of 8 m/s with an IR-sensor.
Although the results here are only presented and analyzed strictly linked to these experi‐
ments, later it can be analyzed and compared to other experiments. Also, this information
can be used to better understand how information from different sensors can be aggre‐
gated to increase performance. However, this is not the focus here and is therefore not
presented in this paper.

2 Experiment 1 – Detection and Recognition of Selected Vehicle

In the first experiment, detection and recognition of one selected vehicle among a total
of eight vehicles was investigated.

2.1 Method

Participants watched synthetic video sequences captured from an UAV. All video
sequences were generated by a sensor simulation system [10]. The task was to detect
and recognize a selected vehicle among other vehicles. A within-group design with two
visualizations (visual and IR) × two distances (400 and 520 meters) × two camera scan
rate (8 and 12 m/s) was used.

Subjects
Twelve subjects (5 women and 7 men) between 25 and 48 years participated in the
experiment. Half of the participants’ had military background and the other participants’
were well acquainted with military activities through their civilian jobs. However, none
of the participants were experts on the vehicles presented in these experiments and
therefore trained prior to the experiments started. All had adequate vision with or without
correction.
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Apparatus
The video sequences were presented on a Dell Latitude 7240 with 12.5 inch display with
a resolution of 1366 × 768 pixels. The computer had 4th generation Intel® Core i5 and
i7. A self-developed software was used to present stimuli and record participant’s
response time.

Stimuli
A total of eight videos (640 × 480 pixels) were generated during a clear sunny day with
shadows from targets on the ground to depict sensor information from a visual- and
infrared sensor (Fig. 2). The overall mission was similar to a real UAV flying along a
predefined path with vehicles stationary on the ground.

Fig. 2. Still images from the visual sensor (left) and the IR sensor (right).

The task was to detect and recognize one selected vehicle among a total of eight
vehicles. The eight vehicles were BMP-3, BTR-80, MT-LB, SA-19, T-72, TOS-1, Ural
4320 Ammunition truck, and Ural 4320 fuel truck (Fig. 3).

Fig. 3. The eight vehicles used.
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Four scenarios were generated with the visual- and infrared sensor respectively. Each
scenario had 18 areas with different target positions. The same areas and positions were
used for the visual- and infrared scenarios. A total of eight videos were generated
according to the aforementioned design. The visual- and infrared scenarios were
presented in a balanced order between subjects’, and within each sensor the four
scenarios were presented in a randomized order.

Procedure
After welcoming the participants individually and briefing them about the experiment
purpose and procedure they received written information and had the opportunity to ask
questions to the experiment leader. Then an introduction was given to make sure that
the participants were familiar with the situation and test material. They were introduced
with both visual- and infrared image visualizations and received training, which
consisted of two three minutes scenarios, one for visual- and one for infrared stimuli.
The participants watched the videos and answered by first pressing the space bar
whereby the response time (RT) was recorded and then used the left mouse button to
annotate in the image to indicate the selected vehicle position. The annotation was later
used to calculate number of correct answers. The participants were instructed to always
focus on the screen with the stimuli. Because the task was mentally demanding it was
divided into eight separate videos with the possibility to rest before continuing with the
next one.

2.2 Results

The results include statistical analysis of time to detect targets and recognition of the
selected vehicle. The data were analyzed with a three-way ANOVA [18] with type of
visualization (visual and infrared), camera scan rate (8 and 12 m/s), and distance (400
and 520 meters). Tukey HSD was used for post hoc testing [19].

Detection
The ability to detect targets was measured by response time (RT) and analysis was
performed by ANOVA repeated measures. The results showed no significant main
effects of response time (p > .05).

Recognition of one selected vehicle
The ability to recognize one selected vehicle was analyzed by ANOVA repeated meas‐
urement, where mean values for each condition was used for each participant. The results
showed a main effect for type of sensor F(1, 11) = 9.02, p < .05, where participant’s
performance were lower with the infrared sensor than with the visual sensor (Fig. 4).

There was also a significant main effect of camera scan rate F(1, 11) = 8.75, p
< .05, where higher camera scan rate caused more errors (Fig. 5). There was no
significant main effect of distance, and no significant interaction effects p > .05.
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Fig. 4. Mean and standard error of mean for proportion correct answers for visual- and infrared
(IR) sensor.

Fig. 5. Mean and standard error of mean for proportion correct answers for 12 m/s and 8 m/s.
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3 Experiment 2 – Recognition of Eight Vehicles

In the second experiment, detection and recognition of a total of eight vehicles were
investigated.

3.1 Method

From Experiment 1, the scenario with an infrared sensor, distance of 400 meters, and
camera scan rate 8 m/s was selected. For this setting recognition of eight different vehi‐
cles was investigated. In this experiment the focus was on proportion correct recognized
vehicles only. The subjects’ watched the video sequences for five seconds and then
reported their answers, no response time was measured.

Subjects
Twelve subjects (4 women and 8 men) participated in the experiment. Five of the partic‐
ipants’ had military background and the other participants’ were well acquainted with
military activities through their civilian jobs. However, none of the participants were
experts on the vehicles presented in these experiments and therefore trained prior to the
experiments started. All had adequate vision with or without correction.

Apparatus
See experiment one for technical description. Superlab [20] was used to present the
video sequences and to record proportion correct answers.

Stimuli
Two video sequences (640 × 480 pixels) with a total of nine stops, where the subject’s
task was to recognize vehicles from a total of eight vehicles. The same eight vehicles
were used as in experiment 1, but in this experiment the task was to identify all eight
vehicles, not only one selected vehicle.

Procedure
Overall the procedure was as in experiment 1. However, there were some differences
due to another design. In experiment 2, the video sequences was paused at predefined
occasions, and one vehicle was indicated by a circle. The subject’s answered by pressing
the number 1–8 on the keyboard, and then the next stimuli was indicated by a circle.
The procedure was repeated 1–4 times at each scenario stop depending on the number
of vehicles in that particular stop.

3.2 Results

The results include statistical analysis of recognition of the eight vehicles, which are
analyzed with one-way ANOVA [10]. Tukey HSD was used for post hoc testing [11].
The results showed a significant effect of vehicle type F(7, 77) = 5.54, p < .001 (Fig. 6).
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Fig. 6. Mean and standard error of mean for proportion correct answers of the eight vehicles.

Tukey HSD showed that BMP-3 was significantly harder to recognize than most of
the other vehicles (except the MT-LB). Vehicles T-72, BTR-80, TOS-1, Ural 4320
ammunition truck, and SA-19 were recognized in 90% of cases or more, while BMP-3,
MT-LB and Ural 4320 fuel truck were more difficult. BMP-3 was mainly confused with
BTR-80 and MT-LB. MT-LB was mainly confused with BTR-80, and Ural 4320 fuel
truck was mainly confused with Ural 4320 ammunition truck. For a more detailed
description see the confusion matrix (Table 1). The first column show the vehicle name
and the second column show percentage correct recognition. Column three to eight show
which other vehicles the vehicle (in first column) was confused with.

Table 1. Confusion matrix that shows which other vehicles the eight vehicles were confused
with. All numbers are presented in percent, and each row add up to 100%

Vehicle %
correct

BMP-3 T-72 BTR-80 TOS-1 MT-LB Ural 4320
ammunition

SA-19 Ural 4320
fuel truck

BMP-3 66,6 4,2 12,5 12,5 4,2
T-72 91,7 8,3
BTR-80 100
TOS-1 93,8 4,2 2,0
MT-LB 79,1 4,2 12,5 4,2
Ural 4320
Ammunition

100

SA-19 91,7 2,8 5,5
Ural 4320 fuel 83,3 16,7
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4 Discussion

The experiments presented here is part of a larger study where user performance to detect
and recognize people and vehicles is investigated, technology driven sensor studies are
performed [10], and thorough investigation of the real setting [11] conducted. The
combination of improved technical knowledge, understanding of the real environment,
and user performance is seen as a good interdisciplinary combination to better under‐
stand how a final system can make a difference in real settings.

The purpose with these two experiments were to investigate subjects’ performance
of vehicle detection and recognition from a simulated unmanned aerial vehicle. The
results shows that the ability to recognize vehicles is affected by type of sensor, camera
scan rate, and type of vehicle that is to be recognized. User performance to recognize
the selected vehicle among a total of eight vehicles was significant lower with the
infrared- than with the visual sensor, and significant lower at camera scan rate 12 m/s
than at 8 m/s. Also, the results show that recognition performance varied between 67%
and 100% depending on type of vehicle. The results from the second experiment clearly
shows that vehicle recognition with the infrared sensor is problematic, even though short
distance (400 meters) and slow camera scan rate (8 m/s). The results also show that
certain types of vehicles are particularly difficult to recognize which is an important
operational information in military contexts.

In situations where the vehicles are placed in open terrain as in these experiments,
it is advantageous to use the visual sensor. However, the infrared sensor allows detection
of vehicles in situations where there is no clear view, in situations with low visibility
and at night. In these situations the heat signature from the infrared sensor can be used
to detect and recognize vehicles. Another possibility is to combine information, either
by switching between the two sensor images or by fusing the sensor images into one
image. However, this was not investigated in these experiments and therefore not
reported here.

From a scientific perspective it is important to understand perceptual and cognitive
possibilities and limitations. As a part of this we investigated how the type of information
presented (visual and infrared), camera scan rate and distance affected user performance.
Although there are a number of other factors that affect performance, this contributes to
knowledge about vehicle detection and recognition in this military context. For practical
and economic reasons it is not always possible to conduct field studies and therefore
laboratory studies can be used as an important compliment. The results presented here
can also be correlated with results from similar field studies (not yet performed). Results
from laboratory experiments are especially valuable if they can predict performance in
real environments, which for us is a future challenge.

It is also important to use systematic methods for data collection and result analysis,
which gives the possibility to compare and analyze the results relative to other scientific
results. The results from our experiments can later on be analyzed and correlated with
calculated values from e.g. the Johnson criteria or relative to sensors’ technical perform‐
ance to get an understanding of correlation between human performance and technical
performance. In this study, no specific sensors have been presented, but the results from
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this work can be used for evaluating the existing sensors that the simulation here were
based on. This work remains to be done and is therefore not presented here.

Even though these experiments and prior experiments [21] gives a good under‐
standing of user performance to detect and recognize people and vehicles from an
unmanned aerial vehicles there are some limitations. In these studies we used a prede‐
fined flying path, as often is the case in real settings, but it would be interesting to let
the users manually control the sensor direction and give them the possibility to zoom-
in to targets. Also, in these experiments it was daytime and strong sunshine, which gave
clear shadows of vehicles. It would be interesting to compare the results achieved in this
study with results from a daytime scenario with cloudy weather without clear and sharp
shadows visible. Also, night time scenarios would be interesting to investigate. In this
study, vehicles were placed on open surfaces in the terrain, but it would be interesting
to see how different camouflage (such as nets or trees) would affect the ability to recog‐
nize vehicles especially with visual camera.

Detection and recognition was investigated in this study, but it would be interesting
to also investigate identification of people and vehicles in a similar setting as the experi‐
ments presented here. One limitation of this study is that although the visual and infrared
sensor data are realistic, no scientific verification has been made to confirm the similarity
between the used stimuli material and real data from sensors. However, one researcher
compared the simulated videos with real sensor information and confirmed that the
material looked similar [10]. In the future, this procedure need to be improved with
standardized objective measures.

The information presented from this study is important since user performance and
technical knowledge can be aggregated and used to understand operational performance
and limitations. Issues such as camera scan rate, type of sensor, flight altitude, weather
conditions, and time of day, are important and can be put in a broader context to under‐
stand how a task best can be solved.
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